搜档网
当前位置:搜档网 › 车身结构轻量化与抗撞性多目标协同优化设计方法研究

车身结构轻量化与抗撞性多目标协同优化设计方法研究

车身结构轻量化与抗撞性多目标协同优化设计方法研究
车身结构轻量化与抗撞性多目标协同优化设计方法研究

车身结构轻量化与抗撞性多目标协同优化设计方法研究

汽车的轻量化和安全性设计是实现汽车节能、环保和安全三大设计发展主题的关键技术手段。车身轻量化与抗撞性是相互矛盾和相互制约的两个重要性能,车身的轻量化与抗撞性优化设计,是汽车轻量化、安全性设计的重要组成部分和核心关键技术。

作为整车最关键的连接和承载部件,车身的轻量化与抗撞性优化设计须协同考虑车身的各项基本性能,是一项典型的多参数、多约束和多目标的复杂系统工程。如何系统科学地开展车身的轻量化与抗撞性优化设计是当前汽车行业非常重要的研究课题,研究热点和难点。

目前,已有的研究工作中主要是针对车身单个或小部分零部件的轻量化或抗撞性优化设计居多,而以车身整体为研究对象进行系统地轻量化与抗撞性多目标协同优化设计的研究相对偏少,车身结构的轻量化与抗撞性优化设计仍然缺乏一个系统的设计方法和流程。其次,现有的针对车身结构进行的轻量化或抗撞性优化设计中,较少考虑了材料成本或其他不确定性因素对优化设计结果的影响,导

致优化设计结果的可行性、可用性不足。

再次,现有的车身结构轻量化或抗撞性多目标优化设计中,并未将多目标优

化设计结果与多准则决策方法进行有效整合,使得多目标最优设计方案的选择常常缺乏一定的理论依据。据此,本文以某自主品牌轿车车身为研究对象,采用有限元数值模拟和试验验证相结合手段,综合运用灵敏度与贡献度设计变量筛选方法、多目标试验设计方法、多目标优化代理模型方法、多目标优化算法以及多准则决策方法,结合结构-材料-性能-成本一体化优化设计方法,在考虑不确定性因素影响下,从车身零部件和车身总成水平上,对车身结构进行了分批次轻量化与抗撞

性多目标确定性与不确定性优化设计,从而建立了一种完整的车身结构轻量化与抗撞性多目标协同优化设计方法,实现了车身轻量化与抗撞性水平双重提升,解决了车身设计开发中的某些共性和关键问题,具有重要的理论方法意义和工程应用价值。

本文主要开展了以下几个方面的研究工作并得出了如下相关结论:(1)综述了当前车身轻量化与抗撞性优化设计领域的国内外研究现状,归纳了当前最主流的的车身轻量化与抗撞性设计技术,总结了现有研究中存在的不足之处,并据此提出了本文的主要研究内容并对本文的章节进行了安排。(2)对本文涉及的多目标优化设计基础理论与方法,包括多目标试验设计方法、多目标优化代理模型方法、多目标优化算法,尤其是现有多目标优化设计研究中介绍和应用相对较少的多准则决策方法(包括IPM理想点法、熵-TOPSIS法和GRA灰色关联法等)进行了重点详细的介绍。

(3)建立了白车身有限元模型,并通过车身NVH(Noise,Vibration and Harshness)基本性能数值模拟与台架试验,验证了车身有限元分析模型的精度,并提取了车身质量和NVH基本性能优化设计指标。在此基础上,采用模块化建模方法建立了整车有限元模型,并参照2012版C-NCAP碰撞安全法规,建立了整车100%重叠正面刚性壁障碰撞(简称100%-FRB正碰)、40%重叠正面可变形壁障碰撞(简称40%-ODB偏置碰)和侧面移动可变形壁障碰撞(简称MDB侧碰)有限元分析模型,分析了车身的正面和侧面抗撞性能,并通过实车碰撞试验验证了车身结构抗撞性能有限元分析结果的精度,进而提取了车身结构抗撞性优化设计指标。

(4)提取车身关键零部件之一的吸能盒作为研究对象,首先考虑了实际车辆碰撞工况中冲击角度不确定因素的影响,建立了吸能盒多角度冲击抗撞性分析模

型并进行了试验验证,从而对其初始抗撞吸能特性进行了详细分析。然后,为进一步提高其抗撞吸能潜力,采用金属泡沫铝对原始空心薄壁吸能盒进行了填充,并详细分析比较了四种不同填充方式对吸能盒抗撞吸能特性的影响机制。

在此基础上,选取最佳泡沫铝填充吸能盒为研究对象,首先分析了其结构参数(吸能盒内、外板板厚,泡沫铝密度)对其抗撞吸能特性的影响,然后以其结构参数为设计变量,对泡沫铝填充吸能盒进行了轻量化与抗撞性多目标确定性优化设计,并对优化设计结果进行了有效性验证。(5)仍然以泡沫铝填充吸能盒作为研究对象,主要考虑吸能盒结构参数(内、外板板厚、泡沫铝密度)或材料属性(密度、弹性模量、泊松比以及屈服强度)所具有的内在不确定性,分别采用6-Sigma多目标稳健性优化设计方法和本文提出的Grey-Taguchi(灰度-田口)多目标稳健性

优化设计方法对其进行了轻量化与抗撞性多目标稳健性优化设计,获取了更为可靠、稳健的泡沫铝填充吸能盒优化设计方案并进行了有效性验证。

(6)将上述车身关键零部件(吸能盒)的轻量化与抗撞性多目标不确定性最优设计结果集成到原车身结构,然后以车身总成为研究对象进行轻量化与抗撞性多目标确定性优化设计。具体如下:首先依据车身总成零部件与车身抗撞性能的关联程度将车身总成零部件划分为正碰&偏置碰安全件、侧碰安全件和非安全件,并制定了相对应的分批次轻量化与抗撞性多目标确定性优化设计策略。

其次,针对车身总成非安全件,结合灵敏度分析方法、RBF代理模型方法、NSGA-II多目标遗传优化算法及IPM多准则决策方法,在考虑车身质量和NVH基本性能的情况下,对其进行了结构-性能一体化轻量化多目标确定性优化设计,并对优化设计结果进行了有效性验证。再次,针对车身总成正碰&偏置碰安全件,结合贡献度分析方法、RBF-RSM混合代理模型方法、MOPSO多目标粒子群优化算法

及熵-TOPSIS多准则决策方法,在考虑车身质量、NVH基本性能、正面抗撞性能以及安全件材料成本的情况下,对其进行了结构-材料-性能-成本一体化轻量化与抗撞性多目标确定性优化设计,并对优化设计结果进行了有效性验证。

然后,针对车身总成侧碰安全件,结合贡献度分析方法和灰色关联分析法(GRA),在考虑车身质量、NVH基本性能、侧面抗撞性能以及安全件材料成本的情况下对其进行了结构-材料-性能-成本一体化轻量化与抗撞性多目标确定性优化设计,并对优化设计结果进行了有效性验证。最后,合成上述车身总成非安全件和安全件轻量化与抗撞性多目标确定性优化设计结果,形成了最终车身总成轻量化与抗撞性多目标确定性优化设计方案并进行了有效性验证。

结果表明,车身在基本保证NVH基本性能和材料成本变化不大的前提下实现了轻量化与抗撞性水平双重提升改善效果。因此,本文对车身结构的轻量化与抗撞性多目标优化设计,包括对车身关键零部件的确定性与不确定性优化设计和对车身总成的确定性优化设计,结果合理有效,从而建立了一种完整的、行之有效的车身结构轻量化与抗撞性多目标协同优化设计方法。

车身安全结构的秘密 爱唯欧整车拆解汇总

如何确保小型车在碰撞事故中对乘员提供尽可能多的安全保护是始终困扰工程技术人员的一道难题,由于受先天“体型”的限制,小型车往往需要在车身安全结构以及被动安全系统上做出更多的努力。 一辆车出厂后,车身表面有车身覆盖件,坐入车内,所能看到和摸到的则是内部装饰件,而夹在它们中间而且往往也是消费者很难看到的白车身则是一辆车的骨架,更形象的说,它就类似于支撑人体的骨骼。车上的零部件都是或直接或间接的安装在白车身上,而且它的结构设计也决定了车辆在碰撞时的安全性能。我们就通过对爱唯欧这款小型车进行拆解,来看看车身结构以及相关零部件在设计上是如何保证乘员安全的。 ●车身安全设计理念 当层层剥去它的“皮肤”和“肉体”后,车身骨架便清晰的浮现在眼前。其实对于小型车来说,由于车身相对较短,所以就需要车头和车尾的溃缩吸能区在碰撞后出现溃缩变形的同时也要保持有一定的刚性,也就是相对要“坚硬”一些,这样则不至于使得碰撞对乘

员舱造成破坏。当然,如果吸能区过于“坚硬”,那么碰撞时的能量最终则会转移到乘员身上,对其造成巨大伤害,所以如何平衡好“软”与“硬”的关系,往往是车身设计中一个很棘手的问题。 除此之外,如何在一点受到撞击后,将这种能量传递给整个车身,也就是分散可溃缩车身设计同样会起到很大的作用,特别是溃缩区相对狭小的小型车就显得尤为重要。在溃缩区用尽这种极端碰撞情况下,高强度的乘员舱则是对车内乘员的最后保障,对乘员舱的设计就是要足够“坚硬”以防止任何物体对乘员舱的侵入。明白这两个道理后,我们就更容易理解车身的设计的缘由了。 ●双前防撞梁同时具有行人保护设计

两道车身纵梁从前防撞梁一直贯穿至车尾,这两根纵梁可谓是整个车身的“中流砥柱”,它一方面起到支承车身的作用,另外当车辆发生纵向碰撞时,用来分散撞击能量和抵御车身的变形。

《汽车车身结构与设计》基本知识点

《汽车车身结构与设计》 1、车身主要包括哪些部分?答:一般说,车身包括白车身及其附件。白车身通常是指已 经装焊好但未喷涂油漆的白皮车身,主要是车身结构件和覆盖件的焊接总成,并包括前后板制件与车门。但不包括车身附属设备及装饰等 2、车身有哪些承载形式?答:非承载式、半承载式、承载式 3、非承载式(有车架式)车身:货车、采用货车底盘改装的大客车、专用汽车以及大部 分高级轿车都采用非承载式车身,装有单独的车架,车身通过多个橡胶垫安装在车架上,橡胶垫则起到减振作用。非承载车身的优点:①除了轮胎与悬架系统对整车的缓冲吸振作用外,挠性橡胶垫还可以起到辅助缓冲、适当吸收车架的扭转变形和降低噪声的作用,既延长了车身的使用寿命,又提高了舒适性。②底盘和车身可以分开装配,然后总装在一起,这样既可简化装配工艺,又便于组织专业化协作。③由于车架作为整车的基础,这样便于汽车上各总成和部件安装,同时也易于更改车型和改装成其他用途车辆,货车和专用车以及非专业厂生产的大客车之所以保留有车架,其主要原因也基于此。④发生碰撞事故时,车架对车身起到一定的保护作用。非承载车身的缺点: ①由于计算设计时不考虑车身承载,故必须保证车架有足够的强度和刚度,从而导致 自重增加。②由于车身和底盘之间装有车架,使整车高度增加。③车架是汽车上最大而且质量最大的零件,所以必须具备有大型的压床以及焊接、工夹具和检验等一系列较复杂昂贵的制造设备。 4、什么是承载式车身(无车架式)?答:没有车架,车身直接安装在底盘上,主要是 为了减轻汽车的自重以及使车身结构合理化。承载式车身结构的缺点在于由于没有车架,传动的噪音和振动直接传给车身,降低了乘坐的舒适性,因此必须大量采用防振、隔音材料,成本和重量都会有所增加;改型比较困难。 5、汽车生产的“三化”是指什么?答:汽车生产的“三化”是指汽车产品系列化、零部件通用 化、以及零件设计标准化。 6、什么是工程设计?答:汽车工程设计一般需要 3 年以上,而从生产准备到大量投产时 间更长。其中车身的设计所需的周期最长。车身设计首先是按 1:1 的比例进行内部模型和外部模型的设计及实物制作。其次则是车身试验,包括强度试验、风洞试验、振动噪音试验和撞车试验等。 7、轿车底盘有哪三种布置形式?答:轿车底盘有三种布置形式:a:发动机前置,后轮驱 动;b:发动机前置,前轮驱动;c:发动机后置,后轮驱动。 8、什么是汽车驾驶员眼椭圆?答:汽车驾驶员眼椭圆是驾驶员以正常驾驶姿势坐在座椅 上时其眼睛位置在车身中的统计分布图形。 9、什么是 H 点答: H点是人体身躯与大腿的交接点。

车身轻量化—碰撞介绍1新能源汽车轻量化钢制车身结构

新能源汽车轻量化钢制车身结构 摘要 未来钢制汽车计划(FSV)的目标是为紧凑型的电动汽车(BEV)提出一个能制造出完全不同的钢制车身结构的详细设计构思,也确认了为适应大的插电式混合动力车(PHEV)或燃料电池车(FCEV)车身结构的改变。这篇文章将说明七个经过优化的车身的子部件是如何达到减重35%,同时满足安全要求和整个寿命周期内碳排放目标要求。该文章也将对先进的设计优化过程和相应先进的钢材和制造技术概念进行解释。 前言 “未来钢制汽车计划(FSV)”是世界汽车钢(WorldAutoSteel)项目,该组织为世界钢铁联盟下属的汽车钢组,共包含全球范围内17家大型钢铁生产企业。“FSV计划”是一个涉及几百万欧元资金,为期三年的计划,旨在发展出安全、重量轻及采用先进高强钢制造的车身结构,该新型车身结构能够满足电动汽车的不同要求和减少汽车在整个寿命周期内的温室气体(GHG)排放。GHG气体指的是大气中能够加剧地球温室效应的气体,这些气体能够吸收地球表面的热量,使热量在地球表面和大气层之间进行循环,导致地球表面的平均温度升高。“FSV计划”将会阐明用先进高强钢来制造车身结构,减轻汽车重量和减少GHG气体排放。本文说明了“FSV计划”中的相关的钢铁技术和设计构思,及第二阶段现已所获得的结果。 1.0 项目目标 “FSV计划”中工程技术人员关注的焦点是提出一种新的全局性的开发设计方法,目标是开发出具有创新性的整车布置和优化的车身结构的先进汽车,该车将会使用一系列在2015年至2020年之间比较成熟的先进钢铁材料和制造技术。 “FSV计划”主要分为三个阶段: 阶段1:工程研究(已完成) 阶段2:构思与设计(至2010年) 阶段3:展示和具体实施(至2011年) 第一阶段主要是对将来适用于2015年至2020年之间的,先进汽车动力系统和适合批量生产的未来汽车技术进行综合性评价和验证,该阶段所获得的结果在另外一篇报告中有阐述。 图1-1 “FSV计划”的整个设计优化过程

《汽车车身结构与设计》习题与解答要点

《汽车车身结构与设计》习题与解答 第一章车身概论 1、汽车的三大总成是什么? 答:底盘、发动机、车身。 2、简述车身在汽车中的重要性。 答:整车生产能力的发展取决与车身的生产能力,汽车的更新换代在很大程度上也决定与车身,我们所看到的汽车概念大多指车身概念,汽车的改型或改装主要依赖于车身。 3、车身有什么特点? 答:a:汽车车身是运载乘客或货物的活动建筑物,由于其在运动中载人、载物的特殊性,所以汽车车身的设计与制造需要综合运用空气动力、空气调节、结构设计、造型艺术、机械制造、仪器仪表、复合材料、电子电器、防音隔振、装饰装潢、人体工程等不同领域的知识。 b:自1885年德国人卡尔·弗里德里希·本茨研制出世界上第一辆马车式三轮汽车,并成立了世界上第一家汽车制造公司——奔驰汽车公司以来,汽车车身的造型随着时代的推移和科技的进步经历了19世纪末20世纪初的马车车厢形车身;20世纪20、30年代的薄板冲压焊接箱形车身;第二次世界大战后50、60年代冷冲压技术生产的体现流线型、挺拔大方的车身。而到了20世纪70、80年代现代汽车的各种车身造型已初具雏形,新材料、新工艺的使用更使得汽车车身的设计制造得到了飞速发展。 4、简介车身材料。 答:现代汽车车身使用的材料品种很多,除金属(主要是高强度钢板)和轻合金(主要是铝合金)以外,还大量使用各种非金属材料如:塑料、橡胶、玻璃、木材、油漆、纺织品、皮革、复合材料等。随着汽车车身制造技术的发展,为了轻量化以及提高安全性、舒适性,非金属材料、复合材料在汽车车身的加工制造中得到日益广泛的应用。 5、车身主要包括哪些部分? 答:一般说,车身包括白车身及其附件。白车身通常是指已经装焊好但未喷涂油漆的白皮车身,主要是车身结构件和覆盖件的焊接总成,并包括前后板制件与车门。车身结构件和覆盖件焊(铆)接在一起即成为车身总成,该总成必须保证车身的强度与刚度,它可划分为地板、顶盖、前围板、后围板、侧围板、门立柱和仪表板总成。车身前板制件一般是指车头部分的零部件,包括水箱框架和前脸、前翼子板、挡泥板、发动机罩以及各种加强板、固定件。6、车身有哪些承载形式? 答:车身按照承载形式的不同,可以分为非承载式、半承载式、承载式三大类。

全铝车身结构设计

汽车轻量化解决方案—全铝车身结构设计 摘要:解决汽车节能环保的问题,有提高传统燃油发动机的能效、发展新能汽车、应用轻量化技术三个方向。比较以上三种技术路线,在当今发动机技术提升难度日益加大、动力电池效率不高的背景下,不论对传统燃油汽车,还是新能源汽车,汽车轻量化技术都是一项共性的基础技术。大力发展并推进汽车轻量化技术,成为节能、减排的主导之一。而实现汽车轻量化技术又有三个技术途径:一种“轻量化材料”要通过一种“轻量化工艺”来实现一种“轻量化结构”。 关键词:汽车轻量化全铝车身型材截面优化 Stiffness Mass Efficient 由于世界能源的随时枯竭与环境的日益恶化,世界各行各业都积极行动起来,根据政府的优惠政策与民众的强烈要求,在节能、环保方面进行了高投入研发其高效节能、积极环保的产品。汽车产业首当其冲,其汽车零部件的制造,迁联到能源、钢材、铝材、合金、塑料、橡胶、玻璃、化工、机械、电器、信息等各行各业,对汽车节能环保的要求,就是对其它相关行业的要求。对汽车进行轻量化结构的研究,要联系相关行业的专业知识,进行综合性的研究。 一、汽车轻量化的目的 就汽车产业而言,根据汽车产品的特点,降低油耗或提高燃油效率、减少或清洁排放对环境的污染,是节能环保研发的主要目的。从全球汽车产业来看,解决汽车节能环保问题主要采用以下三种方式:

一是大力发展先进发动机技术,通过对传统发动机的改良和一系列汽车电子技术的应用,来提高燃烧效率,改善燃油经济性。 二是大力发展新能源汽车,通过研发先进新型发动机技术和推广使用气体燃料、生物质燃料、煤基燃料、高效电池等动力替代传统能源来减少汽车燃油消耗和对石油资源的依赖。 三是大力发展汽车轻量化技术,在保障汽车安全性和其他基本性能的前提下,通过减轻汽车自身重量降低能耗来实现节能减排的目的。 比较以上三种技术路线,在当今发动机技术提升难度日益加大、动力电池效率不高的背景下,不论对传统燃油汽车,还是新能源汽车,汽车轻量化技术都是一项共性的基础技术。大力发展并推进汽车轻量化技术,成为节能、减排的主导之一。 汽车的轻量化,英文名:Lightweight of Automobile,涵义是“在保证汽车的强度和安全性能的前提下,尽可能地降低汽车的整备质量,从而提高汽车的动力性,减少燃料消耗,降低排气污染。” 世界节能与环境协会的研究报告指出:汽车自重每减少10%, 燃油消耗可降低6%—8%,排放降低5%—6%。而燃油消耗每减少1升,CO2排放量减少2.45kg。燃油消耗量减少不仅有利于节约能源,也可有效减少污染物排放。当前,由于节能和环保的需要,汽车的轻量化已经成为世界汽车发展的潮流。 伴随着技术进步,制造汽车车身的材料已经不仅仅是钢铁了,越来越多的新材料被应用到车身的制作中。其中包括:玻璃钢、铝合金、

汽车车身结构与设计考试题目

第一章 1. 什么是车身结构件、车身覆盖件 答:车身结构件:支撑覆盖件的全部车身结构零件的总称。 车身覆盖件:覆盖车身内部结构的表面板件。 2. 车身类型一般按什么分类,可分为哪几类?非承载式车身的车架一般可分为哪 几类?答:车身类型一般按承载形式不同,可分为非承载式、半承载式和承载式。 非承载式车身的车架一般可分为:1)框式车架:边梁式车架和周边式车架2)脊梁式车架3)综合式车架 3.边梁式、周边式、脊梁式、X 式车架的用途及特点?轿车车身特点分类有 哪些?轿车车身造型分类有哪些? 答:边梁式车架: 特点:此式车架结构便于安装车身(包括驾驶室、车箱或其它专用车身乃至特 种装备等)和布置其它总成,有利于满足改装变型和发展多品种的需要。 用途:被广泛采用在货车、大多数专用汽车和直接利用货车底盘改装的大客车 以及早期生产的轿车上。 周边式车架: 特点:最大的特点是前、后狭窄端系通过所谓的“缓冲臂”或“抗扭盒”与中 部纵梁焊接相连,前缓冲臂位于前围板下部倾斜踏板前方,后缓冲臂位于后座下 方。由于它是一种曲柄式结构,容许缓冲臂具有一定程度的弹性变形,它可以吸 收来自不平路面的冲击和降低车内的噪声。此外,由于车架中部的宽度接近于车 身地板的宽度,从而既提高了整车的横向稳定性,又减小了车架纵梁外侧装置件 的悬伸长度。 用途:适应轿车车身地板从边梁式派生出来的。 脊梁式车架: 特点:具有很大的抗扭刚度,结构上容许车轮有较大的跳动空间,便于装用独立悬架。 用途:被采用在某些高越野性汽车上。 X 式车架: 特点:车架的前、后端均近似于边梁式车架,中部为一短脊管,前、后两端便于 分别安装发动机和后驱动桥。中部脊梁的宽度和高度较大,可以提高抗扭刚度。 用途:多采用于轿车上。

浅谈汽车车身结构轻量化

浅谈汽车车身结构轻量化 【摘要】本文综述了汽车轻量化技术应用的必要性、汽车轻量化的效果和意义、汽车轻量化的途径和技术,以及与节能环保和安全的关系,强调了车身轻量化设计是实现汽车轻量化的主要途径之一。汽车轻量化是汽车产业的发展方向之一,也是一个汽车厂商和国家技术先进程度的重要标志。 【关键词】汽车车身;车身结构;轻量化 0 引言 随着国民经济的蓬勃发展,汽车已一跃成为当前极为重要的交通运输工具。从全世界范围来看,目前还找不出一个无汽车的现代化社会的先例。因此,汽车工业在带动其他各行各业的发展中,已日益显示出其作为重要支柱产业的作用。 在扩大汽车的服务领域和满足各方面多样化要求的前提下,作为汽车上三大总成之一的车身,已后来居上越来越处于主导地位。据统计,客车、轿车和多数专用汽车车身的质量约占整车自身质量的40%~60%;货车车身质量约占整车自身质量的16%~30%;其各车型的车身占整车制造成本的百分比甚至还略超过以上给出的上限值。因此,仅从这个意义上来衡量汽车车身,其经济效益也远远高于其他两大总成。 如果从节能、节材等几方面来考虑,则其潜力更大。此外,纵观国内、外车身制造和装配等工艺流程,不难发现,尽管随着科学技术的进步,吸取了大量的尖端技术,机械化和自动化程度很高,但是仍有两化无能为力而又必须由手工操作来完成的部分(特别是车身的内、外装饰和附件的装配)。 1 汽车轻量化技术应用的必要性 汽车轻量化对于节约能源、减少废气排放十分重要。而在驾驶方面,汽车轻量化后其加速性能也将得到提高,而在碰撞时由于惯性小,制动距离也将减少,便于主动安全控制。 纵观世界汽车工业沿革,可以看出,现代汽车是沿着“底盘”→“发动机”→“车身”逐步发展完善过来的。这个发展过程在很大程度上取决于当时的科学技术水平和物质生活条件。由于汽车与人们的日常生活息息相关,为了适应各种不同的目的和用途乃至车身的更新换代等,其关键在于车身。 国内外汽车生产的实践一再表明:整车生产能力的发展取决于车身的生产能力;汽车的更新换代在很大程度上也决定于车身;在基本车型达到饱和的情况下,只有依赖车身改型或改装才能打开销路。凡此等等都足以说明,汽车工业发展到今天成为重要的支柱产业,而重中之重则非车身莫属。 2 汽车轻量化的效果 汽车轻量化的主要目的是降低油耗。如图1所示,车辆行驶的燃油消耗量与车辆质量的关系。一般情况下,对于1000kg自重的轿车,车辆质量减轻8%,可降低油耗约10%以上。 图1 车辆行驶油耗与质量的关系 另外,世界铝业协会的报告指出:整车质量每减少100KG,其百公里油耗可节降低0.4-1.0L,每公里二氧化碳排放也将相应减少7.5克到12.5克。而车身质量占整车质量的1/3,空载情况下,约70%的油耗用在车身质量上。这意味着:只要通过科学的方式,将车身轻量化后,就可以有效减少燃油消耗。 3 车身轻量化的意义

轿车车身结构及其设计解析

第六章轿车车身结构及其设计 第一节轿车车身结构及其分类 1.1 轿车定义 GB3730.1-88 轿车是用于载送人员及随身物品,且座位布置在两轴之间的四轮汽车。 轿车车身的作用是能为乘员提供一个较舒适的乘坐环境以及一定的安全保护措施,它包括白车身及其附件,并与底盘、发动机、电子电器设备一起构成轿车的四大总成。由于它是轿车上载人的容器,因此要求轿车车身应具有良好的舒适性和安全性。此外,轿车车身又是包容整车的壳体,能够最直观地反映轿车外观形象的特点,从而决定了现代轿车车身设计非常注重外部造型以符合人们对轿车外形的审美要求,更好的开创轿车市场。 1.2 轿车车身结构 早期轿车沿用马车车身,并没有自身独立的车身,被人们称作“没有马的马车”,随着时代的进步,轿车车身成为了轿车的一个重要组成部分。轿车车身由以下几个部分组成:车身本体、车身外装件、内装件和车身电气附件等。 1.2.1车身本体 1—1 三厢式轿车车身结构图 1、发动机盖 2、前档泥板 3、前围上盖板 4、前围板 5、车顶盖 6、前柱 7、上边梁 8、顶盖侧板 9、后围上盖板10、行李箱盖11、后柱12、后围板13、后翼子板14、中柱15、车门16、下边梁17、底板18、前翼子板19、前纵梁20、前横梁21、前裙板22、散热器框架23、发动机盖前支撑板车身本体即白车身,它包含车身的骨架结构,由车身结构件和车身覆盖件组合而成,是主要承载构件的骨架件,其截面形状、受力方向、力如何传递、力矩的位置都是设计时应注意的问题,如图1-1所示为三厢式轿车车身的结构图。 车身结构件主要是车身结构中的梁和支柱,用来支撑车身覆盖件,并通过焊接而成车

(完整版)汽车车身结构与设计期末考试试题

一、名词解释 1、车身:供驾驶员操作,以及容纳乘客和货物的场所。 2、白车身:已装焊好但尚未喷漆的白皮车身。 3、概念设计:指从产品构思到确定产品设计指标(性能指标),总布置定型和造型的确定,并下达产品设计任务书为止这一阶段的设计工作。 4、H点:H点装置上躯干与大腿的铰接点。 5、硬点:对于整车性能、造型和车内布置具有重要意义的关键点。 6、硬点尺寸:连接硬点之间、控制车身外部轮廓和内部空间,以满足使用要求的空间尺寸。 7、眼椭圆:不同身材的乘员以正常姿势坐在车内时,其眼睛位置的统计分布图形;左右各一,分别代表左右眼的分布图形。 8、驾驶员手伸及界面:指驾驶员以正常姿势入座、身系安全带、右脚踩在加速踏板上、一手握住转向盘时另一手所能伸及的最大空间廓面。 9、迎角:汽车前、后形心的连线与水平线的夹角。 10、主动安全性:汽车所具有的减少交通事故发生概率的能力。 11、被动安全性:汽车所具有的在交通事故发生时保护乘员免受伤害的能力。 12、静态密封:车身结构的各连接部分,设计要求对其间的间隙进行密封,而且在使用过程中这种密封关系是固定不动的。 13、动态密封:对车身上的门、窗、孔盖等活动部位之间的配合间隙进行密封,称为动态密封。 14、百分位:将抽取的样本实测尺寸值由小到大排列于数轴上,再将这一尺寸段均分成100份,则将第n份点上的数值作为该百分位数。 二、简答 1、简述车身结构的发展过程。 没有车身——马车上安装挡风玻璃——木头框架+篷布——(封闭式的)框架(木头或钢)+木板——(封闭式的)框架(木头或钢)+薄钢板——全钢车身——安全车身。 2、车身外形在马车之后,经过了那几种形状的演变?各有何特点? ①厢型:马车外形的发展②甲虫型:体现空气动力学原理的流线型车身③船型:以人为本,考虑驾乘舒适性④鱼型:集流线型和船型优点于一身⑤楔型:快速、稳定、舒适。 3、车身设计的要求有哪些? 舒适、安全、美观、空气动力性。 ①结构强度足够承受所有静力和动力载荷;②布置舒适,有良好的操纵性和乘座方便性;③具有良好的车外噪声隔声能力;④外形和布置保证驾驶员和乘员有良好的视野;⑤材料轻质,减小质量; ⑥外形具有低的空气阻力;⑦结构和装置措施必须保护乘员安全;⑧材料来源丰富、成本低,易于制造和装配;⑨抗冷、热和腐蚀抵能力强;⑩材料具有再使用的效果;⑩制造成本低。 4、车身设计的原则有哪些? ①车身外形设计的美学原则和最佳空气动力特性原则。②车身内饰设计的人机工程学原则。③车身结构设计的轻量化原则。④车身设计的“通用化,系列化,标准化”原则。⑤车身设计符合有关的法规和标准。⑥车身开发设计的继承性原则。 5、什么是白车身?它的主要组成有哪些? 已装焊好但尚未喷漆的白皮车身。 组成:车身覆盖件+车身结构件+部件。①车身覆盖件:覆盖车身内部结构的表面板件。②车身结构件:支撑覆盖件的全部车身结构零件。③部件:前翼子板、车门、发动机罩和行李箱盖。 6、简述车身承载类型的特点及适用车型。 (1)、非承载式(有车架式):车架作为载体 1>特点:①装有单独的车架;②车身通过多个橡胶垫安装在车架上;③载荷主要由车架来承担。 ④车身在一定程度上仍承受车架引起的载荷。2>适用车型①货车(微型货车除外)②在货车底盘基础上改装成的大客车③专用汽车④大部分高级轿车。 (2)、承载式:去掉车架,由车身直接承载。 1>特点:①保留部分车架、车身承受部分载荷。②前后加装副车架。2>适用车型:基础承载式、整体承载式大客车。

汽车前后防撞梁设计地的要求的要求规范

汽车前后防撞梁设计规范 一、目的: 指导汽车前后防撞梁总成设计;提供汽车前后防撞梁总成设计的思路。 二、范围: 该规范适应于M1类车辆汽车前后防撞梁的设计。主要介绍了汽车开发过程中汽车前后防撞梁总成的作用及在整车中的影响。首先对汽车前后防撞梁在整车中的功能进行了概述,尤其是对汽车前后防撞梁碰撞性能做了详细的描述;同时对汽车前后防撞梁总成设计要点作了描述;最后对汽车前后防撞梁的加工制造性作了阐述。 三、规范性引用文件: 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 11551-2003 乘用车正面碰撞时的乘员保护 GB 17354-1998 汽车前、后端保护装置 GB 20072-2006 乘用车后碰撞燃油系统安全要求 C-NCAP 中国新车评估程序2012版 四、汽车前后防撞梁总成主要功能 1、汽车前后防撞梁总成功能概述 汽车前后防撞梁总成,是车身第一次承受撞击力的装置,也是车身中的一个重要构件,其功能主要有: a. 保护保险杠在低速碰撞过程中尽量不要破裂或者发生永久变形。 b. 保护车身骨架前后端纵梁在行人保护或者可维修性碰撞时不发生永久变形或者破裂。 c. 在100%正面高速碰撞、后面高速碰撞时起到第一次的吸能作用,在偏置碰撞中不仅起到第一次吸能作用,还能起到碰撞过程中均衡传递受力的作用,防止车身左右两侧受力不均。 2、汽车前后防撞梁总成碰撞性能概述 前防撞梁总成碰撞性能 前防撞梁总成的碰撞性能主要需满足低速碰撞和高速碰撞两个部分的法规要求。其中, 低速碰撞需满足的法规要求为:GB17354-1998 汽车前、后端保护装置。高速碰撞需满足的法规要求为:GB11551-2003 乘用车正面碰撞时的乘员保护; C-NCAP标准,需满足其100%正面碰撞和40%偏置碰撞要求。 3、低速碰撞对前防撞梁设计的性能要求 低速碰撞的国家标准GB l7354—1998规定的正撞速度为4km/h,车角碰撞速度为2.5 km/h,对车身的要求就是车身本体、前防撞梁和吸能盒等不能有

车身结构与设计论文

车身结构与设计

基于理论分析汽车气动力及力矩 【摘要】汽车空气动力性是汽车的重要特性之一,气动力和气动力矩是它的主 要内容。通过运用数学和物理方法,理论分析气动力及气动力矩的相关参数,进而与汽车的动力性及燃油经济性综合在一起进行分析,找到相关的影响因素,通过改变这些因素来改善汽车性能,合理的选择相关参数,为接下来的设计及模拟仿真做好铺垫。 【关键词】空气动力性气动力气动力矩气动阻力动力性燃油经济性 前言 汽车空气动力性是汽车的重要特性之一,它直接影响汽车的动力性、燃油经济性、操纵性、舒适性及安全性,它是指汽车在流场中所受的以阻力为主的包括升力、侧向力的三个气动力及其相应的力矩的作用而产生的车身外部和内部的气流特性、侧风稳定性、气动噪声特性、泥土及灰尘的附着与上卷、刮水器上浮以及发动机冷却、驾驶室内通风、空气调节等特性。当一辆汽车以80km/h的速度前进时,有60%的动力用于克服空气阻力。从世界上首款流线型汽车“气流”诞生开始,迄今为止,国内外对于汽车空气动力学的研究方法大致分为一般采取试验法、试验与理论相结合法及数值模拟仿真研究法。理论研究方法主要是通过数学工具来建立空气运动规律及相应初始、边界条件的理论模型,以揭示气动力产生机理及作用关系。而试验及模拟仿真都是在理论研究和计算的基础之上进行的,可见理论研究对于汽车空气动力学来说是不容忽视的。 气动力及气动力矩分析 1、气动力及力矩 汽车与空气相对运动并相互作用,会在汽车车身上产生一个气动力F,这个力的大小与相对运动速度的平方、汽车的迎风面积及取决于车身形状的无量纲气动系数成正比,可表示为 F = qSC F = 0.5ρvSC F (1) 式中,F为气动力,S为汽车迎风面积,C F为气动系数。

乘用车车身结构轻量化设计技术研究与实践_兰凤崇

2010年(第32卷)第9期 汽 车 工 程 A u t o m o t i v e E n g i n e e r i n g 2010(V o l .32)N o .9 2010156 乘用车车身结构轻量化设计技术研究与实践 * *科技部国际科技合作项目(2008D F B 50020)和广东省科技计划项目(2007B 010-400052)资助。原稿收到日期为2009年9月14日,修改稿收到日期为2009年11月26日。 兰凤崇1 ,庄良飘1 ,钟 阳1 ,陈吉清1 ,韦兴民 2 (1.华南理工大学机械与汽车工程学院,广东省汽车工程重点实验室,广州 510641; 2.吉利汽车研究院有限公司,台州 317000) [摘要] 提出了面向设计的车身结构轻量化设计流程,并将其应用于某S U V 的开发中。研究表明:运用灵敏度分析技术和基于梯度法的修正可行方向优化算法能更高效地实现车身结构轻量化;提高材料的屈服强度可弥补厚度减小后对碰撞安全性造成的负面影响。结构件轻量化和材料替换前后均作了刚强度和碰撞性能的对比,设计方案和研究结果都在应用中得到有效验证。 关键词:车身结构;优化设计;轻量化 S t u d y a n d P r a c t i c e o f C a r B o d y S t r u c t u r e L i g h t w e i g h t D e s i g n L a nF e n g c h o n g 1 ,Z h u a n g L i a n g p i a o 1 ,Z h o n g Y a n g 1 ,C h e nJ i q i n g 1 &We i X i n g m i n 2 1.S c h o o l o f A u t o m o t i v e E n g i n e e r i n g ,S o u t hC h i n a U n i v e r s i t y o f T e c h n o l o g y ,G u a n g d o n g P r o v i n c i a l K e yL a b o r a t o r y o f A u t o m o t i v e E n g i n e e r i n g , G u a n g z h o u 510641; 2.G e e l y A u t o m o b i l e R e s e a r c hI n s t i t u t e C o .,L t d .,T a i z h o u 317000 [A b s t r a c t ] T h e d e s i g n -o r i e n t e d f l o wc h a r t f o r t h e l i g h t w e i g h t i n g d e s i g n o f c a r b o d y s t r u c t u r e i s p u t f o r w a r d a n d i s a p p l i e d t o t h e d e v e l o p m e n t o f a S U V .T h e s t u d i e s i n d i c a t e t h a t u s i n g s e n s i t i v i t y a n a l y s i s t e c h n i q u e c o m b i n e d w i t h g r a d i e n t -b a s e d m o d i f i e d f e a s i b l e d i r e c t i o n o p t i m i z a t i o n a l g o r i t h mc a n m o r e e f f i c i e n t l y r e a l i z e t h e w e i g h t r e d u c -t i o n o f c a r b o d y s t r u c t u r e ,a n di n c r e a s i n gm a t e r i a l y i e l ds t r e n g t hc a nc o m p e n s a t e t h e a d v e r s e e f f e c t o f s t r u c t u r a l m e m b e r t h i n n i n g o n c r a s h w o r t h i n e s s .D u r i n g t h e w h o l e p r o c e s s o f s t u d i e s ,a l l s t r e n g t h ,s t i f f n e s s a n d c r a s h w o r t h i n e s s b e f o r e a n d a f t e r s t r u c t u r a l p a r t l i g h t w e i g h t i n g a n d m a t e r i a l s u b s t i t u t i o n a r e c o m p a r e df o r v a l i d a t i o n ,a n d a l l d e s i g n s c h e m e s a n d r e s e a r c h r e s u l t s h a v e b e e n e f f e c t i v e l y v e r i f i e d i n p r a c t i c a l a p p l i c a t i o n . K e y w o r d s :c a r b o d y s t r u c t u r e ;o p t i m i z a t i o nd e s i g n ;l i g h t w e i g h t i n g 前言 目前,承载式车身已成为轿车车身的主导型式。由于需要承受汽车的主要载荷,所以必须具有足够的刚度和强度,而这往往是以增加车身质量为代价。为了提高车辆的动力性,减少能源消耗,降低生产与运行成本,进而减少排放,必须进行汽车轻量化核心技术的开发与应用。然而如何对各类车型的轻量化程度进行评估,行业内尚在商榷。目前国际上倾向于采用轻量化系数L 来评价乘用车的轻量化效果。轻量化系数L 的物理意义是白车身具有单位性能所需要的质量,具体定义为 L = M×10 3 A ·C T (1) 式中:M 为白车身质量,k g ;A 为由轴距、轮距决定的白车身投影面积,m 2 ;C T 为白车身静态扭转刚度,N ·m /(°)。 国外从20世纪80年代初就开始进行汽车轻量化研究,效果比较明显的是用轻型材料替换车身原有钢材,目前已制造出部分产品 [1] ,还有一些学者通 过有限元法对车身梁截面尺寸进行优化设计[2-4] 。 我国的汽车轻量化技术起步较晚,主要集中在高强度钢板的推广使用。目前有关车身结构轻量化的理论研究和实践已经取得了大量成果 [5-8] ,但大多集 中在对现有车型的轻量化改型设计,轻量化的潜力

车身结构设计总结

1、车身:车身是指各种汽车底盘上构成的乘坐空间及有关的技术装备。(一般来说,车身包括白车身及其附件) *2、白车身:白车身通常系指已经装焊好但尚未喷漆的白皮车身。*3、非承载式(有车架式):非承载式车身的汽车有独立刚性车架,又称底盘大梁架。车身本体悬置于车架上,用弹性元件联接。特点:有独立的车架;车身受力小;弹性连接。 车架的振动通过弹性元件传到车身上,大部分振动被减弱或消除,发生碰撞时车架能吸收大部分冲击力,在坏路行驶时对车身起到保护作用,因此车厢变形小,平稳性和安全性好,而且厢内噪音低。但这种非承载式车身比较笨重,质量大,汽车质心高,高速行驶稳定性较差。 4、车架:是跨装在汽车前、后轴上的桥梁式结构。 车架的主要型式有:框式、脊梁式、综合式三大类。框式车架可分为边梁式和周边式两种。 *5、非承载式车身结构的优点:除了轮胎和悬架系统对整车的缓冲吸振作用外,挠性橡胶垫还可以起到辅助缓冲作用,适当吸收车架的扭转变形和降低噪声有作用,既延长了车身的使用寿命,又提高了乘坐舒适性;底盘和车身可以分开装配,然后总装在一起,简化了装配工艺,便于组织专业化协作;由于有车架作为整车的基础,这样就便于汽车上各总成的安装,同时也易于更改车型和改装成其它用途的车辆;发生撞车事故时,车架还可以对车身起到一定的保护作用。 6、半承载式车身:还有一种介于非承载式车身和承载式车身之间的车身结构,被称为半承载式车身。它的车身本体与底架用焊接或螺栓刚性连接,加强了部分车身底架而起到一部分车架的作用,车身与底架成为一体共同承受载荷。这种形式实质上是一种无车架的承载式车身结构。因此,通常人们只将汽车车身结构划分为非承载式车身和承载式车身。 *7、承载式车身的主要缺点:由于取消了车架,来自传动系和悬架的振动和噪声将直接传给车身,而车厢本身又易于形成空腔共鸣的共振箱,因此会大大恶化乘坐舒适性;改型较困难; *8、“三化”指的是产品系列化,零部件通用化以及零件设计的标准化。 9、车身的表达方式: 传统的表达方式:坐标网格;1:1油泥模型。 现代车身的表达方式:基于CAD系统的曲线、曲面和实体。 10、动力总成的布置:初步设计时,必须确定车身与动力总成相对于前轮轴线的位置。在确定各总成相对于前轮的纵向位置之前,应预先估算轴荷分布。因此,车身总布置与整车总布置工作是很难截然分开的,往往需要反复交叉进行。 *11、地板凸包(传动轴通道)和传动轴的布置:为了保证车身地板凸包的高度最小,以及后座凸包上的座垫有足够的厚度,通常采取在垂直平面内将传动轴布置成U形的方案。这样可以降低传动轴的轴线,同时又能保证动力总成的外廓不致减小离地间隙,而且万向节叉轴线之间的夹角也不致超过允许值。 12、油箱和备胎的布置:在轿车上,油箱和备胎的布置车身的有效容积和汽车的轴荷分配都有很大的影响。为保证安全,油箱不应布置在发动机舱内,备胎则可根据需要任意布置。油箱和备胎往往同时布置在行李舱内。当备胎布置在行李舱内时,应保证在装满行李的情况下仍能方便地取出备胎。 13、车身试制和试验的目的:主要在于通过实践来具体检验车身外形和结构设计的合理性,考核其性能、强度和寿命,以及预先了解制造上的关键等。 14、概念设计的主要工作有:1.对市场、法规、竞争对手和竞争车型进行认真调查与预测;2.确定所开发新车在性能、质量、成本等方面适当的目标水平、具体指标和规格要求;3.进行整车和车身的总布置;4.产品、工艺、生产、销售和零部件等方面的专家在车身造型冻结前进行新车方案的较详细的可行性研究工作。 15、所谓A级曲面的定义:是必须满足相邻曲面间之间隙在0.005mm 以下。 16、计算几何:是一门兴起于二十世纪七十年代末的计算机科学的一个分支,主要研究解决几何问题的算法。 17、计算机辅助设计的主要问题:曲线的生成;曲面的生成;曲面间的拼接;曲面间过渡曲面的生成;曲面质量的评价;车身外表面曲面的分块。 *18、轿车车身的布置:传统式布置型式有利于车室内部(包括行李舱)布置,而且可以提高操纵稳定性、行驶平顺行和乘坐舒适性,但其缺点在于地板中部出现凸包,影响踏板布置、整车高度的降低和质量的减轻。 对于前驱动布置型式,由于取消了传动轴,可以降低地板和整车高度,如果采用横置式发动机,则更方便于车室内部布置。此种布置型式对车身总布置、降低风阻、整车轻量化等都是很有利的。 19、布置动力总成要考虑的因素:轴荷分配;K点的位置;曲轴中心线的倾角;发动机与其它零部件的间隙; 20、地板凸包(传动轴通道)和传动轴的布置:为了保证车身地板凸包的高度最小,以及后座凸包上的座垫有足够的厚度,通常采取在垂直平面内将传动轴布置成U形的方案。这样可以降低传动轴的轴线,同时又能保证动力总成的外廓不致减小离地间隙,而且万向节叉轴线之间的夹角也不致超过允许值。 21、影响车身地板高度的因素:传动轴;车架纵梁和横梁; 22、降低轿车地板平面的措施:减小车架纵梁的高度;前后轴上面的一段纵梁做成向上弯的形状;后桥采用双曲面齿轮传动以降低传动轴等。 23、R点定义:座椅调至最后、最下位置时的“胯点”。 *H点定义:实车测得躯干与大腿相连的旋转点“胯点”位置。 24、车身内部布置的依据:标准人体(人体样板尺寸);车身的内部空间。 25、车身内部布置的主要工作:决定座椅的位置、几何参数;决定座椅的调节范围;方向盘的位置、大小、倾角;方向盘的调节范围;组合仪表和仪表台的位置、大小;组合仪表表面的角度;各种操纵手柄的位置、大小。 26、影响视野性的因素:座椅的布置、高度以及座垫和靠背的倾角;车窗尺寸、形状和布置;立柱的结构;发动机罩和翼子板的形状。 *27、长途大客车的特点:由于乘客乘坐时间长,站距远,客流量较稳定,所以主要应保证乘客在座椅上的舒适性。 长途大客车平面布置的特点:座椅的布置应尽可能使乘客面朝前方,为了增加载客量,一般可以两排座中间的过道处增设活动座。 *28、城市大客车的特点:站距短、乘客流动频繁,所以主要应保证乘客上、下车方便和便于在车内走动。 城市大客车平面布置的特点:一般多采用单排、双排座的布置方案,以增大过道宽度和立席面积。 29、蓄电瓶布置考虑的因素:轴荷分配合理;蓄电瓶尽可能靠近起动电机。 30、仪表板上的布置:控制系统应尽量布置在驾驶员的右手边;仪表布置在左手边;指示灯应安排在仪表的上方。 *31、大客车的安全性:车身结构;座椅及安全带;安全玻璃;车内软化 *32、货车驾驶室按其结构可分为四类: 驾驶室位于发动机之后的长头式(安全但整车面积利用差); 驾驶室部分地位于发动机之上的短头式(综合安全和面积利用);驾驶室位于发动机之上的平头式(整车面积利用好但安全、维修、隔热差); 驾驶室偏于一侧的偏置式(整车面积利用、维修、隔热性好但安全性差) 33、人体工程学:是研究“人-机-环境”系统中人、机、环境三大要素之间关系,为解决该系统中人的效能、健康问题提供理论与方法的一门技术科学。 *34、H点是人体身躯与大腿的交接点。用它来确定人体乘坐位置。H点人体模型:确定车身实际H点位置用的人体模型。 模型的背盘与臀盘交接处,在相当于人体胯点的位置上设有铰接副,铰接线的中点即为H点。 H点人体模型由背盘、臀盘、小腿杆、及头部探杆等组成。35、H点三维人体模型的作用:确定轿车的实际H点;检验轿车座椅设计的合理性。

汽车车身结构与设计

第一章:车身概论 1.车身包括:白车身和附件。 白车身通常系指已经焊装好但尚未喷漆的白皮车身,此处主要用来表示车身结构和覆盖件的焊接总成,此外尚包括前、后板制件与车门,但不包括车身附属设备及装饰等。 2.按承载形式之不同,可将车身分为非承载、半承载式和承载式三大类。 非承载车身的优点:①除了轮胎与悬架系统对整车的缓冲吸振作用外,挠性橡胶垫还可以起到辅助缓冲、适当吸收车架的扭转变形和降低噪声的作用,既延长了车身的使用寿命,又提高了舒适性。②底盘和车身可以分开装配,然后总装在一起,这样既可简化装配工艺,又便于组织专业化协作。③由于车架作为整车的基础,这样便于汽车上各总成和部件安装,同时也易于更改车型和改装成其他用途车辆,货车和专用车以及非专业厂生产的大客车之所以保留有车架,其主要原

因也基于此。④发生碰撞事故时,车架对车身起到一定的保护作用。非承载车身的缺点:①由于计算设计时不考虑车身承载,故必须保证车架有足够的强度和刚度,从而导致自重增加。②由于车身和底盘之间装有车架,使整车高度增加。③车架是汽车上最大而且质量最大的零件,所以必须具备有大型的压床以及焊接、工夹具和检验等一系列较复杂昂贵的制造设备。 3.承载式车身分为基础承载式和整体承载式。 基础承载式特点:①该结构由截面尺寸相近的冷钢杆件所组成,易于建立较符合的有限元计算模型,从而可以提高计算精度。②容许设法改变杆件的数量和位置,有利于调整杆件中的应力,从而达到等强度的目的。③作为基础承载的格栅底架具有较大的抗扭刚性,可以保证安装在其上的各总成的相对位置关系及其正常工作。④提高材料利用率,简化构件的成型过程,节省部分冲压设备,同时也便于大客车的改型和系列化,为多品种创造了条件。 4.“三化”指的是产品系列化、零部件通用化以及零件设计标准化。第二章:车身设计方法

车身轻量化的思路及途径轻量化制造工艺(完)

车身轻量化的思路及途径轻量化制造工艺(完) 作者:北京现代汽车有限公司沧州分公司慕温周、杨人杰、罗艳路、张剑、吕顺、朱珍厚(韩) 车身轻量化的思路及途径——轻量化材料的应用(一) 车身轻量化的思路及途径——轻量化结构设计(二) 车身轻量化的思路及途径的第三个重要方法——轻量化制 造工艺 轻量化制造工艺在使用轻量化材料和优化结构设计后,往往需要革新制造工艺来满足材料和结构的变化,如目前已广泛应用的激光拼焊板、热冲压成形和液压成形等工艺。 1. 激光拼焊板激光拼焊板(TWB)可将不同材质、不同厚度、不同强度和不同表面镀层的板坯拼合起来然后整体进行压型。激光拼焊板工艺已在汽车领域应用成熟,用于制造车门内板、加强板、立柱、底板和轮罩等部件,大众第7 代Golf 车身的激光焊缝总长度甚至达到了70 m。激光拼焊板工艺通过减少制件数量、局部钢板减薄及去除点焊凸缘来实现轻量化目的。车门内板边缘因需加装铰链,需要在0.8 mm 的主板基础上应用2 mm 厚的裁剪板来加强,因无需加装额外的增强板故车门整体减重1.4 kg。 2. 热冲压成形工艺高强度钢板由于屈服强度和抗拉强度的提高,冲压成形性能下降,主要表现为成形缺陷多、所需成

形力大以及回弹严重制件尺寸精度难以保证。如当强度超过1 000 MPa 以上时,对于一些几何形状比较复杂的零件,使用常规的冷冲压工艺几乎无法成形,所以高强度钢的热冲压成形工艺应运而生。热冲压成形工艺首先将高强度钢板加热至奥氏体化状态,然后快速转移到模具中进行冲压成形,在保证一定压力的情况下,制件在模具本体中以大于27℃/s 的冷却速度进行淬火处理,保压淬火一段时间,以获得具有均匀马氏体组织的超高强钢零件。 3. 液压成形工艺液压成形工艺一般有预成形、成形以及校准三个过程,可用于板材和管材成形。板材液压成形技术尤其适用于有深冲要求的复杂工件及较少凹槽的大型工件,如车身的结构件和外覆盖件。在车门外板的液压成形过程中,由于预成形使材料产生了期望的预应力,可以使车门等外板件在保持耐冲击性不变的情况下减少壁厚,从而达到轻量化效果。 管材液压成形是指管坯在内外部液体压力作用下贴合内部 的芯棒成形,该工艺可提高管件的内、外表面精度,也可用于两个部件的连接。管材液压成形的主要车身制件有发动机歧管、车顶支架、侧门横梁、散热器支架和传动轴零件等。 4. 铝合金压铸新工艺铝合金的加工方法有铸造、压铸、辊压、挤压和冲压等。随着铝合金在车身上的应用日益广泛,工程师们开发了一系列铝合金压铸新工艺,如冲压压铸法、针孔

相关主题