搜档网
当前位置:搜档网 › 2贝叶斯最优估计

2贝叶斯最优估计

2贝叶斯最优估计
2贝叶斯最优估计

第五章贝叶斯估计

第五章贝叶斯统计 5.1 简介 到目前为止,我们已经知道了大量的不同的概率模型,并且我们前面已经讨论了如何用它们去拟合数据等等。前面我们讨论了如何利用各种先验知识,计算MAP参数来估计θ=argmax p(θ|D)。同样的,对于某种特定的请况,我们讨论了如何计算后验的全概率p(θ|D)和后验的预测概率密度p(x|D)。当然在以后的章节我们会讨论一般请况下的算法。 5.2 总结后验分布 后验分布总结关于未知变量θ的一切数值。在这一部分,我们讨论简单的数,这些数是可以通过一个概率分布得到的,比如通过一个后验概率分布得到的数。与全面联接相比,这些统计汇总常常是比较容易理解和可视化。 5.2.1最大后验估计 通过计算后验的均值、中值、或者模型可以轻松地得到未知参数的点估计。在5.7节,我们将讨 论如何利用决策理论从这些模型中做出选择。典型的后验概率均值或者中值是估计真实值的恰当选择,并且后验边缘分布向量最适合离散数值。然而,由于简化了优化问题,算法更加高效,后验概率模型,又名最大后验概率估计成为最受欢迎的模型。另外,通过对先验知识的取对数来正 则化后,最大后验概率可能被非贝叶斯方法解释(详情参考6.5节)。 最大后验概率估计模型在计算方面该方法虽然很诱人,但是他有很多缺点,下面简答介绍一下。在这一章我们将更加全面的学习贝叶斯方法。 图5.1(a)由双峰演示得到的非典型分布的双峰分布,其中瘦高蓝色竖线代表均值,因为他接近 大概率,所以对分布有个比较好的概括。(b)由伽马绘图演示生成偏态分布,它与均值模型完全不同。 5.2.1.1 无法衡量不确定性 最大后验估计的最大的缺点是对后验分布的均值或者中值的任何点估计都不能够提供一个不确定性的衡量方法。在许多应用中,知道给定估计值的置信度非常重要。我们在5.22节将讨论给出后验估计置信度的衡量方法。 5.2.1.2 深耕最大后验估计可能产生过拟合

贝叶斯分类作业题

作业:在下列条件下,求待定样本x=(2,0)T的类别,画出分界线,编程上机。 1、二类协方差不等 Matlab程序如下: >> x1=[mean([1,1,2]),mean([1,0,-1])]',x2=[mean([-1,-1,-2]),mean([1,0,-1])]' x1 = 1.3333 x2 = -1.3333 >> m=cov([1,1;1,0;2,-1]),n=cov([-1,1;-1,0;-2,-1]) m = 0.3333 -0.5000 -0.5000 1.0000 n = 0.3333 0.5000 0.5000 1.0000 >> m1=inv(m),n1=inv(n) m1 = 12.0000 6.0000 6.0000 4.0000

n1 = 12.0000 -6.0000 -6.0000 4.0000 >> p=log((det(m))/(det(n))) p = >> q=log(1) q = >> x=[2,0]' x = 2 >> g=0.5*(x-x1)'*m1*(x-x1)-0.5*(x-x2)'*n1*(x-x2)+0.5*p-q g = -64 (说明:g<0,则判定x=[2,0]T属于ω1类) (化简矩阵多项式0.5*(x-x1)'*m1*(x-x1)-0.5*(x-x2)'*n1*(x-x2)+0.5*p-q,其中x1,x2已知,x 设为x=[ x1,x2]T,化简到(12x1-16+6x2)(x1-4/3)+(6x1-8+4x2) -(12x1+16-6x2)(x1+4/3)-(-6x1-8+4x2)x2, 下面用matlab化简,程序如下) >> syms x2; >> syms x1; >> w=(12*x1-16+6*x2)*(x1-4/3)+(6*x1-8+4*x2)*x2-(12*x1+16-6*x2)*(x1+4/3)-(-6*x1-8+4*x2)*x 2,simplify(w) w =

贝叶斯估计方法学习感想及看法

关于贝叶斯估计方法学习感想及看法 经过半学期的课程学习,终于在参数估计这部分内容的学习上有了个终结。参数估计方面的学习主要分了经典学派的理论和贝叶斯学派的理论。在参数估计上经典学派运用的是矩法和极大似然估计,贝叶斯学派用的当然就是Bayes 估计。经典学派的学习在本科学习比较多,而Bayes 方法对我来说算是个新知识,在此只对Bayes 统计方法做个小结,然而由于知识有限性,只能粗略地从讲义中对Bayes 估计总结点观点出来。 贝叶斯统计中除了运用经典学派的总体信息和样本信息外,还用到了先验信息,其中的两个基本概念是先验分布和后验分布。 1,先验分布,总体分布参数θ的一个概率分布。贝叶斯学派的根本观点,是认为在关于总体分布参数总体分布参数θ的任何统计推断问题中,除了使用样本所提供的信息外,还必须规定一个先验分布,它是在进行统计推断时不可缺少的一个要素。他们认为先验分布不必有客观的依据,可以部分地或完全地基于主观信念。 2,后验分布。根据样本分布和未知参数的先验分布,可以用概率论中求条件概率分布的方法,求出的在样本已知下,未知参数的条件分布。因为这个分布是在抽样以后才得到的,故称为后验分布。贝叶斯推断方法的关键是任何推断都必须且只须根据后验分布,而不能再涉及本分布。可以看出Bayes 统计模型的特点是将参数θ视为随机变量,并具有先验分布H(θ)。Bayes 统计学派与经典学派的分歧主要是在关于参数的 认识上的分歧,经典学派视经典学派视θ为未知常数;而Bayes 学派视θ为随机变量且具有先验分布为随机变量且具有先验分布。两个学派分歧的根源在于对于概率的理解。经典学派视概率为事件大量重复实验频率的稳定值;而Bayes 学派赞成主观概率,将事件的概率理解为认识主体对事件发生的相信程度。个人认为将θ视为随机变量且具有先验分布具有实际意义,这也算Bayes 学派在二百年时间不断发展的一个前提。 然后用数学计算的观点来看看Bayes 估计: 一切估计的目的是要对未知参数θ作统计推断。在没有样本信息时,我们只能依据先验分布对θ作出推断。在有了样本观察值1(,,)n X x x = 之后,我们应依据(,)h X θ对θ作出推断。若把(,)h X θ作如下分解: ()(,)|()h X X m X θπθ= 其中()m X 是X 的边际概率函数: ??ΘΘ ==,)()|(),()(θθπθθθd X p d X h X m 它与θ无关,或者说)(X m 中不含θ的任何信息因此能用来对θ作出推断的仅是条件分布)|(X θπ,它的计算公式是:)|(X θπ=(,)h X θ/()m X 。 贝叶斯统计学关键是首先要想方设法先去寻求θ的先验分布h (θ),先验分布的确定方法有客观法,主观概率法,同等无知原则,共轭分布方法,Jeffreys

贝叶斯分类实验报告doc

贝叶斯分类实验报告 篇一:贝叶斯分类实验报告 实验报告 实验课程名称数据挖掘 实验项目名称贝叶斯分类 年级 XX级 专业信息与计算科学 学生姓名 学号 1207010220 理学院 实验时间: XX 年 12 月 2 日 学生实验室守则 一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。 二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。 三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用

或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。 五、实验中要节约水、电、气及其它消耗材料。 六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据,不得擅离操作岗位和干扰他人实验。 七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。仪器设备发生故障和损坏,应立即停止实验,并主动向指导教师报告,不得自行拆卸查看和拼装。 八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师检查认可并将实验记录交指导教师检查签字后方可离去。 九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。 十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。 十一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。 学生所在学院:理学院专业:信息与计算科学班级:信计121

教学大纲_贝叶斯统计(双语)

《贝叶斯统计(双语)》教学大纲 课程编号:120872B 课程类型:□通识教育必修课□通识教育选修课 □专业必修课□√专业选修课 □学科基础课 总学时:32 讲课学时:32实验(上机)学时:0 学分:2 适用对象:经济统计学 先修课程:微积分、概率论与数理统计学 毕业要求: 1.应用专业知识,解决数据分析问题 2.可以建立统计模型,获得有效结论 3.掌握统计软件及常用数据库工具的使用 4.关注国际统计应用的新进展 5.基于数据结论,提出决策咨询建议 6.具有不断学习的意识 一、课程的教学目标 贝叶斯统计是上世纪50年代后,才迅速发展起来的一门统计理论。目前,在欧美等西方国家,贝叶斯统计已经成为了与经典统计学派并驾齐驱的当今两大统计学派之一;随着贝叶斯理论和方法的不断发展和完善,以及相应的计算软件的研制,贝叶斯方法在实践中获得了日趋广泛的应用;特别是,贝叶斯决策问题在统计应用中占有越来越重要的地位。在商业经济预测、政府宏观经济管理、国防工业中对武器装备系统可靠性评估、生物医学研究;知识发现和数据挖掘技术等都获得了广泛应用。

本课程通过贝叶斯统计的教学使学习过传统的数理统计课程的学生了解贝叶斯统计的基本思想和基本观点,了解贝叶斯统计与传统的数理统计在理论和处理方法上的区别,了解贝叶斯统计的最新进展,能够系统的掌握贝叶斯统计的基本理论、基本方法,特别是贝叶斯统计极具特色的一些处理方法,引进一个效用函数(utility function)并选择使期望效用最大的最优决策,这样就把贝叶斯的统计思想扩展到在不确定时的决策问题。很好的将统计学与最优化的思想方法和技术很好的进行了结合。贝叶斯统计理论和方法技术的学习,不仅能够提高学生分析和解决实际问题的能力,还能够更进一步提高对经典数理统计的深入理解。 二、教学基本要求 根据贝叶斯统计课程的教学内容,本课程将重点介绍贝叶斯统计推断理论,贝叶斯决策理论。并且注重贝叶斯统计处理方法和基本观点与传统数理统计相应内容对比的讲授方式。注重案例教学,安排学生课后查阅文献资料,以及课堂研讨等方式,了解贝叶斯统计理论和应用最新成果及前沿研究进展。对最新贝叶斯网络和贝叶斯统计的方法除了传统讲授方式外,适当的安排上机实验,了解贝叶斯统计相关软件的使用方法。课程的考核方式:期末开卷+ 论文方式,卷面60%,平时和论文40%。 三、各教学环节学时分配 以表格方式表现各章节的学时分配,表格如下: 教学课时分配

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

模式识别大作业

作业1 用身高和/或体重数据进行性别分类(一) 基本要求: 用FAMALE.TXT和MALE.TXT的数据作为训练样本集,建立Bayes分类器,用测试样本数据对该分类器进行测试。调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。 具体做法: 1.应用单个特征进行实验:以(a)身高或者(b)体重数据作为特征,在正态分布假设下利用最大似然法或者贝叶斯估计法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到测试样本,考察测试错误情况。在分类器设计时可以考察采用不同先验概率(如0.5对0.5, 0.75对0.25, 0.9对0.1等)进行实验,考察对决策规则和错误率的影响。 图1-先验概率0.5:0.5分布曲线图2-先验概率0.75:0.25分布曲线 图3--先验概率0.9:0.1分布曲线图4不同先验概率的曲线 有图可以看出先验概率对决策规则和错误率有很大的影响。 程序:bayesflq1.m和bayeszcx.m

关(在正态分布下一定独立),在正态分布假设下估计概率密度,建立最小错误率Bayes 分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,考察训练/测试错误情况。比较相关假设和不相关假设下结果的差异。在分类器设计时可以考察采用不同先验概率(如0.5 vs. 0.5, 0.75 vs. 0.25, 0.9 vs. 0.1等)进行实验,考察对决策和错误率的影响。 训练样本female来测试 图1先验概率0.5 vs. 0.5 图2先验概率0.75 vs. 0.25 图3先验概率0.9 vs. 0.1 图4不同先验概率 对测试样本1进行试验得图

基于贝叶斯理论的R语言实例分析

上海大学2013~2014学年春季学期研究生课程考试 课程名称:贝叶斯统计学课程编号:01SAQ9009 论文题目: 基于贝叶斯理论的R语言实例分析 研究生姓名: 杨晓晓、李腾龙学号:13720061、13720067 研究生班级:理学院统计系 论文评语: 成绩:任课教师: 评阅日期:

基于贝叶斯理论的R 语言实例分析 杨晓晓(13720061),李腾龙(13720067) 摘要:Gibbs 抽样和Metropolis-Hastings 算法是MCMC 理论中最为重要 的两种算法,Probit 模型也是二分类数据分析中非常重要的模型。本文的主要是通过小组两个人互相讨论的方式,应用Gibbs 和M-H 算法共同完成了Probit 模型在贝叶斯理论框架下的估计问题,深入学习并掌握Probit 模型、Gibbs 抽样、M-H 算法的相关知识,并能够初步使用R 语言进行编程。同时,在文章第二部分我们俩还给出了多项式分布的Gibbs 抽样的实现。 关键词:Probit ,Gibbs ,Metropolis-Hastings ,多项式分布 一、Probit 模型介绍 1.1 Probit 模型的定义 设y 是一个二值的响应变量,10或=i y 。y 的值依赖于解释变量x ,通常我们可以认为1=i y 的概率是关于x 的一个函数,即: )()|1(1i i x f x y P == 假设存在潜在变量)1,(~) 1,0(~βεεβi i i i i i x N z N x z '+'=则:其中, ?? ?≤>=0 1i i i z z y

) ()(1) (1) 0()0()|1(βββεεβi i i i i i i i i x x x P x P z P x y P 'Φ='-Φ-='-≤-=>+'=>== β是参数,i z 是潜变量。 通常,我们称由上式决定的模型为Probit 模型。 二、Probit 模型与Gibbs 抽样 2.1 满条件分布 由1.1节,我们知道潜变量)1,(~βεβi i i i i x N z x z '+'=:服从分布, 由于对i z 做了如下限制条件:0,0;1,0=≤=>i i i i y z y z , 这暗示潜变量i z 的分布是以i y 为条件的截尾正态分布(truncated normal distribution,TN ):)1,(~|βi i i x TN y z ' 再者,i i i x z εβ+'=,回归参数β和潜变量i z 为简单线性关系,由实用多元统计分析[1]第七章可知)1,(~βi i x N z ',所以: ? ? ? ?? ??=???? ? ??=????? ??=????? ??''=?? ????-'--∝? ?????-'-∝∏=n p np n p n n i i i i i n z z Z x x x x x x X Z X Z X z x x y z z f 11111111212)()(exp 2)(exp ),,|,,(βββββββ其中, 在先验分布1)(∝βπ的条件下,β的后验分布为: ()()()?? ? ? ??? ???''-''''-- ∝? ? ????''-''-∝? ? ????-'-- ∝--2)()(exp 22exp 2)()(exp ),,|(11Z X X X X X Z X X X Z X X X Z X Z X x z y i i i ββββββββπ

对贝叶斯估计的理解

对贝叶斯定理及其在信号处理中的应用的理解 信号估计中的贝叶斯方法是对贝叶斯定理的应用,要理解贝叶斯估计首先要理解贝叶斯定理。 一、 贝叶斯定理: 1. 贝叶斯定理的简单推导过程 贝叶斯定理就是条件概率公式(贝叶斯公式),所谓条件概率就是在事件A 发生的条件下事件B 发生的概率,常用(/)P B A 表示。一般情况下(/)P B A 与 (/)P A B 是不相等的。容易得到: (/)P B A = ()()P A B P A ,(/)P A B =() () P A B P B 所以 (/)P B A ()P A =(/)P A B ()P B , 对上式变形得贝叶斯公式: (/) P A B =(/)() () P B A P A P B (1) 若',A A 为样本空间的一个划分,可得全概率公式: ()P B =''(/)()(/)()P B A P A P B A P A + 所以(1)式可以改写为: '' (/)() (/)(/)()(/)() P B A P A P A B P B A P A P B A P A = + (2) 如果12n A A A ,,...,为样本空间的一个划分,由(2)式可得条件概率(/)j P A B 1 (/)() (/)(/)() j j j n i i i P B A P A P A B P B A P A == ∑ (3) (3)式就是当样本空间的划分为n 时的贝叶斯公式即贝叶斯定理。我们把其中的()(1,...)i P A i n =称为先验概率,即在B 事件发生之前我们对i A 事件概率的一个判断。(/)j P A B 称为后验概率,即在B 事件发生之后我们对i A 事件概率的重新评估。 2. 贝叶斯公式的事件形式

作业1-贝叶斯分类器

作业1、BAYES分类器 算法1. %绘图,从多个视角观察上述3维2类训练样本 clear all; close all; N1=440; x1(1,:)=-1.7+0.9*randn(1,N1); % 1 类440 个训练样本,3 维正态分布 x1(2,:)= 1.6+0.7*randn(1,N1); x1(3,:)=-1.5+0.8*randn(1,N1); N2=400; x2(1,:)= 1.3+1.2*randn(1,N2); % 2 类400 个训练样本,3 维正态分布 x2(2,:)=-1.5+1.3*randn(1,N2); x2(3,:)= 1.4+1.1*randn(1,N2); plot3(x1(1,:),x1(2,:),x1(3,:),'*',x2(1,:),x2(2,:),x2(3,:),'o'); grid on; axis equal; axis([-5 5 -5 5 -5 5]); xlabel('x ');ylabel('y ');zlabel('z '); %假定2类的类条件概率分布皆为正态分布,分别估计2类的先验概率、均值向量、协方差矩阵 p1=N1/(N1+N2); % 1 类的先验概率 p2=N2/(N1+N2); % 2 类的先验概率 u1=sum(x1')/N1; % 1 类均值估计 u1=u1' for i=1:N1 xu1(:,i)=x1(:,i)-u1;end; e1=(xu1*xu1')/(N1-1) % 1 类协方差矩阵估计 u2=sum(x2')/N2; % 2 类均值估计 u2=u2' for i=1:N2 xu2(:,i)=x2(:,i)-u2;end; e2=(xu2*xu2')/(N2-1) % 2 类协方差矩阵估计 %求解2类的BAYES分类器的决策(曲)面,并绘图、从多个视角观察决策面 %bayse 概率概率分布函数 w10=-(1/2)*u1'*(inv(e1))*u1-0.5*log(det(e1))+log(0.52); w20=-(1/2)*u2'*(inv(e2))*u2-0.5*log(det(e2))+log(0.48); W1=-(0.5)*inv(e1); W2=-(0.5)*inv(e2); w1=inv(e1)*u1; w2=inv(e2)*u2; temp=-5:0.1:5; [x1,y1,z1]=meshgrid(temp,temp,temp); val=zeros(size(x1)); for k=1:(size(x1,1)^3) X=[x1(k),y1(k),z1(k)]';

基于贝叶斯估计的信息融合方法研究

基于贝叶斯估计的信息融合方法研究 摘 要:为了有效融合多个传感器的测量数据,得到准确的融合结果,本文以置信距离测度作为数据融合的融合度,利用分位图法,通过置信距离矩阵、关系矩阵寻找多传感器的最佳融合数,并以Bayes 估计理论为基础得到多传感器最优融合数据,最后将它与其它方法得到的融合数据进行了比较。 关键词:Bayes 估计;信息融合;分位图;传感器 Study on Information Fusion MethodsBased on Bayes Estimation Abstract :For getting accurate fused data by fusing multi-sensor measurement data, in this PaPer,the confidence distance measure is used to be fusion measure of data fusion.The useful fused data are looked for by confidence distance matrix and relation matrix through using a method of bitmap.The optimal fused data is given by Bayes estimation theory, and optimal fused results obtained by other methods are compared with it. Key words :Bayes estimation; information fusion; bitmap; sensor 1 引言 信息融合是把来自多种或多个传感器的信息和数据进行综合处理,得到更为准确可靠的理论,从而减少在信息处理中可能出现的失误。一个系统中同时使用着多个信息采集传感器,它们既可以是同种类型的,也可以是不同类型的。在实际应用中不同的传感器所测得的同一物体的某特性参数的数据会有偏差。这种偏差一方面来自传感器本身的误差,另一方面来自数据处理过程的数学方法。必须对传感器所测得的数据进行判断,以决定数据是否可信。信息融合的关键是对各个传感器所得数据的真实性进行判别,找出不同传感器数据之间的相互关系,从而决定对哪些传感器的数据进行融合。数据融合的目的在于运用一定的准则和算法,借助现代科技成果,自动对来自各信源的数据呈报进行联合、变换、相关和合成,从中提取质量的战术情报,洞察战场威胁态势,为作战指挥决策提供可靠依据[1]。本文以置信距离测度作为数据融合的融合度,利用置信矩阵、关系矩阵得到多传感器的最佳融合数,以Bayes 估计理论[2,3]为基础得到多传感器最优融合数据。 2 置信距离测度和置信距离矩阵的确定 用多传感器测量同一个指标参数时,设第i 个传感器和第j 个传感器测得的数据为 i X ,j X 。i X ,j X 都服从Gauss 分布,以它们的pdf 曲线作为传感器的特性函数,记成()x f i ,()x f j 。i x ,j x 为i X ,j X 的一次观测值。为了反应观测值i x ,j x 之间偏差的大小,引进 置信距离测度ij d (i ,j =1,2,…,m),ij d 的值称为第i 个传感器与第j 个传感器数据的置信距离测度[4],ij d 的值越小,i ,j 2个传感器的观测值越相近,否则偏差就很大,因此ij d 也称为i ,j 2个传感器的融合度。设 ()A ==?22dx x x f d i x x i ij j i (1) ()B ==?22dx x x f d j x x j ji i j (2) 式中, ()?? ???????????? ??--=2 21exp 21i i i i i x x x x f σσπ (3)

基于贝叶斯的文本分类

南京理工大学经济管理学院 课程作业 课程名称:本文信息处理 作业题目:基于朴素贝叶斯实现文本分类姓名:赵华 学号: 114107000778 成绩:

基于朴素贝叶斯实现文本分类 摘要贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。 关键词社区发现标签传播算法社会网络分析社区结构 1引言 数据挖掘在上个世纪末在数据的智能分析技术上得到了广泛的应用。分类作为数据挖掘中一项非常重要的任务,目前在商业上应用很多。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该分类器可以将数据集合中的数据项映射到给定类别中的某一个,从而可以用于后续数据的预测和状态决策。目前,分类方法的研究成果较多,判别方法的好坏可以从三个方面进行:1)预测准确度,对非样本数据的判别准确度;2)计算复杂度,方法实现时对时间和空间的复杂度;3)模式的简洁度,在同样效果情况下,希望决策树小或规则少。 分类是数据分析和机器学习领域的基本问题。没有一个分类方法在对所有数据集上进行分类学习均是最优的。从数据中学习高精度的分类器近年来一直是研究的热点。各种不同的方法都可以用来学习分类器。例如,人工神经元网络[1]、决策树[2]、非参数学习算法[3]等等。与其他精心设计的分类器相比,朴素贝叶斯分类器[4]是学习效率和分类效果较好的分类器之一。 朴素贝叶斯方法,是目前公认的一种简单有效的分类方法,它是一种基于概率的分类方法,被广泛地应用于模式识别、自然语言处理、机器人导航、规划、机器学习以及利用贝叶斯网络技术构建和分析软件系统。 2贝叶斯分类 2.1分类问题综述 对于分类问题,其实谁都不会陌生,说我们每个人每天都在执行分类操作一点都不夸张,只是我们没有意识到罢了。例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、那边有个非主流”之类的话,其实这就是一种分类操作。 从数学角度来说,分类问题可做如下定义: 已知集合:和,确定映射规则,使得任意有且仅有一个使得成立。(不考虑模 糊数学里的模糊集情况) 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合,其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。

贝叶斯参数估计

Bayesian Parameter Estimation (贝叶斯参数估计) 09009128 曹祥09009131 严富函 贝叶斯估计的基本原理 ?假设 ?将待估计的参数看作符合某种先验概率分布的随机变量 ?估计方式 ?通过观察样本,将先验概率密度通过贝叶斯规则转化为后验概率密度

1 引言 概率密度估计的两种基本方法: 参数估计(parametric methods) : 根据对问题的一般性的认识,假设随机变量服从 某种分布,分布函数的参数通过训练数据来估计。 如:ML 估计,Bayesian估计。 非参数估计(nonparametric methods): 不用模型,而只利用训练数据本身对概率密度做 估计。如:Parzen窗方法,k -近邻估计。 n

(Bayes,Thomas)(1702─1761) 贝叶斯是英国数学家.1702年生于伦敦;1761年4月17日 卒于坦布里奇韦尔斯. 贝叶斯是一位自学成才的数学家.曾助理宗教事务,后来长期担任坦布里奇韦尔斯地方教堂的牧师.1742年,贝叶斯被 选为英国皇家学会会员. 如今在概率、数理统计学中以贝叶斯姓氏命名的有贝叶斯公式、贝叶斯风险、贝叶斯决策函数、贝叶斯决策规则、贝叶斯估计量、贝叶斯方法、贝叶斯统计等等.

贝叶斯统计学派把任意一个未知参数都看成随机变量,应用一个概率分布去描述它的未知状况,该分布称为先验分布。 后验信息 统计推断 贝叶斯定理 先验信息 样本信息

3.3 贝叶斯估计 ML 估计: 根据每一类的训练样本估计每一类的类条件概率密度。 Bayesian 估计: 同样根据每一类的训练样本估计每一类的类条件概率密度。但不再把参数看成是一个未知的确定变量,而是看成未知的随机变量。通过对第i 类样本的观察,使概率密度分布转化为后验概 再求贝叶斯估计。 θ

贝叶斯分类算法

最近在面试中,除了基础& 算法& 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法,而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关聚类& 分类算法的系列文章以作为自己备试之用(尽管貌似已无多大必要,但还是觉得应该写下以备将来常常回顾思考)。行文杂乱,但侥幸若能对读者也起到一定帮助,则幸甚至哉。 本分类& 聚类算法系列借鉴和参考了两本书,一本是Tom M.Mitchhell所著的机器学习,一本是数据挖掘导论,这两本书皆分别是机器学习& 数据挖掘领域的开山or杠鼎之作,读者有继续深入下去的兴趣的话,不妨在阅读本文之后,课后细细研读这两本书。除此之外,还参考了网上不少牛人的作品(文末已注明参考文献或链接),在此,皆一一表示感谢。 本分类& 聚类算法系列暂称之为Top 10 Algorithms in Data Mining,其中,各篇分别有以下具体内容: 1. 开篇:决策树学习Decision Tree,与贝叶斯分类算法(含隐马可夫模型HMM); 2. 第二篇:支持向量机SVM(support vector machine),与神经网络ANN; 3. 第三篇:待定... 说白了,一年多以前,我在本blog内写过一篇文章,叫做:数据挖掘领域十大经典算法初探(题外话:最初有个出版社的朋友便是因此文找到的我,尽管现在看来,我离出书日期仍是遥遥无期)。现在,我抽取其中几个最值得一写的几个算法每一个都写一遍,以期对其有个大致通透的了解。 OK,全系列任何一篇文章若有任何错误,漏洞,或不妥之处,还请读者们一定要随时不吝赐教& 指正,谢谢各位。 基础储备:分类与聚类 在讲具体的分类和聚类算法之前,有必要讲一下什么是分类,什么是聚类,都包含哪些具体算法或问题。 常见的分类与聚类算法 简单来说,自然语言处理中,我们经常提到的文本分类便就是一个分类问题,一般的模式分类方法都可用于文本分类研究。常用的分类算法包括:朴素的贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,k-最近邻法(k-nearest neighbor,

3.2.4贝叶斯估计

四.贝叶斯估计 1.贝叶斯点估计 定义3.6 设总体X 的分布函数为(,)F x θ,θ为随机变量,()πθ为θ的先验分布。 若在决策空间D 中存在一个决策函 数)(*X d ,使得对决策空间D 中任一决策函数)(X d ,均有 (*)inf (),d R d R d d =?∈D (下确界) 则称)(*X d 为参数θ的贝叶斯估计量。 由定义可见,贝叶斯估计量)(*X d 就是贝叶斯风险 )(d R 达到最小的决策函数。 注意,贝叶斯估计量依赖于先验分布()πθ,即对于不同的()πθ,θ的贝叶斯估计量是不同的,在常用损失函数下,贝叶斯估计有如下几个结论。 定理3.2 若给定θ的先验分布()πθ和平方损失函数 ()2 (,)L θd θd =? 则θ的贝叶斯估计是 ()Θ()|()d x E θX x θh θx d θ===∫ 其中)(x h θ为参数θ的后验密度。 证明 由于 [] {} 2 Θ()() ()()min χ R d m x θd x h θx d θdx =?=∫∫ 与[]2 Θ()()min .θd x h θx d θa s ?=∫(几乎处处)

是等价的。而 []2 Θ ()()θd x h θx d θ?∫ 2 Θ()()()()θE θx E θx d x h θx d θ??=?+?? ?∫ 22 ΘΘΘ()()()()()2()()()(),θE θx h θx d θE θx d x h θx d θθE θx E θx d x h θx d θ????=?+?????????+??? ???∫∫∫ 其中 ()()||.E x h x d Θ=∫θθθθ 又 Θ()()()()θE θx E θx d x h θx d θ??????????∫ Θ()()()()E θx d x θE θx h θx d θ????=??????∫ ,0)]()()][()([=??=x E x E x d x E θθθ 故 []Θ()()θd x h θx d θ?∫ 2 2 ΘΘ()()()()()θE θx h θx d θE θx d x h θx d θ????=?+?? ???∫∫ 显然,当()()d x E x θ= .a s 时,)(d R 达到最小。 定理3.3 设θ的先验分布为)(θπ,取损失函数为加权平方损失函数 ()2 (,)()L θd λθd θ=? 则θ的贝叶斯估计为[()] *()[()] E λθθx d x E λθx ?= ,这里略去不证。 定理3.4 设参数θ为随机向量,()1,,T p θθθ=",对给定的先验分布)(θπ和二次损失函数 (,)()()T L θd d θQ d θ=??

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告 ---最小错误率贝叶斯决策分类 一、实验原理 对于具有多个特征参数的样本(如本实验的iris 数据样本有4d =个参数),其正态分布的概率密度函数可定义为 11 22 11()exp ()()2(2)T d p π-??=--∑-???? ∑x x μx μ 式中,12,,,d x x x ????=x 是d 维行向量,12,,,d μμμ????=μ 是d 维行向量,∑是d d ?维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。 本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数 ()(|)(), 1,2,3i i i g p P i ωω==x x (3个类别) 其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。 由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。 我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为 112 2 ()1()exp ()(),1,2,32(2)T i i d P g i ωπ-?? = -∑=???? ∑ x x -μx -μ 对上式右端取对数,可得 111()()()ln ()ln ln(2)222 T i i i i d g P ωπ-=-∑+-∑-i i x x -μx -μ 上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。则判别函数()i g x 可简化为以下形式 111 ()()()ln ()ln 22 T i i i i g P ω-=-∑+-∑i i x x -μx -μ

模式识别作业--两类贝叶斯分类

深圳大学研究生课程:模式识别理论与方法 课程作业实验报告 实验名称:Bayes Classifier 实验编号:proj02-01 姓名:汪长泉 学号:2100130303 规定提交日期:2010年10月20日 实际提交日期:2010年10月20日 摘要:在深入掌握多维高斯分布性质,贝叶斯分类的基础上,用计算机编程实现一个分类两类模式样本的贝叶斯分类器。用matlab编程,并分析了实验结果,得出贝叶斯分类的一般结论。

1. 贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。 1.1 两类情况 两类情况是多类情况的基础,多类情况往往是用多个两类情况解决的。 ① 用i ω,i =1, 2表示样本x (一般用列向量表示)所属的类别。 ② 假设先验概率()P ω1,()P ω2已知。(这个假设是合理的,因为如果先验概率未知,可以从训 练特征向量中估算出来,即如果N 是训练样本总数,其中有,N N 12个样本分别属于 2,1ωω,则相应的先验概率: ()/P N N ω≈11,2 ()/P N N ω≈2) ③ 假设(类)条件概率密度函数 (|),i p ωx i =1,2 已知,用来描述每一类中特征向量的分 布情况。如果类条件概率密度函数未知,则可以从可用的训练数据中估计出来。 1.2贝叶斯判别方法 贝叶斯分类规则描述为: 如果2(|)(|)P ωP ω>1x x ,则x ∈1ω 如果2(|)(|)P ωP ω<1x x ,则x ∈2ω (2-1-1) 贝叶斯分类规则就是看x ∈ω1的可能性大,还是x ∈2ω的可能性大。(|)i P ωx , i =1,2解释为当样本x 出现时,后验概率(|)P ω1x 和(|)P ω2x 的大小从而判别为属于 1ω或属于2ω类。 1.3三种概率的关系――――贝叶斯公式 ()() (|)= () i i i p |P P p ωωωx x x (2-1-3) 其中,()p x 是x 的概率密度函数(全概率密度),它等于所有可能的类概率密度函数乘以相应的先验概率之和。 ()(|)()i i i p p P ωω==∑2 1 x x

贝叶斯分类器

实验报告 一. 实验目的 1、 掌握密度函数监督参数估计方法; 2、 掌握贝叶斯最小错误概率分类器设计方法。 二.实验内容 对于一个两类分类问题,设两类的先验概率相同,(12()()P P ωω=),两类的类条件概率密度函数服从二维正态分布,即 11(|)~(,)P N ω1x μΣ2(|)~(,)P N ω22x μΣ 其中,=[3,6]T 1μ,0.50=02???? ?? 1Σ,=[3,-2]T 2μ,20=02??????2Σ。 1) 随机产生两类样本; 2) 设计最大似然估计算法对两类类条件概率密度函数进行估计; 3) 用2)中估计的类条件概率密度函数设计最小错误概率贝叶斯分类器,实现对两类样本的分类。 三.实验原理 最大似然估计 1. 作用

在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数θ作为真实* θ的参数估计。 2. 离散型 设X 为离散型随机变量, 12=(,,...,)k θθθθ为多维参数向量,如果随机变量 1,...,n X X 相互独立且概率计算式为 {}1(;,...) i i i k P x p x θθX ==,则可得概率函数为 {}1111,...,(;,...)n n n i k i P x x p x θθ=X =X ==∏,在 12=(,,...,)k θθθθ固定时,上式表示11,...,n n x x X =X =的概率;当 11,...,n n x x X =X =已知的时候,它又变成 12=(,,...,)k θθθθ的函数,可以把它记为12111(,,...,)(;,...,)n k k i L p x θθθθθ==∏,称此函数为似然函数。似然函数值的大小意味着该样本值出现的可能性的大小,既然已经得到了样本值 11,...,n n x x X =X =,那么它出现的可能性应该是较大的,即似然 函数的值也应该是比较大的,因而最大似然估计就是选择使12(,,...,) k L θθθ达到最 大值的那个θ作为真实* θ的估计。 3. 连续型 设X 为连续型随机变量,其概率密度函数为1(;,...) i k f x θθ, 1,...n x x 为从该总体中 抽出的样本,同样的如果 1,...n x x 相互独立且同分布,于是样本的联合概率密度为12111(,,...,)(;,...,) n k k i L f x θθθθθ==∏。大致过程同离散型一样。 最大后验概率判决准则 先验概率 1() P ω和 2() P ω,类条件概率密度 1(|) P X ω和 2(|) P X ω,根据贝叶斯公 式1 (|)() (|)(|)() i i i c j j j p x P P X p X P ωωωωω== ∑,当 12(|)(|) P P ωω>x x 则可以下结论,在x 条件 下,事件 1ω出现的可能性大,将x 判定为1ω类。

相关主题