搜档网
当前位置:搜档网 › 巧用反比例函数的对称性解题

巧用反比例函数的对称性解题

巧用反比例函数的对称性解题
巧用反比例函数的对称性解题

巧用反比例函数的对称性

反比例函数图象的对称性在解题时常荐会被忽略,但是事实上它的作用无处不在,而 且它让我们感受到数形结合是多么的奇妙.

一、求代数式的值

例1 如果一个正比例函数与一个反比例函数6y x =

的图象交于A 11()x y 、,22()x y 、 两点,那么2121()()x x y y --的值为

方法一 设正比例函数的解析式是y kx =,与反比例函数6y x =

联立方程,消去y 得到260kx -= 由韦达定理,可知121260,x x x x k

+==

又1122.,y kx y kx ==

∴2121()()x x y y -- 2121()()x x kx kx =--

221()k x x =-

21212()4k x x x x ??=+-??

604k k ??=- ?-?

? =24

方法二 反比例函数和正比例函数都关于原点成中心对称图形,所以,

12x x =-且,12y y =-

∴2121()()x x y y --

2222()()x x y y =++

22424x y ==

这两种解题方法中明显是第二种方法比较简单、快捷、明了,可见反比例函数图形的

对称性不可忽视.

反比例函数的对称有两种.一种是关于原点的中心对称,另一种是关于直线y x =的轴对称.其实在解题过程中恰当地运用这两种对称性会快捷得多,下面再看几个例子来

体验一下.

二、求比例系数k

例2 如图1,已知直线2y x =-+分别与x 轴y 轴交于A ,B 两点,与双曲线k y x =交于E ,F 两点,若AB =2EF ,则k 的值是

方法一 将直线2y x =-+与反比例函数k y x =

联立方程,得到220x x k -+-= 由韦达定理,可知

12122,x x x x k +==

又EF = 12AB = 12x -

1== 解得34

k = 方法二 由图形的对称性可知,反比例函数和一次函数2y x =-+都关于直线y x = 对称,又AB =2EF ,故有BF =FM =ME =AE .

而A (2,0),B (0,2),

所以F 13(,)22,易得34k =

. 三、图形面积问题

例3 如图2,过点O 作直线与双曲线(0)k y k x

=≠交于A ,B 两点,过点B 作BC ⊥x 轴于点c ,作BD ⊥y 轴于点D .在x 轴,y 轴上分别取点E ,F ,使点A ,E ,F 在同一条直线上,且AE =AF 设图中矩形OCBD 的面积为1s ,△EOF 。的面积为2s ,则1s ,2s 的数量关系是

解析 设A (m ,一n ),过点O 的直线与双曲线k y x

=

交于A ,B 两点,则A ,B 两点关

于原点对称,则B (一m ,n ).

矩形OCBD 中,易得

OD =n ,OC =m ,

则1s =mn .

在Rt △EOF 中,AE =AF ,

故A 为EF 中点,

OF =2n ,OE =2m ,

则2s =12

×OF ×OE =2mn , 故2

1s =2s .

例4如图3,反比例函数(0)k y k x

=>的图象与以原

点(0,0)为圆心的圆交于A ,B 两点,且A (1,

图中阴影部分的面积等于 .(结果保留π)

解析 由于反比例函数和圆都是中心对称图形,故阴影部分面积可以看成是扇形AOB 的面

积.再利用图形关于直线y x =对称,可知B 1),所以,

∠BOX =30°,∠AOX =60°,

易得3

S ππ= 2扇形AOB 302=360. 从以上例题的分析可观察到,对于反比例函数与一次函数y x b =+或y x b =-+相 结合的问题,利用轴对称比较方便;而当反比例函数与正比例函数y kx =y 或圆相结合的时 候,中心对称必然能发挥作用.总之,利用反比例函数的对称性,要先观察,再计算(数形 结合),这样会比直接代数运算方便很多.

物理学中的对称性

物理学中的对称性 摘要:物理学中关于对称性探索的一个重要进展就是建立诺特定理,定理指出,如果运动定律在某一变换下具有不变性,必然相应地存在着一条守恒定律。守恒定律与对称性之间也存在着莫大的联系,各种守恒定律的出现不是偶然的,是物理规律具有多种对称性的必然结果。 关键词:物理学、对称性、守恒定律 对称现象遍布于自然界中,人体的左右对称,平面镜成像的对称,正方形的中心对称等等。对称现象是物质世界某种本质和内在规律的体现,物理学以研究物理世界规律为对象,是研究自然界中物体运动变化规律的一门科学,它是自然科学中的一个重要的组成部分,那么物理中蕴含着对称性也是必然的。例如:宏观物质世界中的时空对称性,微观物质世界中的对称性,物理量之间的对称性,物理学中的形体对称性等。物理学是美的,这些对称性都完美的体现出了物理学之美。本文将分别从四个方面来研究物理学中的对称性。前三个方面主要讲解物理学中对称性的概念、对称性与守恒定律以及物理学中的形体对称,第四个方面是通过对电与磁的对称性分析,用更直观的对比来认识物理学中的对称性。一、什么是对称性? 按照对称的定义来讲,对称就是指物体相对而又相称,或者说它们相仿,相等。所谓对称性是指:某种变化下的不变性。自然界中的事物的对称性表现在两方面。第一:物体的形状或几何形体的对称性。例如:五角星的旋转对称,正方体的中心对称性。这是根据对称性的定义,我们使五角星和正方体都绕它们的中心旋转180°,在这样的变换下,变换后图形具有不变性。第二:事物进程或物理规律的对称性。所谓物理规律的对称性是指:物理规律在某种变换下的不变性。例如:一个物体做平抛运动,水平初速度为V,抛出时离水平地面的高度为H,空气阻力忽略不计。在其他外部条件都相同的情况下,在不同的地方使该物体做如上所述的运动,该物体的运动状况是否相同呢?我们知道,平抛运动可以看成

《函数对称性的解题方法归纳》

函数对称性的解题方法归纳 讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。前者是函数自身的性质,而后者是函数的变换问题。下文中我们均简称为函数的变换性。函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。 1. 函数自身的对称性探究 设函数 )2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f (1)试判断函数)(x f y =的奇偶性; (2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。 分析:由)7()7(),2()2(x f x f x f x f +=-+=-可得:函数图象既关于x =2对称,又关于x =7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。 定理1 函数)(x f y =的图像关于直线x =a 对称的充要条件是)()(x a f x a f -=+即)2()(x a f x f -= 证明(略) 推论 函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -= 定理2 函数)(x f y =的图像关于点A (a ,b )对称的充要条件是 b x a f x f 2)2()(=-+ 证明(略) 推论 函数)(x f y =的图像关于原点O 对称的充要条件是0)()(=-+x f x f 偶函数、奇函数分别是定理1,定理2的特例。 定理3 ①若函数)(x f y =的图像同时关于点A (a ,c )和点B (b ,c )成中心对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。

高中物理中及对称性模型

对称性模型 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中,应用这种对称性它不仅能帮助我们认识和探索物质世界的某些规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中为对称法,利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快捷简便地解决问题。 对称法作为一种具体的解题方法,虽然高考命题没有单独正面考查,但是在每年的高考命题中都有所渗透和体现。从侧面体现考生的直观思维能力和客观的猜想推理能力。所以作为一种重要的物理思想和方法,相信在今后的高考命题中必将有所体现。 在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性. 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。(从某点到达最大位置和从最大位置再回到这一点所需要的时间相等、从某点向平衡位置运动的时间和它从平衡位置运动到这一点的对称点所用的时间相等). 现将对称模型分为空间对称模型和时间对称模型 1、空间对称模型 例1:如图1所示:在离地高度是h,离竖直光滑的墙是 s处,有一个弹性小 1 球以初速度 v正对着墙水平抛出,与墙发生弹性碰撞后落到地面上,求小球落地 点与墙的距离。 【解析】:小球与墙的碰撞是弹性碰撞,碰撞前后 的动量对于墙面的的法线是对称的。如墙的另一面同一高 度有一个弹性小球以相同的速度与墙碰撞,由于对称性, 它的轨迹与小球的实际轨迹是对称的。因此碰前的轨迹与碰

函数的对称性82459

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。

专题14反比例函数图像的对称性

专题14反比例函数图像的对称性 方法技巧:①当k1+k2=0时, 反比例函数与的图像关于x 轴,y 轴对称;②反比例函数的图像既是轴对称也是中心对称图形,它的对称轴是直线y= 一、妙用反比例函数的图像的轴对称性 1、如图 l 1是反比例函数在第一象限的函数图象, 且过点A (2,1),l 1与l 2关于x 轴对称,那么图像l 2的 函数解析式为_______(x >0) 2、双曲线的对称轴的对称轴有( ) A 、0条 B 、1条 C 、2条 D 、3条 3、如图以O 为圆心,半径为2的圆与双曲线(x >0)交于 A 、 B 两点,若AB 的长度为 ,则k=______ 4、如图直线y=x-1交x 轴D ,交双曲线 (x >0)于B ,直线y=2x 交双曲线(x >0)于A ,若OA=OB ,求k 的值。 二、妙用反比例函数的图像的中心对称性 5、若直线y= -2x 与双曲线交于(1,-2),则另一个交点坐标为______ 6、已知直线y=kx (k <0)与双曲线 交于A (x 1,y 1),B (x 2,y 2)两点,则3x 1y 2-8x 2y 1=______ 7、如图点P (3a ,a )是双曲线(x >0)与圆O 的一 个交点,图中阴影部分的面积为10π。 (1)k=______; (2)某同学在圆O 内做随机扎针实验,针头落在阴影区域 内的概率为______ 8、如图点A (3,5)关于原点O 的对称点为点C ,分别过点A 、C 作y 轴的平行线,与双曲线(0<k <15)交于点B 、D ,连接AD 、BC ,AD 与x 轴交于点E (-2,0)。 (1)k=______;(2)阴影部分的面积之和是______

物理学中的对称性

目录 摘要 (1) Abstract (1) 1 引言 (1) 2 对称性 (1) 2.1镜像对称 (2) 2.2 转动对称 (2) 2.3平移对称 (2) 2.4置换对称性 (2) 3 物理定律的对称性 (3) 3.1物理定律的空间平移对称性 (3) 3.2物理定律的转动对称性 (3) 3.3物理定律对时间的平移对称性 (3) 3.4物理定律对于匀速直线运动的对称性 (3) 4 对称性与物理定律的关系 (3) 5 对称性在物理学中的应用 (4) 6结论 (5) 参考文献 (5)

物理学中的对称性 摘要:从自然界中的对称性开始,讲解了物理学中转动对对称性开始称,平移对称,置换对称;还讲解了物理定律中的空间平移对称性,转动对称性,时间平移对称性,匀速直线运动的对称性;进而说明了物理定律与对称性的关系和对称性在物理学中的应用,以及对称性导致物理问题发生和解决。 关键词:对称性;物理定律;守恒 Discuss the Symmetry Secondary Physics Abstract:From the nature of the symmetry of the begining, explain the physics rotation on symmetry started to call, translational symmetry, permutation symmetry; also explained the laws of physics in the spatial translational symmetry, rotational symmetry, time translation symmetry, the symmetry uniform motion in a straight line; then describes the physical laws and symmetry and symmetry in the application of Physics, as well as symmetry leads to physical problems and solutions. Key words:symmetrical; the laws of physicsl; conservation 1引言 对称性是自然界最普遍、最重要的特性[1]。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物和工程技术。 2对称性 什么是对称性?对称性首先来源于生活,对称式自然界中十分普片的现象,从总星系到星系团,从银河系到太阳系,地球,从原生物到各种动植物,都具有不同程度

物理知识结构的对称美

物理知识结构的对称美 句容市后白中学陈国军212400 【摘要】:正确发现知识体系间的联系,不但有助于理解掌握知识,也有利于加深对知识本身的认识。哲学的辩证统一教会我们物体现象之间都是联系的。指导我们认识事物及规律的本质。 【关键词】:对称性、最小作用原理、诺特定理 高中物理的各个板块中都会不同程度的出现应用对称性。正确的观察、理解有利于发现深层次的对称。正确的使用对称规律会使问题得以简化,使得某些颇难解的问题迎刃而解。法拉第跟据电和磁的对称,成功的得到了法拉第电磁感应定律,德布罗意跟据逆向对称思想得到了物质波假说,而且还获得诺贝尔物理学奖。 一、形体上的对称性 形体上的对称是最直接的对称,常常使得我们可以不必精确地去求解就可以获得一些结论。例如:上抛一个自由运动的小球,小球的上升和下降是对称的,其运动特征也高度对称,位置、速度大小、能量的对称,不用解就知道是对称的。再如一个无阻力的摆球摆动起来,左右是对称的,向左边摆动的高度与右边摆边的高度一定是相等的,从中间平衡位置向左摆到最高点的时间一定等于从中间平衡位置向右摆到最高点的时间,平衡位置两边等当位置处摆球的速度和加速度的大小必定是相等的,等等。再例如一张无限大平面方格子的导体网络,方格子每一边的电阻是r,在这张方格子网络的中间相邻格点连出两条导线,问这两条导线之间的等效电阻是多少?这个问题涉及到

无穷多个回路和无穷多个节点,要用直流电路中普遍的基尔霍夫方程组将得到无穷多个方程,难以求解。然而这一无穷的方格子网络具有形体上的对称性,利用对称性分析,求解变得相当简单。在高中阶段只能利用对称性,设想用一根导线连接到一个格点,通以电I,电流从网络的边缘流出,由于从该格点向四边流过的电流具有对称性,因此流过与该可知点连接的每一边的电流必定是I/4。再设想电流I从网络的边缘流入,再从网络中心的一个格点上连接的一条导线从上流出,根据同样的对称性分析,流过与该格点连接的每一边的电流也必定是I/4。我们要求解的情形正是这两种情形的叠加,电流I从连接到一个格点的导线流入,从连到相邻格点的导线流出,而在网络边缘,两种情形流出和流入的电流相互抵消。结果在连接导线的两相邻格点之间的那条边上通过的电流是上述两种情形的叠加,即为I/2,这条边的电阻是r,这意味剩下的电流I/2通过其它边,它相应的电阻应是r,换句话说,从相邻格点来看,这一无穷方格子网络的等效电阻是两个阻值为r 的并联,其等效电阻为r/2。由此可以看出,对称性分析在物理学中非常有用,一旦明确了具有对称性,问题常常变得简单可解。 二、物理量及物理规律的对称性 以上谈到对称性的时候,提到的“事物”不一定限指一个具体物件的形体,物理学家更注意到物理规律的对称性。直线运动中的位移、速度、动量、加速度,和曲线运动的角位移、角速度、角动量、角加速度对称,还有力和力矩对称。直线的规律速度时间规律、速度位移

(完整word)高考专题函数对称性

函数对称性 一知识点精讲: I 函数)(x f y =图象本身的对称性(自身对称) 1、)()(x b f x a f -=+?)(x f y =图象关于直线2 2)()(b a x b x a x +=-++=对称 证明:函数)(x f y =图象上的任一点00(,)P x y (满足00()f x y =)关于直线a b x +=的对称点为 (Q a b +∴点Q 推论1推论2推论32、f ((Q a b +∴点Q 推论1推论2推论3II 1、y 2、y 345.函数证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于直线2b a x -= 的对称点为00(,)Q b a x y --,Q 000[()]()f b b a x f a x y ---=+= ∴点Q 在函数()y f b x =-的图象上;反之函数()y f b x =-的图象上任一点关于直线2 b a x -= 的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =-的图象关于直线2 b a x -=对称. 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -=图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

6若函数)(x f y =的定义域为R ,则函数()y f a x =+与()y f b x =--的图象关于点( ,0)2 b a -对称. 证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于点(,0)2 b a -的对称点为00(,)Q b a x y ---,Q 000[()]()f b b a x f a x y ----=-+=- ∴点Q 在函数()y f b x =--的图象上;反之函数()y f b x =--的图象上任一点关于点(,0)2 b a -的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =--的图象关于点(,0)2b a -对称. 二典例解析: 11x (log 2f 解析:)(x f -(log f 234 5 解析:的,故6、设y )2(x f =解析:)2(x f 是由2 1=x ,=x 7个实根之和为解析:)(x f y =的图象关于直线3=x 对称,故五个实根,有两对关于直线3=x 对称,它们的和为12,还有一个根就是3。故这5个实根之和为15,正确答案为15 8、设函数)(x f y =的定义域为R ,则下列命题中, ①若)(x f y =是偶函数,则)2(+=x f y 图象关于y 轴对称; ②若)2(+=x f y 是偶函数,则)(x f y =图象关于直线2=x 对称; ③若)2()2(x f x f -=-,则函数)(x f y =图象关于直线2=x 对称; ④)2(-=x f y 与)2(x f y -=图象关于直线2=x 对称, 其中正确命题序号为_______。 解析:①错)2(+=x f y 关于直线2-=x 对称,②对③错若)2()2(x f x f -=-,则函数)(x f y =图象关于直线0=x 对称;④对正确答案为②④

(整理)对称性原理在物理学中的重要性.

6、对称性原理在物理学中的重要性 《自然杂志》19卷4期的‘探索物理学难题的科学意义'的97个悬而未决的难题:23.自然界是否存在七种对称性晶体?77.CP不守恒难题只能在中性K介子衰变中见到吗?78.引起CP对称性破坏的力是什么?87.是否存在中性,稳性,质量至少大于40GeV的超对称粒子?美籍华人著名的物理学家、诺贝尔奖金获得者李政道把“一些物理现象理论上对称,但实验结果不对称”、“暗物质问题、暗能量问题”、"类星体的发能远远超过核能,每个类星体的能量竟然是太阳能量的1015倍"、“夸克禁闭”称为是21世纪科技界所面临的四大难题。这些问题都于对称性原理存在着密切的联系。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物(DNA的构型对称性等)和工程技术。 对称美在于:在杂乱中形成规律,在无序中引入秩序。物理学的第三个特点是它的和谐性和统一性。自然界本身就是和谐统一的,自然美反映到物理学理论中,就显示出统一与和谐的物理学美的规范。物理学规律的统一、有序与神秘的和谐、自恰常常使一些物理

学家感到狂喜和惊奇。而物理学家们创造出来的系统的思想所表现的统一与和谐之美又使更多的人感到愉快。我们可在门捷列夫的元素周期表中感到这一体系结构的“诗意”。在牛顿对天地间运动规律的统一之中;在焦耳迈尔对热功的统一之中;在法拉第、麦克斯韦对电与磁的统一之中;在E=MC2所表示的质能统一之中;在广义相对论的引力、空间、物质的统一之中;我们都会感到一种和谐的满足。守恒与对称和统一、和谐的观念紧密相连。守恒和对称会给人一种圆满、完整、均匀的美感。从阿基米德的杠杆原理到开普勒第二定律表现的角动量守恒,以及动量守恒、能量守恒等,都符合守恒的审美标准。在数学中,方程与图形的对称处处可见,这也是数学美的重要标志。中心对称、轴对称、镜像对称等,都是诗人愉悦的形式。笛卡尔建立的解析几何学是在数学方程与几何图形之间建立的一种对称。爱因斯坦于1905年提出了具有革命性意义的狭义相对论,从其新思想的来源看,不仅是逻辑的,而且具有美学的性质,是一种对称美的追求。电磁场的基本方程――麦克斯韦方程组就具有一定程度的优美的数学对称性。它确定了电荷、电流、电场、磁场的普遍规律与联系,用完美而对称的数学形式奠定了经典电动力学的基础。对称性原理简单说就是从不同角度看某个事物都是一样的。在所有这样的对称中,最简单的是左右对称。例如:从镜子里看左右颠倒了的脸,它都是一样的。有些事物比人脸有着更大的对称性。立方体从六个相互垂直的不同方向看,或者颠倒它的左右来看,都是一样的。球从任何方向来看都是相同的。这样的对称性千百年来愉悦和激发着艺术家和科学家。但对

(推荐)高中数学函数:题型分类

高中数学函数学生常见问题以及函数常见题型、解法指导 一、学生常见问题: (一)、认知层面的问题: 这个问题是在高一学习函数时就一直在困扰学生的问题。我们要了解高一学生在学习数学时产生困难的原因,首先要了解学生的数学认知结构。即学生在对数学对象、数学知识和数学经验感知和理解的基础上形成的一种心理结构。通俗地说:数学认知结构就是人们按照自己的经验与理解,根据自己的感知、记忆、思维的特点,把数学知识在大脑中组合而成的具有内部规律的整体结构。数学认知结构受个体认知特点的制约,具有浓厚的认知主体性与鲜明的个性色彩。高一新生在学习数学时的困难正是由于数学认知结构的特点所决定。高一新生在学习高中数学时,碰到的困难比如无法理解函数的概念,无法建立对应的观念,对集合的概念理解不够透彻等问题,导致高中数学的学习存在很大的困难。 (二)、基础知识层面的问题: 在进行高三复习的时候,同学们普遍的反映都不太好。原因在于,同学们感觉学校老师复习得很快。学校老师的讲课思路是先大致的把知识点串讲一遍,接着在课上做一些例题,课后给同学发一些卷子以做为练习,这些练习在做完之后老师也不一定会仔细的讲解,知识点的落实也不太扎实。因此同学感觉老师的复习很快。(因此这里学生会出现的问题就是基础知识不扎实)那么我们在具体的操作中,首先应该了解学生复习的程度。在总复习的过程中侧重于整体性,所以可以先了解一下学生是否有一个整体的框架。(框架的作用是帮助PEC检查学生的知识体系是否完善) 函数被分成了两块:横轴和纵轴。(参见策略库函数基本概念第一部分)

接下来,就是要求学生能够对这个表格里的每个点都比较了解。(框架完善了,就要看基础知识点是否真的落实)

第26章 反比例函数的图象及双曲线的对称性(含详细答案解析及考点分析)

第26章反比例函数的图象及双曲线的对称性 一.选择题(共14小题) 1.(2015?黔东南州)若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是() A.B.C.D. 2.(2015?兰州)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是() A.B.C.D. 3.(2015?柳州)下列图象中是反比例函数y=﹣图象的是() A.B.C. D. 4.(2015?温州模拟)在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()

A.B.C.D. 5.(2015?广东模拟)函数y=﹣x+1与函数在同一坐标系中的大致图象是()A.B.C. D. 6.(2015秋?龙安区月考)函数y=kx+b与函数y=在同一平面直角坐标系中的大致图象正确的是() A.B.C. D. 7.(2015?上海模拟)下列函数的图象中,与坐标轴没有公共点的是() A.B.y=2x+1 C.y=﹣x D.y=﹣x2+1

8.(2015?泰兴市校级二模)已知反比例函数,当x>0时,它的图象在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 9.(2015?江宁区二模)如图,以原点为圆心的圆与反比例函数y=的图象交于A、B、C、D四点,已知点A的横坐标为1,则点C的横坐标() A.﹣4 B.﹣3 C.﹣2 D.﹣1 10.(2014?宜阳县校级模拟)若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是() A.(2,3)B.(3,2)C.(﹣2,3)D.(﹣2,﹣3) 11.(2014?兴化市二模)反比例函数y=和正比例函数y=mx的图象如图.由此可以得到方程=mx的实数根为() A.x=﹣2 B.x=1 C.x1=2,x2=﹣2 D.x1=1,x2=﹣2 12.(2014?江东区模拟)对于反比例函数y=﹣图象对称性的叙述错误的是() A.关于原点对称 B.关于直线y=x对称 C.关于直线y=﹣x对称D.关于x轴对称 13.(2014秋?宝安区期末)如图,正比例函数与反比例函数的图象相交于AB、两点,分别以AB、两点为圆心,画与x轴相切的两个圆,若点A的坐标为(2,1),则图中两个阴影部分面积的和是()

模型组合讲解——对称性模型

模型组合讲解一一对称性模型 马秀红王世华 [模型概述] 对称法作为一种具体的解题方法,虽然高考命题没有单独正面考查,但是在每年的高考 命题中都有所渗透和体现。从侧面体现考生的直观思维能力和客观的猜想推理能力。所以作 为一种重要的物理思想和方法,相信在今后的高考命题中必将有所体现。 [模型讲解] 1.简谐运动中的对称性 例1.劲度系数为k的轻质弹簧,下端挂一个质量为m的小球,小球静止时距地面的高 度为h,用力向下拉球使球与地面接触,然后从静止释放小球(弹簧始终在弹性限度以内)则: A.运动过程中距地面的最大高度为2h B.球上升过程中势能不断变小 C.球距地面高度为h时,速度最大 D.球在运动中的最大加速度是kh/m 解析:因为球在竖直平面内做简谐运动,球从地面上由静止释放时,先做变加速运动, 当离地面距离为h时合力为零,速度最大,然后向上做变减速运动,到达最高点时速度为零,最低点速度为零时距平衡位置为h,利用离平衡位置速度相同的两点位移具有对称性,最高 点速度为零时距平衡位置也为h,所以球在运动过程中距地面的最大高度为2h,由于球的振 k k 幅为h,由a x可得,球在运动过程中的最大加速度为 a h,球在上升过程中动 m m 能先增大后减小,由整个系统机械能守恒可知,系统的势能先减小后增大。所以正确选项为 ACD。 2.静电场中的对称性 例2. (2005上海高考)如图1所示,带电量为+ q的点电荷与均匀带电薄板相距为2d, 点电荷到带电薄板的垂线通过板的几何中心。若图中b点处产生的电场强度为零,根据对称 性,带电薄板在图中b点处产生的电场强度大小为多少,方向如何?(静电力恒量为k)。 解析:在电场中a点:图1

2019中考数学专题练习-反比例函数图像的对称性(含解析)

2019中考数学专题练习-反比例函数图像的对称性(含解析) 一、单选题 1.如图,直线y=-x与双曲线y=相交于A(-2,1)、B两点,则点B坐标为( ) A. (2,-1) B. (1,-2) C. (1,-) D. (,-1) 2.如图,已知直线y=k1x(k1≠0)与反比例函数y= (k2≠0)的图象交于M,N两点.若点 M的坐标是(1,2),则点N的坐标是() A. (﹣1,﹣2) B. (﹣1,2) C. (1,﹣2) D. (﹣2,﹣1) 3.如图,以原点为圆心的圆与反比例函数y=的图象交于A、B、C、D四点,已知点A的横坐标为1,则点C的横坐标() A. -3 B. -2 C. -1 D. -4 4.如图,反比例函数y=的图象与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC 的面积等于()个面积单位.

A. 4 B. 5 C. 10 D. 20 5.已知直线y=kx(k>0)与双曲线y= 交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为() A. ﹣6 B. ﹣9 C. 0 D. 9 6.关于双曲线的对称性叙述错误的是() A. 关于原点对称 B. 关于直线y=x对称 C. 关于x轴对称 D. 关于直线y=﹣x对称 7.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为() A. y= B. y= C. y= D. y= 8.如图,有反比例函数,的图象和一个圆,则S阴影=() A. π B. 2π C. 3π D. 无法确定 9.如果正比例函数y=ax(a≠0)与反比例函数y= (b≠0 )的图象有两个交点,其中一个交点的坐标为(﹣3,﹣2),那么另一个交点的坐标为() A. (2,3) B. (3,﹣2) C. (﹣2,3) D. (3,2)

最新对称性原理在物理学中的重要性

对称性原理在物理学中的重要性

6、对称性原理在物理学中的重要性 《自然杂志》19卷4期的‘探索物理学难题的科学意义' 的97个悬而未决的难题:23.自然界是否存在七种对称性晶体?77.CP不守恒难题只能在中性K介子衰变中见到吗?78.引起CP对称性破坏的力是什么?87.是否存在中性,稳性,质量至少大于40GeV的超对称粒子?美籍华人著名的物理学家、诺贝尔奖金获得者李政道把“一些物理现象理论上对称,但实验结果不对称”、“暗物质问题、暗能量问题”、"类星体的发能远远超过核能,每个类星体的能量竟然是太阳能量的1015倍"、“夸克禁闭”称为是21世纪科技界所面临的四大难题。这些问题都于对称性原理存在着密切的联系。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物(DNA的构型对称性等)和工程技术。 对称美在于:在杂乱中形成规律,在无序中引入秩序。物理学的第三个特点是它的和谐性和统一性。自然界本身就是和谐统一的,自然美反映到物理学理论中,就显示出统一与和谐的物理学美的规范。物理学规律的统一、有序与神秘的和谐、自恰常常使一些物理学家感到狂喜和惊奇。而物理学家们创造出来的系统的思想

所表现的统一与和谐之美又使更多的人感到愉快。我们可在门捷列夫的元素周期表中感到这一体系结构的“诗意”。在牛顿对天地间运动规律的统一之中;在焦耳迈尔对热功的统一之中;在法拉第、麦克斯韦对电与磁的统一之中;在E=MC2所表示的质能统一之中;在广义相对论的引力、空间、物质的统一之中;我们都会感到一种和谐的满足。守恒与对称和统一、和谐的观念紧密相连。守恒和对称会给人一种圆满、完整、均匀的美感。从阿基米德的杠杆原理到开普勒第二定律表现的角动量守恒,以及动量守恒、能量守恒等,都符合守恒的审美标准。在数学中,方程与图形的对称处处可见,这也是数学美的重要标志。中心对称、轴对称、镜像对称等,都是诗人愉悦的形式。笛卡尔建立的解析几何学是在数学方程与几何图形之间建立的一种对称。爱因斯坦于1905年提出了具有革命性意义的狭义相对论,从其新思想的来源看,不仅是逻辑的,而且具有美学的性质,是一种对称美的追求。电磁场的基本方程――麦克斯韦方程组就具有一定程度的优美的数学对称性。它确定了电荷、电流、电场、磁场的普遍规律与联系,用完美而对称的数学形式奠定了经典电动力学的基础。对称性原理简单说就是从不同角度看某个事物都是一样的。在所有这样的对称中,最简单的是左右对称。例如:从镜子里看左右颠倒了的脸,它都是一样的。有些事物比人脸有着更大的对称性。立方体从六个相互垂直的不同方向看,或者颠倒它的左右来看,都是一样的。球从任何方向来看都是相同的。这样的对称性千百年来愉悦和激发着艺术家和科学家。但对称性在物理学

对称性原理在物理学中的表现形式

对称性原理在物理学中的表现形式 在近代科学的开端,哥白尼对日心说的数学结构做了美学说明和论证,他从中看到令人惊异的“对称性”与“和谐联系”——这可以说是科学美学的宣言书.开普勒醉心于宇宙的和谐,他在第谷的庞杂数据中清理出具有美感的行星运动三定律,并由衷地感到难以置信的狂喜和美的愉悦.伽利略对落体定律的揭示,在纷繁的事实多样性中求得统一的定律.牛顿的严整而简单的力学体系把天地间的万物运动统摄在一起,他推崇和倡导节约原理,并认为上帝最感兴趣的事情是欣赏宇宙的美与和谐.这一切,谱写了近代科学的美的协奏曲.以相对论和量子力学为代表的现代科学,更是把科学审美发挥到了极致.撇开这些理论的抽象的理性美和雅致的结构美不谈,令人叫绝的是,数学实在和物理实在之间的(神秘的)一致是由群的关系保证的,科学理论中审美要素的存在是由群的真正本性决定的——对称性或不变性(协变性,invariance)之美跃然纸上! (1)经典物理学中的对称性原理 在原始的意义上,对称是指组成某一事物或对象的两个部分的对等性.物理是研究客观世界的最基本规律的一美科学,而它们在很多方面存在着对等性,例如:正电荷和负电荷、电荷的负极与正极、光速的可逆性、空间与时间、正功与负功、质子与中子、电子与正电子等均具有对称性.万有引力公式F=GMm/r2与静电力公式F=KQ1Q2/r2,弹性势能公式E=0.5kx2与动能公式E=0.5mv2,凸透镜成象公式1/u+1/v=1/f与并联电阻公式1/R1+1/R2=1/R、弹簧串联公式1/k1+1/k2=1/k,欧姆定律公式I=U/R与压强公式P=F/S、密度公式ρ=m/V 、电场强度E=F/Q、电压U=W/Q与电容C=Q/U,安培力F=BIL与电功W=Uit,重量G=ρgV与热量Q=cm Δt等均具有相似性根据这些相似性.开普勒用行星轨道的椭圆对称性代替了古希腊人所坚持的圆形对称性, 开普勒第一定律:每个行星都沿椭圆轨道运行,太阳就在这些椭圆的一个焦点上. 物理学中有一些规律属于基本定律,它们具有支配全局的性质,掌握它们显然是极端重要的.例如力学中的牛顿定律是质点、质点组机械运动(非相对论)的基本定律,电磁学的麦克斯韦方程组是电磁场分布、变化的基本定律,物理学中还有另外一种基本定律的表述形式,这就是最小作用原理(变分原理),它可表述为系统的各种相邻的经历中,真实经历使作用量取极值.可以看出最小作用原理的表述形式与牛顿定律、麦克斯韦方程组的表述形式极不相同.牛顿定律告诉我们,质点此时此刻的加速度由它此时此刻所受的力和它的质量的比值决定;麦克斯韦方程组告诉我们,此时此刻的电场分布由此时此刻的电荷分布以及此时此刻的磁场的变化决定,此时此刻的磁场分布由此时此刻的电流分布以及此时此刻的电场

函数对称性的三类题型

对称性 一、有关对称性的常用结论 (一)函数图象自身的对称关系(加法) 1、轴对称 (1))(x f -=)(x f ?函数)(x f y =图象关于y 轴对称; (2) 函数)(x f y =图象关于a x =对称?)()(x a f x a f -=+?()(2)f x f a x =- ?()(2)f x f a x -=+; (3)若函数)(x f y =定义域为R ,且满足条件)()(x b f x a f -=+,则函数)(x f y =的 图象关于直线对称。 2、中心对称 (1))(x f -=-)(x f ?函数)(x f y =图象关于原点对称;. (2)函数)(x f y =图象关于(,0)a 对称?)()(x a f x a f --=+?()(2)f x f a x =-- ?)2()(x a f x f +=-; (3)函数)(x f y =图象关于),(b a 成中心对称?b x a f x a f 2)()(=++- (4)若函数)(x f y = 定义域为R ,且满足条件c x b f x a f =-++)()((c b a ,,为常数), 则函数)(x f y =的图象关于点 对称。 (二)两个函数图象之间的对称关系(减法) 1.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f y -=的图象关于直线 对称。 推论1:函数)(x a f y +=与函数)(x a f y -=的图象关于直线0=x 对 称。 推论2:函数)(a x f y -=与函数)(x a f y -=的图象关于直线a x =对称。 2.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f c y --=的图象关于点 对称。 推论:函数)(x a f y +=与函数)(x b f y --=图象关于点)0,2 ( a b -对称。 类型一:双对称问题 1. 设)(x f 是定义在R 上的偶函数,且)1()1(x f x f -=+,当01≤≤-x 时, 2 a b x -= )2 ,2( c a b -2 b a x += )2 ,2(c b a +

反比例函数图像的对称性

数学实验:反比例函数图像的对称性 教学背景: 《反比例函数》是苏科版数学八年级下学期的重要内容之一,对于反比例函数图像对称性的学习,学生往往局限于初步的感性认识,对称性结论的了解,缺乏推理证明和深入的思考,一方面是教材中没有对应的教学内容,可以不花过多精力学习;另一方面证明有一定的难度,需要一定的教学时间,所以教学时往往是一带而过。这就导致学生对反比例函数图像的对称性只能停留在了解的层面上,遇到问题很难与对称性相结合,快速简便的解决问题。 数学实验的意义: 数学实验是计算机技术和数学、软件引入教学后出现的新事物。数学实验的目的是提高学生学习数学的积极性,提高学生对数学的应用意识并培养学生用所 学的数学知识和计算机技术去认识问题和解决实际问题的能力。借助于计算机的技术和数学软件包的应用,为数学的思想与方法注入了更多、更广泛的内容,使学生摆脱了繁重的乏味的数学演算和数值计算,促进了数学同其他学科之间的结合,从而使学生有时间去做更多的创造性工作。 教学目标: 借助于透明纸片和几何画板软件,验证反比例函数图像的对称性,发展几何直观。 教学重点难点: 借助于几何画板软件和平面直角坐标系内对称点的坐标的特点证明反比例 函数图像的对称性。 教学用具: 透明纸片、大头针(或图钉)、剪刀、几何画板软件的多媒体教学一体机、 苏科版八年级数学《实验手册》. 教学过程: 1.提出问题:反比例函数图像具有对称性吗? 2.数学实验:苏科版八年级数学《实验手册》P39 (1)验证反比例函数图像的中心对称图形; (2)验证反比例函数图像是轴对称图形. 3.几何画板验证中心对称性:

4.推理证明: (1)为什么反比例函数的图像是中心对称图形? (2)为什么反比例函数的图像是轴对称图形? 5.结论: 反比例函数既是中心对称图形,又是中心对称图形. 6.实验感受: 遇到问题时,要敢于提出问题,经历大胆猜想,操作验证,理论证明等探 索过程,最终解决问题. 7.典型应用 例题1:求点的坐标 如图,直线与双曲线的一个交点A是(3,2),则它们的另一个交点B的坐标是. 例题2:求面积 如图,正比例函数和反比例函数的图像相交于A、B两点.分别以A、B为圆心紧挨着x轴画圆,点A的坐标为(2,1),求图中两个阴影部分面积的和是.

函数的对称性知识点讲解及典型习题分析

函数的对称性知识点讲解及典型习题分析 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连 续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角 函数的对称性,因而考查的频率一直比较高。 对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称, 该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的 中心对称,该点称为该函数的对称中心。 常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为 a b x2。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0 )是它的对称中心,2kx是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不 会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,) 0,2 (k是它的对称中心。 (11 )正切函数:不是轴对称,但是是中心对称,其中)0,2 ( k是它的对称中心,容易犯错误的是可能有的同学会误以为对 称中心只是(kπ,0)。 对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能 误以为最值处是它的对称轴。 三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。 绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。前者显然是偶函数,它会关于y轴对称;后者是把x轴下方的图像对称到x轴的上方,是否仍然具备对称性,这也没有一定的结论,例如y=│lnx│就没有对称性,而y=│sinx│却仍然是轴对称。 二、函数的对称性猜测: 具体函数特殊的对称性猜测 ①一个函数一般是不会关于x轴对称,这是由函数定义决定的,因为一个x不会对应两个y的值。但一个曲线是可能关于x 轴对称的。例1、判断曲线xy42 ②函数关于y轴对称例2、判断函数y=cos(sinx)的对称性。 ③函数关于原点对称例3、判断函数xxysin3 ④函数关于y=x对称例4 、判断函数x y1 ⑤函数关于y=-x对称例5 、判断函数x y4 总结为:设(x,y)为原曲线图像上任一点,如果(x,-y)也在图像上,则该曲线关于x轴对称;如果(-x,y)也在图像上,则该曲线关于y轴对称;如果(-x,-y)也在图像上,则该曲线关于原点对称;如果(y,x)也在图像上,则该曲线关 于y=x对称;如果(-y,-x)也在图像上,则该曲线关于y=-x轴对称。2、抽象函数的对称性猜测①轴对称 例6、如果函数y=f(x)满足f(x+1)=f(4-x),求该函数的所有对称轴。(任意取值代入例如x=0有f(1)=f(4),正中间 2.5,从而该函数关于x=2.5对称) 例7、如果函数y=f(x)满足f(x)=f(-x),求该函数的所有对称轴。(按上例一样的方法可以猜出对称轴为x=0,可见偶函数是特殊的轴对称) 例8、如果f(x)为偶函数,并且f(x+1)=f(x+3),求该函数的所有对称轴。(因为f(x+1)=f(-x-3),按上例可以猜出对称轴x=-1,又因为它以2为周期,所以x=k是它所有的对称轴,k∈Z)②中心对称 例9、如果函数y=f(x)满足f(3+x)+f(4-x)=6,求该函数的对称中心。(因为自变量加起来为7时函数值的和始终为6,所以中点固定为(3.5,3),这就是它的对称中心)

相关主题