搜档网
当前位置:搜档网 › 高中数学相关定理及证明

高中数学相关定理及证明

高中数学相关定理及证明
高中数学相关定理及证明

高中数学相关定理、公式及结论证明

汉阴中学正弦定理证明

内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则

.sin sin sin C

c B b A a == 证明: 1.利用三角形的高证明正弦定理

(1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 a

b

A

B

=

同理可得

sin sin c

b

C

B

=

故有 sin sin a

b

=

sin

c

C

=

.

从而这个结论在锐角三角形中成立.

(2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。

由此,得 =∠sin sin a b ,同理可得 =∠sin sin c b C ABC

故有

=

∠sin sin a

b

A

ABC

sin c

=

.

(3)在ABC Rt ?中,,sin ,sin c

b

B c a A ==

c B

b

A a ==sin sin , .1sin ,90=?=C C .sin sin sin C

c B b A a ==∴

由(1)(2)(3)可知,在?ABC 中,

sin sin a

b

A

B

=

sin c

C

=

成立.

2.外接圆证明正弦定理

在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R

c B C 2sin sin =

'=. R C

c

2sin =.

同理,可得R B

b R A

a 2sin ,2sin ==.∴R C

c

B b A

a

2sin sin sin ===

.

3.向量法证明正弦定理

a b D

A

B C

A

B

C

b

a

'cos(90)sin OC AC A b A =-=

'sin sin OC BC B a B

==

sin sin a B b A = sin sin a b A B = 同理 sin sin c b

C B =

故有 sin sin a b

A B =

sin c C =.

余弦定理证明

内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则

??

???-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 22222

22222 证明:如图在ABC ?中,

))((2

22AB

AC AB AC BC a

a -

-===

cos 22A +?-=+?-=

A bc c b cos 22

2

-+=

同理可证:?????-+=-+=C ab b a c A bc c b a cos 2cos 22

222

22 所以??

???-+=-+=-+=C

ab b a c B ac c a b A bc c b a cos 2cos 2cos 22222

22222 数列部分

内容:{}n a 是等差数列,公差为d ,首项为1a ,n S 为其n 前项和,则2

)(2)1(11n n a a n d n n n a S +=-+= 证明:由题意, ))1((.......)2()(1111d n a d a d a a S n -+++++++=① 反过来可写为:))1((.......)2()(d n a d a d a a S n n n n n --++-+-+=②

①+②得:2n S

n n a n a n a +++++=111.......

所以,2

)

(1n n a a n S +=

③,

把d n a a n )1(1-+=代入③中,得2

)(2)1(11n n a a n d n n n a S +=-+

= 内容:{}n a 是等比数列,公比为q ,首项为1a ,n S 为其n 前项和,则n S =??

?

??≠--=--=)1(,1)1(1)

1(,111q q q a q q a a q na n n

证明:112111.......-++++=n n q a q a q a a S ① n n q a q a q a q a qS 131211.......++++=②

①—②得:n

n q a a S q 11)1(-=-, 当1≠q 时,n S q

q a q q a a n n --=

--=1)

1(1111③ 把11-=n n q a a 代入③中,得n S q

q

a a n --=

11 当1=q 时。很明显n S 1na =

所以,n S =??

?

??≠--=--=)1(,1)1(1)1(,111q q q a q q a a q na n n

立体几何部分

三垂线定理及其逆定理

内容:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

证明:已知:如图(9),直线l 与平面α相交与点A ,l 在α上的射影OA 垂直于α∈a a , 求证:l ⊥a

证明: 过P 作PO 垂直于α

∵PO ⊥α ∴PO ⊥a

又a ⊥OA ,PO ∩OA=O ∴a ⊥平面POA ∴a ⊥l

求证:如果一条直线与一个平面平行,那么过该直线的任意一个平面与已知平面的交线与该直线平行.

:a ,a =αβαβ?如图所示已知在平面,b,求证:a b.

,

b a b b .a a b a a a b αααβ∴∴∴证明和没有公共点,又在内,

和也没有公共点,

而和都在内,和也没有公共点,

求证:如果两个平行平面同时与第三个平面相交,那么它们的交线平行. :,,.a b αβαγβγ?=?=如图所示已知求证:a b.

b b b .a a a a b αβαβγ∴∴证明:和分别在平面、内且,和不相交,

又和都在平面内,

求证:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.

:AB MN B AB αβαββα⊥?⊥⊥如图所示已知,=MN,AB 在内,于点。求证:.

BC MN ABC -MN- ABC =90 AB BC AB MN AB ααβαβα⊥∠⊥∴∠∴⊥⊥∴⊥证明:在平面内做直线,

则是二面角的平面角,

,,又,

求证:如果两条直线同垂直于一个平面,那么这两条直线平行.

:,A B. B b'

b' A b' b b',b' =, B B l ααααβα

β⊥⊥⊥=如图所示已知a ,b 垂足分别为、求证:a b.

证明:假设a 和b 不平行,过点作a 的平行线由异面直线垂直定义,与平面内过点的任意直线都垂直,也即有,故直线与b 与确定一个平面,记,在平面内,过点有且仅有一条

b' a b.l ⊥直线垂直于,故直线与b 重合,

所以

点到直线距离公式证明

内容:已知直线,0:=++C By Ax l 直线外一点).,(00y x M 则其到直线l 的距离为2

200B A C By Ax d +++=。

向量法

证:如图,设直线:0(0,0)l A x

B y

C A B ++=≠≠的

一个法向量(1,)B n A

=,Q 直线上任意一点

,101011|()|||||0,B

x x y y n PQ d n P Ax By C d -+

-?==∴++==

点在直线l 上,从而

定义法

证:根据定义,点

P 到直线 l 的距离是点P 到直线 l 的垂线段的长,如图1,

设点P 到直线l 的垂线为 'l

,垂足为Q ,由 'l l ⊥可知 'l 的斜率为 B A

'l ∴的方程:00()B

y y x x A

-=

-与l 联立方程组 解得交点2200002222

(,)B x ABy AC A y ABx BC

Q A B A B ----++

n

Q

222

2

2

0000002222222200002222

2222200000022222222

||()()()()()()()()()B x ABy AC A y ABx BC PQ x y A B A B

A x ABy AC

B y ABx B

C A B A B A Ax By C B Ax By C Ax By C A B A B A B ----=-+-++------=+++++++++=+=

++

+|PQ ∴=平行向量定理

内容:若两个向量(与坐标轴不平行)平行,则它们相应的坐标成比例;若两个向量相对应的坐标成比例,则两向量平行。

证明:设b a ,是非零向量,且),(),,(2211y x b y x a ==

若//,则存在实数λ使λ=,且由平面向量基本定理可知)(222211y x y x y x λλλ+=+=+

21x x λ=∴①,21y y λ=② ①-?2y ②2x ?得:01221=-y x y x

若0,021≠≠y y (即向量,不与坐标轴平行)则2

2

11y x y x =

平面向量基本定理

内容:如果21,e e 是同一平面内的两个不共线的向量,那么对于这一平面内的任意一向量,存在唯一一对 实数21,λλ,使得.2211e e λλ+=

证明:如图过平面内一点O ,作e e ===,,21,过点C 分别作直 线OA 和直线OB 的平行线,交OA 于点M ,交OB 于点N ,有且只有一组实数,使

得21,λλ==

OB

OA OC 21λλ+=∴+=

即.2211e e λλ+=

共线向量定理

内容:如图A,B,C 为平面内的三点,且A,B 不重合,点P 为平面内任一点,若C 在直线AB 上,则有

)1(λλ-+=

证明:由题意,与共线,λ=∴

)

(,-=-∴-=-=λ化简为:PB PA PC )1(λλ-+=

A

O

e 1

-y)

柯西不等式:

若a 、b 、c 、d

为实数,则22222()()()a b c d ac bd ++≥+或22||ac bd c d ++

证法:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+.

证法:(向量法)设向量(,)m a b =,(,)n c d =,则22||m a b =+,2||n c d =+∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴22222()()()a b c d ac bd ++≥+ 诱导公式

公式:

如图:

设α的终边与单位圆(半径为单位长度1的园)交 于点P(x ,y),则角-α的终边与单位圆的交点必为 P ′(x ,-y).由正弦函数、余弦函数的定义,即可得

sin α=y , cos α=x, sin(-α)=-y, cos(-α)=x, 所以:sin(-α)= -sin α, cos(-α)= cos α

由倒数关系和商数关系可以得到有关正切的-α诱导公式。 公式:

ααπ-sin sin(=+)

ααπ-cos cos(=+) ααπtan tan(

=+)

它刻画了角180o+α与角α的正弦值(或余弦值)

之间的关系,这个关系是:以角α终边的反向延长线 为终边的角的正弦值(或余弦值)与角α的正弦值(或 圆交于点P( x ,y),则角α终边的反向延长线,即

180o+α角的终边与单位圆的交点必为P ′(-x ,-y)(如图4-5-1). 由正弦函数、余弦函数的定义,即可得sin α=y , c os α=x,

sin(180o+α)=-y, cos(180o+α)=-x,

所以 :sin(180o+α)=-sin α,cos(180o+α)=-cos α. 由倒数关系和商数关系可以得到有关正切的诱导公式。 相应诱导公式

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:

sin (2kπ+α)=sinα k ∈z cos (2kπ+α)=cosα k ∈z tan (2kπ+α)=tanα k ∈z

公式二:sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα 公式三:sin (-α)=-si nα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sinα cos (π-α)=-cosα tan (π-α)=-tanα

公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos (2π-α)=cosα tan (2π-α)=-tanα 公式六: π/2±α与α的三角函数值之间的关系:

α

αcos cos(=-)α

αtan tan(-=-)αα-sin sin(=-)

sin (π/2+α)=cosα cos (π/2+α)=-sinα tan (π/2+α)=-cotα sin (π/2-α)=cosα cos (π/2-α)=sinα tan (π/2-α)=cotα

两角差的余弦公式证明

如图在单位圆中设P (cos α,sin α),Q (cos β,sin β)

则:)cos()βαβα-=-=?

βαβαsin sin cos cos +=?OQ OP

∴)cos(βα-βαβαsin sin cos cos += 两角和的余弦公式证明

[]cos()cos ()αβαβ+=--

两角和(差)的正弦公式证明 内容:

βαβαβαβαβαβαsin cos cos sin )sin(,sin cos cos sin )sin(-=-+=+

证明:

β

απ

βαπ

βαπ

βαπ

βαsin )2

sin(

cos )2

cos(

])2

cos[(

)](2

cos[

)sin(-+-=--=+-=+βαβαsin cos cos sin +=

βαπ

βαπ

βαπ

βαπ

βαsin )2

sin(

cos )2

cos(

])2

cos[(

)](2

cos[

)sin(---=+-=--=-βαβαsin cos cos sin -=

两角和(差)的正切公式证明

内容:β

αβαβαtan tan 1tan tan )tan(-+=

+,βαβαβαtan tan 1tan tan )tan(+-=- 证明:

=

-

+=-+=++=+β

αβαβαβαβ

αβ

αβαβαβαβαβαβαβαβαβαcos cos sin sin cos cos cos cos cos cos sin cos cos cos cos sin sin sin cos cos sin cos cos sin )cos()sin()tan(βαβαtan tan 1tan tan -+

=+

-=+-=--=-β

αβαβαβαβ

αβ

αβαβαβαβαβαβαβαβαβαcos cos sin sin cos cos cos cos cos cos sin cos cos cos cos sin sin sin cos cos sin cos cos sin )cos()sin()tan(β

αβαtan tan 1tan tan +-

高级中学数学公式定理汇总

高中数学公式结论大全 1. ,. 2.. 3. 4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有 个. 5.二次函数的解析式的三种形式 (1)一般式; (2)顶点式;当已知抛物线的顶点坐标时,设为此式 (3)零点式;当已知抛物线与轴的交点坐标为时,设为此式 4切线式:。当已知抛物线与直线相切且切点的横坐标为时,设为此式 6.解连不等式常有以下转化形式 . 7.方程在内有且只有一个实根,等价于或。 8.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:

(1)当a>0时,若,则; ,,. (2)当a<0时,若,则, 若,则,. 9.一元二次方程=0的实根分布 1方程在区间内有根的充要条件为或; 2方程在区间内有根的充要条件为 或或; 3方程在区间内有根的充要条件为或 . 10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间的子区间形如,,不同上含参数的不等式(为参数)恒成立的充要条件是。 (2)在给定区间的子区间上含参数的不等式(为参数)恒成立的充要条件是 。

(3) 在给定区间 的子区间上含参数的不等式(为参数)的有解充要条件是 。 (4) 在给定区间 的子区间上含参数的不等式(为参数)有解的充要条件是 。 对于参数及函数.若恒成立,则;若恒成立,则;若有解,则 ;若 有解,则 ;若 有解,则 . 若函数无最大值或最小值的情况,可以仿此推出相应结论 11.真值表 12.常见结论的否定形式 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有个 至多有个 小于 不小于 至多有个 至少有 个 对所有,成立 存在某,不成立 或 且 对任何,不成立 存在某,成立 且 或 p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

高中数学公式定理大集中

高中的数学公式定理大集中 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα 2cotα=1 sinα 2cscα=1 cosα 2secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα

sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα 2tanβ tanα-tanβ tan(α-β)=—————— 1+tanα 2tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2)

高中数学《立体几何》重要公式、定理

高中数学《立体几何》重要公式、定理 1.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行. 2.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行. 3.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直; (3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 4.证明直线与平面垂直的思考途径 (1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 5.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直. 6.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直. 7.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b=b +a . (2)加法结合律:(a +b)+c=a +(b +c). (3)数乘分配律:λ(a +b)=λa +λb . 8.共线向量定理 对空间任意两个向量a 、b(b ≠0 ),a ∥b ?存在实数λ使a=λb . P A B 、、三点共线?||AP AB ?AP t AB =?(1)OP t OA tOB =-+. ||AB CD ?AB 、CD 共线且AB CD 、不共线?AB tCD =且AB CD 、不共线. 9.共面向量定理 向量p 与两个不共线的向量a 、b 共面的?存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的?存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++. 10.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角 线所表示的向量. 11.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1 k ≠

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

高级中学数学公式定理一览表

高中所用重点公式汇总

公式口诀: 一、《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。 函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 三、《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高中数学公式及定理

高中数学公式及定理Newly compiled on November 23, 2020

1.乘法与因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a- b(a^2+ab+b^2) 2.三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 3.一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 4.根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b^2-4ac=0 注:方程有两个相等的实根 b^2-4ac>0 注:方程有两个不等的实根 b^2-4ac<0 注:方程没有实根,有共轭复数根 5.三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 6.倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 7.半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 8.和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) ) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB; 9.某些数列前n项和 1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n- 1)=n2 _ 2+4+6+8+10+12+14++(2n)=n(n+1) 5 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2++n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+n^3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3 10.正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径 11.余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x- a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标 _ 圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0 12.抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 13.直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h'

高中数学相关定理及证明

高中数学相关定理、公式及结论证明 汉阴中学正弦定理证明 内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin C c B b A a == 证明: 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = . 从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。 由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . (3)在ABC Rt ?中,,sin ,sin c b B c a A == ∴ c B b A a ==sin sin , .1sin ,90=?=C C Θ.sin sin sin C c B b A a ==∴ 由(1)(2)(3)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 2.外接圆证明正弦定理 在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R c B C 2sin sin ='=. ∴R C c 2sin =. 同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===. 3.向量法证明正弦定理 a b D A B C A B C D b a

高中数学定理公式大全

抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上bx再加上c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T 推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota

高中数学公式及定理

高中数学公式及定理标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

1.乘法与因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a- b(a^2+ab+b^2) 2.三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 3.一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 4.根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b^2-4ac=0 注:方程有两个相等的实根 b^2-4ac>0 注:方程有两个不等的实根 b^2-4ac<0 注:方程没有实根,有共轭复数根 5.三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 6.倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 7.半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 8.和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) ) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB; 9.某些数列前n项和 1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n- 1)=n2 _ 2+4+6+8+10+12+14++(2n)=n(n+1) 5 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2++n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+n^3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3 10.正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径 11.余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x- a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标 _ 圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0 12.抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 13.直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 14.锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L

高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式

高中数学常用公式及定理

高中数学常用公式及定理 1.熟悉这些解题小结论,启迪解题思路、探求解题佳径,防止解题易误点的产生,对提升数 学成绩将会起到很大的作用。 2.所有定义、概念、公式、解题方法都须熟记,且应在弄清它们的来龙去脉后再熟记。 1.元素与集合的关系:U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式:();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ????U A C B ?=Φ()U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n -1个;非空子集有2n -1个;非 空的真子集有2n -2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式:()N f x M <

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

[整理]年高中数学定理汇总

124推论2 经过切点且垂直于切线的直线必经过圆心 125切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 126圆的外切四边形的两组对边的和相等 127弦切角定理弦切角等于它所夹的弧对的圆周角 128推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 129相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等 130推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 131切割线定理从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 132推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 133如果两个圆相切,那么切点一定在连心线上 134①两圆外离d﹥r+r ②两圆外切d=r+r ③两圆相交r-r﹤d﹤r+r(r﹥r) ④两圆内切d=r-r(r﹥r) ⑤两圆内含d﹤r-r(r﹥r) 135定理相交两圆的连心线垂直平分两圆的公共弦 136定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 137定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 138正n边形的每个内角都等于(n-2)×180°/n 139定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 149正n边形的面积sn=pnrn/2 p表示正n边形的周长 141正三角形面积√3a²/4( a表示边长) 142如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 143弧长计算公式:l=nπr/180 144扇形面积公式:s扇形=nπr2/360=lr/2 145内公切线长= d-(r-r) 外公切线长= d-(r+r) 146等腰三角形的两个底角相等 147等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 148如果一个三角形的两个角相等,那么这两个角所对的边也相等 149三条边都相等的三角形叫做等边三角形 150两边的平方的和等于第三边的三角形是直角三角形 编辑本段数学归纳法 (—)第一数学归纳法: 一般地,证明一个与正整数n有关的命题,有如下步骤: (1)证明当n取第一个值时命题成立 (2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。 (二)第二数学归纳法: 第二数学归纳法原理是设有一个与自然数n有关的命题,如果:

高中数学公式定理定律大全

高中数学公式大全 (最全面,最详细) 高中数学公式大全 抛物线: y = ax *+ bx + c 就是 y 等于 ax 的平方加上 bx 再加上 c a > 0 时开口向上 a < 0 时开口向下 c = 0 时抛物线经过原点 b = 0 时抛物线对称轴为 y 轴 还有顶点式 y = a ( x+h) * + k 就是 y 等于 a 乘以( x+h)的平方 +k -h 是顶点坐标的 x k 是顶点坐标的 y 一般用于求最大值与最小值抛物线标准方程 :y^2=2px 它表示抛物线的焦点在 x 的正半轴上 , 焦点坐标为 (p/2,0) 方程为 x=-p/2 由于抛物线的焦点可在任意半轴 , 故共有标准方程 准线y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积 =4/3(pi )(r^3) 面积=(pi)(r^2) 周长=2(pi)r

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b )是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式: L=2πb+4(a -b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长 (2πb)加上四倍的该椭圆长半轴长( a)与短半轴长( b)的差。 (二)椭圆面积计算公式 椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长 ( a)与短半轴长( b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率 T,但这两个 公式都是通过椭圆周率 T 推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI* 高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-

(完整版)高中数学学考公式大全

高中数学学考常用公式及结论 必修1: 一、集合 1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性 (2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法 2、集合间的关系: 子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。记作A B ? 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集,记作A ≠ ?B 集合相等:若:,A B B A ??,则A B = 3. 元素与集合的关系:属于∈ 不属于:? 空集:φ 4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A B U 交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B I 补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个; 6.常用数集:自然数集:N 正整数集:* N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性 1、定义: 奇函数 <=> f (– x ) = – f ( x ) , 偶函数 <=> f (–x ) = f ( x )(注意定义域) 2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形; (3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性 1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2 ① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数 2、复合函数的单调性: 同增异减 三、二次函数y = ax 2 +bx + c (0a ≠)的性质 1、顶点坐标公式:??? ? ??--a b ac a b 44,22, 对称轴:a b x 2-=,最大(小)值:a b ac 442- 2.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠.

高中数学基本定理证明

1三角函数的定义证明. 已知锐角△ABC中,AB=c,AC=b,BC=a,利用三角函数的定义证明:c=acosB+bcosA解:作CD⊥AB于点D 在Rt△BCD中,由cosB=BD/BC,得BD=acosB,在Rt△ACD中,由cosA=AD/AC,得AD=bcosA,所以c=AB=BD+AD=acosB+bcosA 逐步提示: 1、根据待证明的条件中存在三角函数,而题目本身图形为锐角三角形,所以要在原图形中通过添加辅助线来构造直角三角形。 2、根据求【c的表达式,既是求AB的三角函数表达式】,因此添加辅助线时考虑【将AB 线段变为直角三角形的边】,可以作【CD⊥AB 于点D,】接下来考虑如何在在直角三角形中利用直角三角形三角函数来求解边角关系。 3、接下来分别在Rt△ACD和Rt△BCD中利用三角函数来表示AD的长度向待证靠近 2点P为△ABC内任意一点,求证点P到△ABC距离和为定值点P为△ABC外时,上述结论是否成立,若成立,请证明。若不成立h1,h2,h3与上述定值间有何关系【设点p 到AB,BC,CA三边距离为h1,h2,h3】 证明:连接PA、PB、PC,过C作AB上的高AD,交AB于G。 过P作AB、BC、CA的重线交AB、BC、CA于D、E、F 三角形ABC面积=AB*CG/2 三角形ABC面积=三角形ABP+BCP+CAP面积 =AB*PD/2+BC*PE/2+CA*PF/2 =AB(PD+PE+PF)/2 故:AB*CG/2=AB*(PD+PE+PF)/2 CG=PD+PE+PF 即:点P到△ABC距离和为三角形的高,是定值。 (2) 若P在三角形外,不妨设h1>h3,h2>h3,则有: h1+h2-h3=三角形边上的高 3棱长为的正四面体内任意一点到各面距离之和为定值,则这个定值等于多少? 简证如下: 设M为正四面体P-ABC内任一点, M到面ABC,面PAB,面PAC,面PBC的距离分别为h1,h2,h3,h4. 由于四个面面积相等, 则VP-ABC=VM-ABC+VM-PAB+VM-PAC+VM-PBC

相关主题