搜档网
当前位置:搜档网 › PVSYST光伏发电课程设计.

PVSYST光伏发电课程设计.

PVSYST光伏发电课程设计.
PVSYST光伏发电课程设计.

家用独立光伏发电系统的优化设计

(武汉工程大学理学院 , 武汉 ,430200

摘要 :针对目前世界能源逐步短缺,为使太阳能这一新能源更好的服务于千家万户用电需求,以武汉地区为例, 根据当地的气象、环境状况及具体负载情况,进行家用独立光伏发电系统设计,对系统的光伏倾角、光伏电池板、蓄电池、控制器及逆变器等进行了优化的设计与选择, 在满足用户供电需求下, 尽量减少初始投资, 同时简单介绍了下设计过程中应注意的事项 [1]。用专业的光伏软件 PVSYST 对设计方案进行仿真, 对用户能量利用率、蓄电池工作进行了分析,可知该光伏系统用户需求满足率为 94.1%,能量利用率为 71.7%,系统几乎能满足用户的需要。

关键词:家用光伏发电系统; PVSYST 仿真;光伏电池板;能量利用率

中图分类号:文献标识码:

0引言

在全球气候变暖、人类生态环境恶化、常规能源资源短缺并造成环境污染的形式下,太阳能光伏发电技术普遍得到各国政府的重视和支持。我国也在最近几年加快了可再生能源的发展,光伏发电以它最具可持续发展这一特有的优势在中国能源结构中占据着十分重要的地位。我国 2009年开始启动政策扶持太阳能发电, 2020年装机容量预计达到 20GW ,目标超过日本。光伏发电已由补充能源向替代能源过度 [2]。作为光能转换为电能的关键部件一太阳能电池,其实转换效率受到限制。单晶硅电池的实验室效率目前为 24.7%,多晶硅电池的实验室效率达到 20.3%,但在国内实际商用电池方面,单晶硅电池转换效率大部分在 16%左右,多晶硅电池转换效率在 13%-15%之间。 2010年 5月左右,晶澳太阳能公司实现了单晶硅电池转换效率达到 18.7%,这个转换效率居世界领先水平。

由于同一地点每日天气状况,气候条件等限制,接收到的总辐射量不尽相同, 本文利用可以查阅的近年来气象数据如海拔、经纬度、阴雨天数、最长连续阴雨间隔、风速、地面每平方米的总辐射、散射辐射等信息,利用 PVSYST 软件建立家用

独立光伏发电系统模型。查阅相关文献,设置软件里面的一些参数, 以月为单位来模拟光伏阵列的每月发电情况,使发电能够满足该地家庭用电的基本要求。

1独立光伏发电介绍

一般来说,独立运行光伏发电系统主要包括太阳能电池阵列、控制器、蓄电池组和逆变器等部分。太阳能电池阵列是整个系统能源的来源,它把照射在其表面的太阳能转化为电能:控制器是整个系统的核心部件之一,可采用光伏电池的最大功率点跟踪 (MPPT、能量管理和变换器输出控制,其运行状态决定着系统的运行状态,系统在控制器的管理下运行;蓄电池的功能在于,储存太阳能电池阵列受光照时所发出的电能,并在无光照时向负载供电;逆变器是将直流电变换为交流电的设备,由于太阳能电池阵列和蓄电池发出的是直流电,因此当系统向交流负载供电时,逆变器是不可缺少的 [3]。典型的家庭独立光伏发电系统结构如图 1

图 1独立光伏发电系统结构图

Fig.1stand-alone PV power system

1.1独立光伏发电原理

光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收的能量足够大,能克服金属内部引力做功,离开金属表面逃逸出来,成为光电子。“光生伏特效应” ,简称“光伏效应” ,指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。它首先是由光子(光波转化为电子、光能量转化为电能量

的过程;其次,是形成电压过程。有了电压,就像筑高了大坝,如果两者之间连通, 就会形成电流的回路。光伏电池是以半导体 PN 结上接受太阳光照产生光生伏特效应为基础, 直接将光能转换成电能的能量转换器件。目前的主要的太阳能电池是硅太阳能电池。用的硅是“提纯硅” ,其纯度为“ 11个9” ,比半导体或者说芯片硅片“只少两个9” [4]。光伏电池工作环境中的多种外部因素,如光照强度、环境温度、降雨等都会对电池的性能指标带来影响,而且温度的影响和光照强度的影响还常常同时存在。为了保证光伏电池具有较高的工作效率和较稳定的性能,其制造工艺、组合安装,以及在设计配套的控制系统时,都要考虑改善光伏电池外特性的问题。

2系统设计

2.1设计要求以及情况

离网系统的设计过程是依据武汉的气象地理条件和负载用电需求分析,最终确定电池阵列的功率、安装倾角、光伏控制器、逆变器功率,蓄电池组容量等参数的计算过程。衡量光伏系统优劣的主要指标是其可靠性和经济性 [5]。因此最优化设计的任务是通过科学的分析计算, 使光伏系统既能长期可靠地满足用户负载的合理用电要求,又能使系统配置的容量最小,有最佳的经济性,节省投资费用 [6]。然而由于光伏系统的运行牵涉的影响因素很多,关系错综复杂,在作离网型设计时,依据“总发电量”满足“总耗电量”的原则,对某些非主要的因素作了简化处理。以下是武汉的气象地理条件:

表 1武汉近年来气候

Table 1climate of wuhan

1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月

平均最高气

温(摄氏度

8.19.614.62126.229.832.932.727.822.716.410.5

平均最低气

温(摄氏度

-0.51.46.11217.721.825.224.619.413.47.21.5

降雨日数 8101314131211991097

武汉位于北纬 30.6度,东经 114.1度,平均海拔 27米,处于 8时区。 1981-2000年总共出现 26次春季连阴雨天,最大连续阴雨天数 22天(1992年 3月 3日— 4月 3日仅出现一次,但 6天 -8天的次数较多, 达 12次。设计以冬天为参照。

2.2软件参数设置

查阅武汉气象局有关信息,得到地面总辐射与当地平均温度的关系

表 2武汉地面总辐射与温度

Table 2global diffusion and temperature of wuhan

月份 123456789101112

总辐射 79.777.3100.4121.5138.9139.2152.5146.6121.897.786.718.4

温度

摄氏度

5.37.210.81

6.921.324.526.425.622.618.112.5

7.3

将上图武汉地区总辐射与温度数据导入 PVSYST 软件中, 在数据库中就存储有相关资料。在软件中设置倾角为 43度,方位角设为 0度。此时倾角转移系数为1.23,倾角转移损失率为 0。

以武汉某家庭负载数目及用电量为依据,该用户有 18w 的荧光灯 8个,每天平均使用 5小时;有 120w 的电视机、电脑 2个,每天平均使用 3小时;洗衣机 1台,冰箱 1台。详细参数如下表:

表 3某用户负载表

Fig.3consumers’ daily consumption

数量功率使用时间

荧光灯 818w/盏 5h/天

电视机,电脑 2120w/个 3h/天

冰箱 11000wh/天

洗衣机 1600wh/天

2.3蓄电池容量与并串联数目

蓄电池组的容量 Bc 计算公式为:

h c

o c A C N

T Q A B L ×××=

(1

公式(1中 A 为安全系数,根据情况在 1.2— 1.4间选取; Q 为负载平均耗电量,为工作电流乘以日工作小时数; N 为该地区最长连续阴雨天数;为温度修正系数,一般在 0摄氏度以上取 1, -10度以上取 1.1, -10度以下取 1.2; C 为蓄电池放电深度[1,5]。

h

112275

. 01

8 2405. 13040(4. 1c A B =××÷××=

为了达到系统的工作电压,需将蓄电池串联起来,为了达到蓄电池的总容量,需将蓄电池并联起来, 但需要注意的是在实际应用中,应尽量减少蓄电池的并联数量(一般不超过 4组 ,进而减少蓄电池之间的不平衡造成的影响。

蓄电池标称电压系统工作电压蓄电池串联数 =

(2

蓄电池标称容量

蓄电池总容量蓄电池并联数 =

(3

该光伏发电系统的工作电压设定为 24V ,选用蓄电池的标称电压为 12V ,所以得到串联数目为 2;蓄电池的总容量通过计算为 1122Ah ,选用蓄电池的标称容量为200Ah ,所以得到的并联数目为 6,即蓄电池组由 12块 200Ah/12V的阈值型免维护铅酸电池先两两串联再并联而成。

电池组件串联数目组件峰值工作电压

系数系统工作电压 43. 1×=

(4

公式(4中系数 1.43是光伏电池方阵的峰值电压与系统工作电压的近似比值。

逆变器效率系数

组件损耗系数充电效率系数组件日平均发电量(负载日平均用电量

电池组件并联数 ×××=

h A (5

(4 式中系统工作电压为 13V , 组件峰值工作电压为 15V , 带入公式计算的电池组件串联数目为 2; (5 式中负载日平均用电量为 3040wh ,组件平均发电量约为

240wh ,查阅相关资料设组件损耗系数为 0.9充电效率系数为 0.9,逆变器效率为 0.8,计算的并联数目为 20。

设置好 PVSYST 的相关参数后,软件中模拟系统电线损失率达 5%,每个月蓄电池补给天数为 4天, 蓄电池电压为 24V ,软件给出的建议容量为 169Ah ,建议的光伏电池功率为 301Wp 。

设计中选用的蓄电池型号为 PVX-490T ,由 Concorde 公司制造出来的,其电压为12V ,容量为 43Ah 。总共需 8个蓄电池,采用每 2个蓄电池串联,再将 4串联的并联起来。此时总的电容可达 172Ah ,能够储存 4.1kWh 的电能。

2.4太阳能电池的选择

选用非晶硅太阳能电池,制造工艺为 a-Si :H single 。电池型号为 Sunny , Yyp amorph ,由 Star Unity 公司制造,峰值电压为 15V ,开路电压为 22V 。工作电压为13V ,输出功率为 2瓦。光伏阵列总共需 152块太阳能电池,采用两两串联,在将 76个串联的并联起来。阵列总的电压为 32.9V ,电流为 9.1A ,输出功率为

304瓦。

2.5逆变器的选择

该用户总负载为 450.7w ,当负载的总容量大于逆变器总功率的 80﹪时,逆变器会发热过度,从而减少逆变器的使用寿命,所以选择的逆变器容量应大于 563.4w 。选择 24v 直流变 220v 交流,功率 600w 的逆变器,产品型号为:BDGNB ,由北京博大精创科技有限公司制造。

2.6仿真及优化设计

利用 PVSYST 软件对该系统进行了仿真,从图 2可以看出用户需求满足率为94.1%,而 2,3,6月系统输出不能满足用户需求。由于光伏倾角按冬季可接受到最大太阳辐射设计,因此 2月、 3月的能量利用率高于其他月份,整体的能量利用率为71.4%。武汉地区冬季降雪量较大,冬季时间长,温度达到全年最低,日照时间短,故光伏系统的发电量会受到影响,在此期间,用户可以配备其他能源作为补充或相应的减少量 [1,7]。 6月份时温度偏高,并且阴雨天数较多,光伏系统不能有效的发电供给用户使用,故用户满足率偏低。可适

当的添加备电设备,当发电量不足时,临时为用户供电。

注:PR=系统的产出 /光伏组件收集的能量 =系统的能量利用率

SF=系统的输出 /用户的需求 =用户需求满足率

图 2系统能量的利用率及用户需求满足率

Fig. 2System’s performance ratio and solar fraction

该光伏发电系统中光板的寿命一般为 25年, 蓄电池寿命为 5到 7年, 设整个发电系统的使用周期为 25年,在此期间,还应该更换蓄电池的次数约为 3次。

由下图可知,系统每年由于温度、散射、风速等因素影响年发电能量损失很大。其中光伏电池自身损

耗达 4.1%,由温度,转换效率带来的损耗达 13.7%。图 3 系统年能量损失Fig.3 Loss diagram for "New simulation variant"-year 3 结束语本文结合光伏发电系统仿真模型,学习了太阳能光伏发电的相关基本知识,熟悉了太阳能电池板特性,并网逆变器特性,以及最大功率点跟踪等问题。总结了户用独立光伏发电系统设计步骤,归纳了设计过程中需要注意和解决的问题。在蓄电池的的容量设计时除考虑蓄电池的最长连续阴雨天外,还考虑了亏电后的最短恢复时间,提高了设计的供电可靠性。通过 PVSYST 软件对设计系统进行仿真与分析,户需求满足率为94.1%,能量利用率为 71.7% ,系统基本能够满足用户的需要。由于户用光伏系统的投资较大,使光伏电价比常规电价高出许多,但是却有很好的减排效益,适用于家用。利用 PVSYST 模型的仿真结果具有很好的准确度;建立了气象条件模块、太阳能电池仿真模型,完成池板日、年发电量计算; ] [参考文献] [1] [2] 杜宗伟,姜凤利,金玉,王萍,等.户用光伏发电系统设计与研究(J.农村网络信息,2011(11:1-4. 张树明,何惊鸿,赵恒利,等.微型固定方阵独立光伏电站设计(J.中国西部科

技,2010(16:1-2.

[3] [4] [5] [6] 刘阳.光伏发电系统高效电能变换技术研究(D.北京:北京交通大学,2010. 付文辉,罗健明.离网型太阳能发电系统的设计方法(J.东方电气评

论,2011,25(1:1-3. 于明辉.独立光伏发电系统充放电控制器的研究(D. 南京:东南大

学,2008. Massimo Ceraolo.New Dynamical Models of Lead-Acid Batteries.IEEE TRANSACTIONS ON POWER SYSTEMS 2000,15(3:1184-1190. [7] J.A.Duffie and W.A.Beckman.Solar Engineering of Thermal Processes[Z].John Wiley and Sons

Inc,1991. [8] AMETEK,Inc.Solar energy handbook[M].Chilton book company,1984. [9] Klein SA, Beckman WA. Loss-of-Load Probabilities for Stand-Alone Photovoltaic Systems[J]. Solar Energy, 1987, 39∶499- 512. [10] Chan H L.A new battery model for use with battery energy storage systems and electric vehicles power systems.Powes Engineering Society Winter Meeting 2000,IEEE 1:470-475. [11] 刘顺炮.光伏离网的最大功率设计[D].南京:东南大学,2007. [12] 崔岩,黄宏生,李大勇,等.太阳能光伏系统最大功率跟踪的研究[J].哈尔滨理工大学学报,2005,10(6:8-10. Design and Optimization on Independent Household Photovoltaic Power Generation System (Science Academy of Wuhan Institute of Technology , Wuhan,430200 Abstract: Abstract:Because the current world energy is gradually short , the stand-alone PV power system taking Wuhan urban areas as an example was designed according to the local weather and environment conditions and specific load conditions.We take the system of photovoltaic solar panels, Angle, battery, controller and inverter into the consideration ,then we make them optimized .To meet demand of user in the power supply, we try to reduce the initial investment.Besides,we take attention for some matters in the design process. Using the professional photovoltaic software PVSYST to simulate the design proposal, we analyse the energy utilization ratio of user and storage battery work .It can be seen that the photovoltaic system user needs to meet rate was 94.1% and the energy utilization rate is 71.7%.So the system can almost meet customer needs. Key words: words:household photovoltaic power generation system;photovoltaic solar panels;Energy utilization ratio

太阳能光伏发电原理与应用实验报告资料

太阳能光伏发电原理与应用 实验报告 课题名称:太阳能光伏发电原理与应用实验专业班级:12级应用光电子01 学生学号:1209040110 学生姓名:胡超 学生成绩: 指导教师:刘国华 课题工作时间:2015.6.1至2015.6.4

实验一、太阳辐射能的测量 下表是针对武汉市的日照情况,记录武汉市的某一天某一时段(每两分钟记 录一次)的太阳辐射强度: 太阳辐射监测系统 瞬时值累计值 时间 总辐射散射辐射直接辐射反射辐射净全辐射总辐射散射辐射直接辐射反射辐射净全辐射10:06 538 113 436 41 112 0.031 0.014 0.016 0.003 0.009 10:08 404 105 298 32 77 0.056 0.013 0.045 0.004 0.012 10:10 449 99 347 31 268 0.049 0.013 0.037 0.004 0.009 10:12 416 97 304 33 246 0.056 0.012 0.043 0.004 0.033 10:14 645 118 525 49 347 0.056 0.012 0.042 0.004 0.033 10:16 198 105 57 24 105 0.077 0.014 0.062 0.006 0.040 10:18 549 107 425 42 326 0.025 0.013 0.007 0.003 0.012 10:20 610 111 485 45 329 0.066 0.013 0.051 0.005 0.039 10:22 631 108 513 50 304 0.076 0.013 0.061 0.006 0.039 10:24 619 108 493 45 284 0.076 0.013 0.062 0.006 0.036 10:26 465 103 310 39 194 0.075 0.013 0.059 0.006 0.034 10:28 653 109 402 47 264 0.067 0.013 0.043 0.005 0.027 10:30 690 111 337 48 263 0.079 0.013 0.046 0.006 0.032 10:32 693 113 318 47 249 0.083 0.013 0.042 0.006 0.031 10:34 653 115 214 48 219 0.082 0.014 0.035 0.006 0.029 10:36 713 118 176 53 145 0.061 0.013 0.018 0.005 0.021 10:38 575 111 92 44 89 0.087 0.014 0.020 0.006 0.015 10:40 717 115 53 44 90 0.080 0.014 0.009 0.006 0.010

太阳能光伏发电系统课程设计

何彬,太阳能光伏发电系统课程设计 绪论 能源短缺是当今社会中的热点问题,它直接制约着经济和社会的发展,可再生能源的利用也就成了当今世界关注的焦点之一。太阳能是各种可再生能源中最重要的基本能源,生物质能、风能、海洋能、水能等都来自太阳能。广义地说, 太阳能包含以上各种可再生能源。近年来太阳能的利用得到了世界各国的广泛关注,美国、日本、德国相继提出了“阳光计划”、“节能计划”等大力发展太阳能光伏发电技术。自“六五”以来我国政府也一直把研究开发太阳能和可再生能源技术列入国家科技攻关计划,大大推动了我国太阳能和可再生能源技术和产业的发展。同时,照明作为日常生活中不可缺少的一部分,成为了世界各国的一项 重要的能源消耗,据统计照明用电占我国总发电量的 10%以上,绿色节能照明的应用越来越受到重视。我国在 1996 年就提出了“绿色照明工程”,主要就是为了解 决与照明相关的能源供应问题,新型的照明光源 LED发光产品在照明和装饰领域逐渐受到世人的瞩目。 太阳能电池板和LED都是由半导体材料构成的,随着半导体材料技术的更加完善必将推动太阳能和LED的进一步发展。将太阳能和LED结合起来为节能照明技术提供了新的解决方案。 一、课程设计报告内容 1.太阳能光伏发电系统的组成 太阳能光伏发电系统是通过太阳能电池吸收阳光,将太阳的光能直接变成电 能输出。 光伏发电系统主要由太阳能光伏电池、储能电池、充放电电路、光源及控制 电路等组成,系统的组成框图如图 1 所示:系统各部分容量的选取配合,需要综合考虑成本、效率和可靠性。太阳能电池将太阳能转变成电能,一部分用来给直流负载 LED供电,另一部分储存在蓄电池中。当没有太阳光或者光线暗时, LED 照明系统所需要的能量不够的部分由蓄电池提供。 LED照明部分不仅可以实现昼 夜照明,同时采用了自动调光技术,可以使室内的光线保持恒定。 图 1光伏发电系统组成框图 太阳能电池是太阳能照明系统的输入,为整个系统提供照明和控制所需电

光伏组件课程设计

课程设计报告 题目太阳能节能灯的设计与分析 系别物理与电子工程学院 年级 2011级专业光伏技术与产业 班级光伏111 学生姓名宋梦丹 学号050411139 指导教师薛春荣 设计时间2013-12

产品简介 【使用优点】 无需电线,按一下底部的开关,白天晒太阳,晚上自动亮光,环保,不用交电费!灯体造型美观大方,轻巧灵活多样,动感十足,太阳能充满电能亮8小时以上。 【安装及使用方法】 把灯罩向左旋开,拨动开关,把灯具插地,放置在阳光下 【技术参数】 ?品牌: MODAS ?型号: MD9548 ?颜色分类: 白色(MD9548W) ?灯具是否带光源: 带光源 ?光源类型: LED ?太阳能板:0.08W(2V 40MA) ?电源:600MAH 1.2V NI-MH ?光源:1*LED(15000MCD) ?产品尺寸:6.7*6.7*36.7CM ?一盒重量:260g 【工作原理】 通过顶部的太阳能板转换成电能,白天光通过太阳能板转换成电能储存在充电电池中,等到晚上天黑时,太阳能板不再对电池充电,灯就自动亮起来。 原理分析 太阳能光伏发电LED照明系统组成高效节能的太阳能光伏发电LED照明系统包括太阳能电池组、DC-DC变换器、最大功率跟踪控制、储存电能的蓄电池组和LED照明控制、LED光源等部分。 太阳能LED自动照明系统的基本原理,是在有光照的情况下,太阳能电池板把光能转变成电能对蓄电池充电,并将电能储存在蓄电池中。夜晚,蓄电池中的电能为半导体发光二极管LED充电发光起到照明的效果。系统采用全自动工作方式,无须人工介入,可以采用声、光或延时控制方式,做到“人在灯亮,人走灯灭”(指楼道、走廊等)或“天黑即亮,延时关灯”(指道路、庭院、景点等)或每日24小时“常明不灭”(指地下停车场、隧道等)。对连续阴雨天,系统可根据

光伏特性曲线实验报告

绪论 一实验目的 本实验课程的目的,旨在通过课内实验教学,使学生掌握太阳能发电技术方面的基本实验方法和实验技能,帮助和培养学生建立利用所学理论知识测试、分析和设计一般光伏发电电路的能力,使学生巩固和加深太阳能发电技术理论知识,为后续课程和新能源光伏发电技术相关专业中的应用打好基础。 二实验前预习 每次实验前,学生须仔细阅读本实验指导书的相关内容,明确实验目的、要求;明确实验步骤、测试数据及需观察的现象;复习与实验内容有关的理论知识;预习仪器设备的使用方法、操作规程及注意事项;做好预习要求中提出的其它事项。三注意事项 1、实验开始前,应先检查本组的仪器设备是否齐全完备,了解设备使用方法及线路板的组成和接线要求。 2、实验时每组同学应分工协作,轮流接线、记录、操作等,使每个同学受到全面训练。 3、接线前应将仪器设备合理布置,然后按电路图接线。实验电路走线、布线应简洁明了、便于测量。 4、完成实验系统接线后,必须进行复查,按电路逐项检查各仪表、设备、元器件的位置、极性等是否正确。确定无误后,方可通电进行实验。 5、实验中严格遵循操作规程,改接线路和拆线一定要在断电的情况下进行。绝对不允许带电操作。如发现异常声、味或其它事故情况,应立即切断电源,报告指导教师检查处理。 6、测量数据或观察现象要认真细致,实事求是。使用仪器仪表要符合操作规程,切勿乱调旋钮、档位。注意仪表的正确读数。. 7、未经许可,不得动用其它组的仪器设备或工具等物。 8、实验结束后,实验记录交指导教师查看并认为无误后,方可拆除线路。最后,应清理实验桌面,清点仪器设备。 9、爱护公物,发生仪器设备等损坏事故时,应及时报告指导教师,按有关实验管理规定处理。 10、自觉遵守学校和实验室管理的其它有关规定。 四实验总结 每次实验后,应对实验进行总结,即实验数据进行整理,绘制波形和图表,分析实验现象,撰写实验报告。实验报告除写明实验名称、日期、实验者姓名、同组实验者姓名外,还包括: 1.实验目的; 2.实验仪器设备(名称、型号); 3.实验原理; 4.实验主要步骤及电路图; 5.实验记录(测试数据、波形、现象); 6.实验数据整理(按每项实验的实验报告要求进行计算、绘图、误差分析等);.回答每项实验的有关问答题。7.

光伏电站设计方案实例

光伏电站设计方案实例公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

甘肃某建筑屋顶光伏发电系统初步 设计方案 一、项目背景 1、项目意义 (略) 2、项目建设地基本信息: 、建设地:甘肃某地 、当地地理纬度: 36°左右, 、年平均太阳能辐射资源:㎡·day 、当地气温:最高气温:38°C,最低气温:-20°C 、光伏电站建设布局及占地面积 屋顶面积:58x35=2030平方米, 朝向:正南 设计阵列朝向:正南 三、项目规模 预计最大装机容量:2030m2x130W/m2=264kW 四、方案设计 1、逆变器初选:根据初步预算容量选 用5台50千瓦串接式逆变器。 MPPT范围:350-800V

最大输入电压:1000V 2、组件选择:选用300Wp光伏组件。 3、支架倾角设计:鉴于该建筑朝向东南45度,为了综合考虑朝向非正南对发电的影响,设计光伏支架倾角为30°。 支架结构设计(略) 支架基础设计(略) 4、平面设计及阵列排布 (1)采用光伏组件横向排布,上下2层支架设计,18块一串,阵列总长18米。每个阵列有18x2=36块组件封2串组成,合计10800Wp。

(2)计算阵列占地投影宽度米,遮阴间距米,取值米。错误:上面说,横向排布,上下2层支架设计,18块一串,阵列总长18米。L阵列斜长应为4米。投影宽度米,遮阴间距米.

(3)设计布局8排,共计24个阵列,总设计安装容量 (如果设计布局7排,共计21个阵列,总设计安装容量,前后空间比较大) 5、总平面布置图: 6、电路设计(略) 五、投资预算: 1、静态投资: 序号项目单价(元)合计(万元)1电站单晶硅光伏组件Wp 25台50kVA逆变器等并网配件Wp25 3C型钢支架Wp13屋面混凝土基础Wp 4电缆Wp 接入系统Wp 5其他配件Wp 6安装劳务费等W 7其他Wp 8盈利、税、25%

太阳能光伏发电系统课程设计

绪论 能源短缺是当今社会中的热点问题,它直接制约着经济和社会的发展,可再生能源的利用也就成了当今世界关注的焦点之一。太阳能是各种可再生能源中最重要的基本能源,生物质能、风能、海洋能、水能等都来自太阳能。广义地说,太阳能包含以上各种可再生能源。近年来太阳能的利用得到了世界各国的广泛关注,美国、日本、德国相继提出了“阳光计划”、“节能计划”等大力发展太阳能光伏发电技术。自“六五”以来我国政府也一直把研究开发太阳能和可再生能源技术列入国家科技攻关计划,大大推动了我国太阳能和可再生能源技术和产业的发展。同时,照明作为日常生活中不可缺少的一部分, 成为了世界各国的一项重要的能源消耗,据统计照明用电占我国总发电量的10%以上,绿色节能照明 的应用越来越受到重视。我国在1996年就提出了“绿色照明工程”,主要就是为了解决与照明相关的能源供应问题,新型的照明光源LED发光产品在照明和装饰领域逐渐受到世人的瞩目。 太阳能电池板和LED都是由半导体材料构成的,随着半导体材料技术的更加完善必将推动太阳能和LED的进一步发展。将太阳能和LED结合起来为节能照明技术提供了新的解决方案。 一、课程设计报告内容 1. 太阳能光伏发电系统的组成 太阳能光伏发电系统是通过太阳能电池吸收阳光,将太阳的光能直接变成电能输出。 光伏发电系统主要由太阳能光伏电池、储能电池、充放电电路、光源及控制电路等组成,系统的组成框图如图1所示:系统各部分容量的选取配合,需要综合考虑成本、效率和可靠性。太阳能电池将太阳能转变成电能,一部分用来给直流负载LED供电,另一部分储存在蓄电池中。当没有太阳光或者光线暗时,LED 照明系统所需要的能量不够的部分由蓄电池提供。LED照明部分不仅可以实现昼 夜照明,同时采用了自动调光技术,可以使室内的光线保持恒定。 图1光伏发电系统组成框图

光伏电站设计经验及案例图片

光伏电站设计经验及案例图片与大家分享(转) 在一个论坛上看到这处帖子,感觉很好,收藏与大家分享 以前是一直在设计院做电气设计,我所在设计院是工业院,主要方向是电子、半导体、集成电路等工厂项目,03年就开始做太阳能光伏工厂项目,算是国内光伏行业工厂设计的鼻祖吧。得益于国内光伏行业红红火火的发展势头,国内叫得上名字的光伏工厂基本都是我们的客户。08年金融危机的影响使电池组件外销受阻,大量电池组件厂开始国内自建或合作建光伏电站,以消耗电池产能。由此我所在设计院又开始跟一些光伏工厂合作向光伏系统集成延伸,即进入光伏发电系统设计等。这期间项目以屋顶光伏项目居多。09年底、10年初开始跟某发电集团合作,毕竟是五大发电集团之一,项目基本不愁,都是系统内的。项目规模10MW、5MW都有。我是10年初从设计院派到这个刚成立的合作团队中,至今差不多正好一年。回想这一年还是蛮辛苦的,经常奔波于江苏与北京西北几省。由于都是总包项目,不光是设计那点事,前期资料收集、参加项目各审批会议、各种方案经济比较、并网问题跟各地电网公司的协调、项目设备订货文件编写、后期工地服务、项目验收等等。加上团队人员也少,没有设计院的那样单一只管设计的可能。由于是总包,也不可能像设计院那样把许多细节推给施工单位的可能。 当然这些辛苦还算所值,也学了很多东西。 可能没接触过光伏发电的人觉得这很高深,充满神秘。其实也就那么点事。基础理论还是那些东西。主要包括光伏阵列布置——间距、倾角、日照分析等太阳能辐射相关计算,太阳能辐射计算这个也是成熟理论,找本相关书籍即可。然后是汇流、逆变、升压、并网。逆变技术,我想大部分人大学都学过“电力电子技术”课程,再找出来重温一下。再找些逆变厂家样本看看基本都明白了。升压不用多说,搞电的不陌生了,可看成是配电系统反过来。并网,这个对大多数做35KV以下的供配电设计的人来说比较陌生。这是电力设计院的势力范围,一般非电力设计院是接触不到的。其实这部分内容也很固定,找套电力院图纸仔细研究就明白了,如包括:变电站与中调地调的光纤通信、线路光纤纵差保护、电力调度与数据网、电能质量监测、公用测控、电能采集、远动等。一般说来这部分内容都是委托当地电网公司指定电力院设计的,你只要明白就行。 由于一些原因,我现在不做光伏发电了,给大家发电项目照片看看,有些是我去参观的项目、有些是我自己做的项目。欢迎交流... 光伏电站比较占地方,如10MW的装机容量占地约三四百亩,所以大型地面光伏电站大都选址荒滩戈壁。中国西北地区光照资源好,又多荒滩戈壁,是光伏太阳能建设的合适厂址。

光伏发电技术及应用专业课程

公共必修课 思想道德修养及法律基础、毛泽东思想、邓小平理论和“三个代表”重要思想概论、大学英语、大学体育、计算机文化基础、大学语文、军事理论、大学生就业与创业指导、沐浴经典、红色江西、形势政策 专业基础课 高等数学、大学物理、光伏技术概论、电工电子学、半导体物理器件、太阳电池材料、光伏设备概论 专业课 专业技能课 工程计价与计量、工程制图、AutoCAD 专业必修课 太阳电池原理与工艺、太阳能发电技术、光伏建筑电气控制技术、光伏系统设计与施工、供配电系统、光伏建筑工程 专业任选课 高级语言程序设计、工业计算机控制技术、新能源发电技术、专业英语 集中实践教学 太阳能发电技术课程设计、光伏系统设计与施工课程设计、光伏建筑工程课程设计、军事训练、入学教育、岗位实训、毕业设计(论文) 主干课程 (1)《太阳电池原理与工艺》 课程简介:本课程主要讲授光生伏打效应机理、p-n结、太阳电池的工作原理、制造工艺、测试和应用等方面的技术,使学生对太阳电池器件的原理及工艺有较为系统的掌握。 (2)《太阳能发电技术》 课程简介:本课程主要讲授太阳能光伏发电工作原理、内容包括太阳能电池组件的特性、结构及种类,功率调节器的工作原理、功能、电路构成及种类、选择方法、相关设备及部件,太阳能光伏发电系统设计与施工、维护检查与测量,熟悉太阳能光伏发电系统的法律法规及并网系统技术要求准则。 (3)《光伏系统设计与施工》 课程简介:主要介绍光伏系统的构成及设计原理和规则,阐述光伏系统的施工技术和方法。使学生初步掌握光伏系统的设计方法,了解光伏系统的施工步骤,为学生将来独立参与光伏系统的设计和施工打下基础。 (4)《光伏建筑电气控制技术》 课程简介:本课程主要结合光伏发电讲授建筑配电系统常用的电器元件、继电器、接触器控制的基本控制电路、建筑电气控制技术的设计、建筑中常用的电气设备的控制原理、可编程控制器的基本工作原理及其在光伏建筑中的应用等方面知识。 (5)《太阳电池材料》 课程简介:介绍太阳能及光电转换的基本原理、太阳电池的基本结构和工艺,着重从材料制备和性能的角度出发,阐述常用的太阳能光电材料的基本制备原理、制备技术以及材料结构组成对太阳电池的影响。 (6)《工程计价与计量》 课程简介:本课程主要介绍太阳发电建设项目在决策、设计、招投标、实施、竣工验收等阶段的计价方法,使学生初步掌握工程计价与计量专业技能,扩展学生的工程经济知识与相关能力。

太阳能光伏发电技术课程设计

课程设计方案 课程名称太阳能光伏发电技术 班级10级光伏发电班 专业光伏发电技术及应用专业 指导教师:李玲

一、课程设计的目的 课程设计是《太阳能光伏发电技术》课程的一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。在整个教学计划中,它也起着培养学生独立工作能力的重要作用。 课程设计不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出设计和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。所以,课程设计是培养学生独立工作能力的有益实践。 通过课程设计,学生应该注重以下几个能力的训练和培养: 1. 查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力; 2. 树立既考虑技术上的先进性又考虑经济上的合理性正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力; 3. 用简洁的文字或清晰的图表来表达自己设计思想的能力。 二、课程设计的任务和要求 1、学习态度:要有勤于思考、刻苦钻研的学习精神和严肃认真、一丝不苟、有错必改、精益求精的工作态度,对有抄袭他人设计图纸(论文)或找他人代画设计图纸、代做报告等行为的弄虚作假者一律按不及格记成绩,并根据学校有关规定给与处理。 2、学习纪律:要严格遵守学习纪律,遵守作息时间,不得迟到、早退和旷课。如因事、因病不能上课,则需请假,凡未请假或未获准假擅自不上课者,均按旷课论处。 3、课程目标:掌握课程的基本理论和基本知识,概念清楚,设计计算正确,结构设计合理,实验数据可靠,绘图符合标准,设计报告撰写规范。要敢于创新,勇于实践,注意培养创新意识和工程意识。 (1)巩固和加深对光伏系统设计基本知识的理解,提高学生综合运用本课程自学知识的能力。 (2)培养学生根据课题需要选学参考书籍、查阅手册、图表和文献资料的所学能力。通过独立思考,深入钻研有关问题,学会自己分析解决问题的方法。 (3)通过实际新余市太阳能LED灯设计方案的分析比较、设计计算、设备选型、安装调试等环节,初步掌握简单太阳能光伏系统的分析方法和工程设计方法。 (4)掌握常用太阳能光伏系统设备的基本参数,学会太阳电池组件的容量计算、蓄电池容量计算、方阵倾角设计等,提高学生动手能力,能在教师指导下,完成课程任务。 (5)了解与课题有关的光伏系统设备安装及使用工程技术规范,能按课程设计任务的要求编写设计报告(或总结)能正确反映设计和实验成果。 (6)培养严肃认真的工作作风和科学态度。通过课程设计实践,帮助学生逐步建立正确的生产观念、工程观念和全局观点。

光伏电站设计方案实例

甘肃某建筑屋顶光伏发电系统初步 设计方案 一、项目背景 1、项目意义 (略) 2、项目建设地基本信息: 2.1、建设地:甘肃某地 2.2、当地地理纬度: 36°左右, 2.3、年平均太阳能辐射资源:5.5KWh/㎡·day 2.4、当地气温:最高气温:38°C,最低气温:-20°C 2.5、光伏电站建设布局及占地面积 屋顶面积:58x35=2030平方米, 朝向:正南 设计阵列朝向:正南 三、项目规模 预计最大装机容量:2030m2x130W/m2=264kW 四、方案设计 1、逆变器初选:根据初步预算容量 选用5台50千瓦串接式逆变器。 MPPT范围:350-800V

最大输入电压:1000V 2、组件选择:选用300Wp光伏组件。 3、支架倾角设计:鉴于该建筑朝向东南45度,为了综合考虑朝向非正南对发电的影响,设计光伏支架倾角为30°。 3.1支架结构设计(略) 3.2支架基础设计(略) 4、平面设计及阵列排布 (1)采用光伏组件横向排布,上下2层支架设计,18块一串,阵列总长18米。每个阵列有18x2=36块组件封2串组成,合计10800Wp。

(2)计算阵列占地投影宽度1.75米,遮阴间距2.34米,取值2.45米。错误:上面说,横向排布,上下2层支架设计,18块一串,阵列总长18米。L阵列斜长应为4米。投影宽度3.46米,遮阴间距4.91米.

(3)设计布局8排,共计24个阵列,总设计安装容量259.2kWp (如果设计布局7排,共计21个阵列,总设计安装容量226.8kWp,前后空间比较大) 5、总平面布置图: 6、电路设计(略) 五、投资预算: 1、静态投资: 序号项目单价(元) 合计(万元) 1 259.2kWp电站单晶硅光伏组件 3.20/Wp 82.94 2 5台50kVA逆变器等并网配件 1.00/Wp 25 3 C型钢支架0.5/Wp 13 屋面混凝土基础0.1/Wp 2.59 4 电缆0.2/Wp 5.18

光伏发电的MATLAB仿真

一、实验过程记录 1.画出实验接线图 图1 实验接线图 图2 光伏电池板图3 实验接线实物图 2.实验过程记录与分析 (1)给出实验的详细步骤 ○1 实验前根据指导书要求完成预习报告 ○2 按预习报告设计的实习步骤,利用MATLAB建立光伏数学模型,如下图4所示。

图4 光伏电池模型其中PV Array模块里子模块如下图5所示。 图5 PV Array模型其中Iph,Uoc,Io,Vt子模块如下图6-9所示。 图6Iph子模块

图7Uoc子模块 图8 Io子模块 图9Vt子模块 ○3 在光伏电池建模的基础上,输入实际光伏电池参数值,研究不同光照强度下、不同温度下光伏电池的I-V、P-V特性曲线,并得出结论。 ○4 设计光伏电池测试平台,在不同光照、温度情况下测试光伏电池输出电压、输出电流值,对实测数据进行处理并加以分析,记录实际光伏电池的I-V、P-V 特性曲线,与仿真结果进行对比,得出有意义的结论。 ○5 确定电力变换电路拓扑结构,设计电路中的相关参数值,通过MATLAB搭 建电路并仿真分析,搭建电路如图10所示。

图10离网型光伏发电系统 ○6 确定系统MPPT控制策略,建立MPPT模块仿真模型,并仿真分析。 系统联调,调节离网型光伏发电系统的电路和控制参数值,仿真并分析最大功率跟踪控制效果。 (2)记录实验数据 m2 表1当T=290K时S=1305W/时的测试数据 I(A)0 1.03 1.25 2.65 3.79 5.97 6.287.867.98 U(V)27.326.226252421.516 1.10 P(W)026.98632.566.2590.96128.35100.488.6460 m2 表2当T=287K时S=1305W/时的测试数据 I(A)01 1.5 2.6 3.93 6.0 6.688.048.12 U(V)27.626.225.825.123.921.620.510 P(W)026.238.765.2693.93129.6136.948.040 m2 表3当T=287K时S=1278W/时的测试数据 I(A)0 1.04 1.49 2.25 3.66 6.06 6.737.98.06 U(V)26.826.22625.424.321.913.40.50 P(W)027.24838.7457.1588.94132.7190.18 3.950

离网光伏发电系统设计案例分析

离网光伏发电供电系统设计案例 1系统原理图 1.1系统实物连接图(图一) 图一 1.2系统连接框图(图二) 图二

1.3系统安装方式 该系统用于医院,故太阳能电池板设计成地面电站安装形式(放于医院大楼屋顶),太阳能电池板固定支架之间采用螺丝固定的方式连接;支架底座考虑到风速及屋顶防水措施保护,采用一次性浇筑好的水泥压块(如图三所示);太阳能电池板之间接头采用MC4公母插头,方便拆卸。 图三 2、系统主要部件设计 2.1太阳能电池板 2.1.1太阳能电池板选型 光伏组件选用多晶硅组件,型号为250Wp的多晶硅组件,每块内部封装156*156多晶电池片60片,该组件拥有高转换效率,确保卓越品质;该组件能够承受高风压、雪压以及极端温度条件;能够达到12年90%和25年80%的输出功率,5年工艺材料的质保。 2.1.2

表六 2.1.3太阳能电池板实物图(如图四所示) 图四 2.2光伏汇流箱 2.2.1光伏汇流箱的选型 对于光伏发电系统,为了减少光伏组件与光伏控制器或者逆变器之间的连接线,方便维护,提供可靠性,一般需要在光伏组件与光伏控制器或者逆变器

之间增加直流汇流装置,故系统中需要增加光伏防雷汇流箱。又根据太阳能电池板的并联数为10并,我们正常把每并电流预设为10A,考虑到控制器是两路输入每路电流50A,故选用两台5进1出的汇流箱。 2.2.2功能特点 满足室内、室外安装要求 最大可接入16路光伏串列,单路最大电流20A 宽直流电压输入,光伏阵列最高输入电压可达1000VDC 光伏专用熔断器 光伏专用高压防雷器,正负极都具有防雷功能 可实现多台机器并联运行 维护简易、快捷 远程监控(选配)

太阳能光伏发电系统课程设计模板

新能源学院 《太阳能光伏发电系统》 课程设计 课题名称: 专业班级: 学生姓名: 学生学号: 指导教师: 设计时间:至 沈阳工程学院

报告正文(例子) 目录(自动生成) 第1章绪论.......................................... 1.1 设计背景……………………….................... 1.2 设计意义................................................................................. 第2章沈阳市气象资料及地理情况........................................... 第3章家用独立型太阳能光伏发电系统的优化设计.......... 3.1 设计方案...................... 3.2 负载的计算.......................... 3.3 太阳能电池板容量及串并联的设计及选型…………………….. 3.4 太阳能电池板的方位角与倾斜角的设计.......................... 3.5 蓄电池容量及串并联的设计及选型……………………………….. 3.6 控制器、逆变器的选型……………………………….. 3.7 电气配置及其设计………………………….. 3.8 系统配置清单………………………….. 第4章家用独立型太阳能光伏发电系统的优化结果与讨论……… 4.1 ………………………………………………………….. 4.2 ……………………………………………………….. 4.3 ……………………………………………………….. 4.4 ……………………………………………………….. 第5章心得体会....................................................................................... 参考文献.......................................................................................

光伏发电系统课程设计报告

目录 1.系统设计依据 (2) 2.负载耗电量 (2) 3.系统初始化设计 (3) 3.1当地气象数据资料 (3) 3.2方阵倾斜角设计 (3) 4.系统的主要配置说明 (4) 4.1太阳能电视组件 (4) 4.2并网逆变器 (4) 4.3方阵支架场地设计 (5) 4.3.1屋顶基础 (5) 4.3.2支架的设计 (5) 4.4.配电室设计 (6) 4.5.并网发电系统的防雷 (6) 4.6并网发电系统配置表 (7) 5. 系统建设及施工 (8) 5.1光伏系统建设流程 (9) 5.2光伏系统组件安装和检验 (9) 5.3光伏屋面安装顺序 (10) 5.4线缆的敷设与连接 (11) 5.5系统防雷接地安装 (11) 5.6逆变器的安装 (12) 6. 太阳能光伏发电系统的检查与测试 (12) 6.1光伏发电系统的检查 (12) 6.2光伏发电系统的测试 (13) 6.3系统的维护与检修 (13)

1.系统设计依据 该系统的设计依据有(国标): GB/T 19939-2005 光伏系统并网技术要求 GB/T 20046-2006 光伏(PV)系统电网接口特性(IEC 61727:2004,MOD) GB/Z 19964-2005 光伏发电站接入电力系统技术规定 GB/T 2423.1-2001 电工电子产品基本环境试验规程试验A:低温试验方法 GB/T 2423.2-2001 电工电子产品基本环境试验规程试验B:高温试验方法 GB/T 2423.9-2001 电工电子产品基本环境试验规程试验C:设备用恒定湿 GB 4208 外壳防护等级(IP代码)(equ IEC 60529:1998) GB 3859.2-1993 半导体变流器应用导则 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15543-1995 电能质量三相电压允许不平衡度 GB/T 21086-2007 建筑幕墙 GB 50057-94 建筑物防雷设计规范 JGJ102-2003 玻璃幕墙工程技术规范 JGJT139-2001 玻璃幕墙工程质量检验标准 2.负载耗电量 设备名称功率(w)日运行时间(h)日耗电量(wh)电视机85w+150w 4+2 640 电磁炉1600 2 3200 照明灯40w×10只 4 1600 电水壶1800 0.5 900 洗衣机400 1.5 600 冰箱350w/24h 24 350 电饭煲650 1.5 975 饮水机300 5 600 电风扇60w×3 5 900 合计9765

太阳能光伏发电课程设计

《太阳能光伏发电原理与应用》 课程设计 课题名称:家用独立型光伏发电系统的优化设计 专业班级:光电02班 学生学号:1009040204 学生姓名:黄斌 学生成绩: 指导教师:刘国华 课题工作时间:2013.6.24 至2013.6.28 武汉工程大学教务处

一、课程设计的任务和要求 要求:1、具备独立查阅光伏发电系统设计的相关文献和资料的能力;具有查阅光伏电池、蓄电池、控制器和逆变器等光伏器件参数和型号的能力;具有 收集、加工各种信息及获取新知识的能力。 2、具备独立设计光伏发电系统的能力,能提出并较好地实施方案,能对光 伏发电系统的结构和配置进行分析研究和优化设计。 3、具备数值计算、仿真、绘图和文字处理等能力。 4、工作努力,遵守纪律,工作作风严谨务实,按期圆满完成规定的任务。 5、报告内容简练完整、立论正确、讨论充分、论述流畅、结构严谨、结论 合理;技术用语准确、符号规范统一、编号齐全、书写工整、图表完备。 6、工作中有创新意识,对前人工作有一定改进或独特见解。 7、内容不少于3000字。 技术参数:1、光伏发电系统安装地点:成都; 2、使用单晶硅光伏电池; 3、负载表 数量功率使用时间 荧光灯8 18w/盏5h/天 电视机,电脑 2 120w/个3h/天 洗衣机 1 600wh/天 电冰箱 1 1000wh/天 任务:1、选择适当的光伏电池、蓄电池、逆变器和控制器; 2、设计合理的光伏发电系统; 3、利用PVsyst软件和有关理论模拟优化设计,并对结果进行分析和总结。 二、进度安排 1、2013.6.24 选题、分析查找相关资料、熟悉PVsyst软件 2、2013.6.25 提出设计方案、思路和系统框图、系统的优化设计 3、2013.6.26 讨论、修改、进一步优化方案,光伏发电系统各部件的选型 4、2013.6.27 写出课程设计报告初稿 5、2013.6.28 整理课程设计报告、交稿 三、参考资料或参考文献 1、杨金焕、于化丛、葛亮著. 太阳能光伏发电应用技术. 第1版. 电子工业出版 社. 2009年。 2、李钟实著. 太阳能光伏发电系统设计施工与维护. 第1版. 人民邮电出版社. 2010年。 3、PVsyst软件应用教程。 指导教师签字:刘国华2013年 6 月 1 日 教研室主任签字:2013年6 月1 日

光伏发电路灯系统课程设计

光伏技术与工艺课程设计 课程名称:光伏技术与工艺 题目:50W太阳能LED路灯照明系统设计 系部:电气工程系 专业班级:10光伏发电 学号:39 学生姓名:whn 起讫日期:2012、6、4 2012、6、9 指导教师:LSW

目录 一、设计目的及意义 1、背景 2、设计目的 3、设计意义 二、太阳能路灯的应用优势 三、设计要求 四、设计思路及其设计原则 五、太阳能路灯照明系统介绍 (一)系统组成与原理 (二)光源 (三)蓄电池 (四)控制器 (五)太阳电池组件 六、计算及选型 (一)计算 (二)选型 七、施工 八、心得体会

一、设计目的及意义 1、背景 在当今能源短缺的现状下,各国都加紧了发展光伏的步伐。美国提出“太阳能先导计划”意在降低太阳能光伏发电的成本,使其2015年达到商业化竞争的水平;日本也提出了在2020年达到28GW的光伏发电总量;欧洲光伏协会提出了“setfor2020”规划,规划在2020年让光伏发电做到商业化竞争。在发展低碳经济的大背景下,各国政府对光伏发电的认可度逐渐提高,光伏发电显得越来越重要。 自从实用性的硅太阳电池问世以来,世界上很快就开始太阳能光伏发电的应用。发展初期,因太阳电池价格昂贵,光伏发电主要限于在空间为卫星供电。随着太阳电池技术提高,价格下降,光伏发电逐渐在地面得到应用,规模也日益扩大。 从1958年美国发射的卫星上首次使用太阳电池开始,至今全世界发射的4000余颗卫星,90%以上采用光伏发电系统供电。所用太阳电池,大部分为硅单晶电池,近来开始采用砷化镓和磷化铟电池。太阳电池方阵组装方式有体装式和帆板式两种,功卒小至数瓦,大至上千瓦、几十千瓦。空间光伏发电用的太阳电池要求,转换效率高,重量轻,耐辐照性能好,温度系数小等,今后发展重点是薄膜太阳电池。 在卫星上成功地实现光伏发电后,人们自然会提出建造空间电站的设想,利用空间太阳辐射强、不受昼夜、气候、季节影响的有利条件,在空间将太阳能转换为电能,再用微波或激光传输到地面。光伏发电用于地面之后,因价格贵而首先在一些特殊领域获得应用,如海上导航,牧区电围栏,微波通讯,管道阴极保护等。随着价格的下降,光伏发电逐渐扩大应用领域,目前主要用于以下四个方面: 消费性产品,如非晶硅太阳电池供电的计算器,太阳能钟表,太阳能照明灯具,太阳能收音机、电视机等,这类产品约占世界光伏产品销售量的14%;远离电网居民供电系统,包括家庭分散供电和独立光伏电站集中供电,其占世界光伏产品销售量的35%;离网工业供电系统,其占世界光伏产品销售量的33%;并网光伏发电系统,其占世界光伏产品销售量的18%。 随着光伏发电规模的扩大,井网发电系统将快速发展。光伏发电在发展中国家也得到了一些应用,但应用重点是小型系统,主要解决无电或严重缺电地区家庭用电的需要。 随着国内光伏产业规模逐步扩大、技术逐步提升,光伏发电成本会逐步下降,未来国内光伏容量将大幅增加。中国已将新能源产业上升为国家战略产业,未来10年拟加大对包括太阳能在内的新能源产业投资,以减少经济对石化能源依赖和降低碳排放。未来五到十年中国光伏发电有望规模化发展。

《太阳能光伏发电系统原理与设计》

一、组织单位: 主办单位:中国可再生能源学会 承办单位:北京中电蓝天新能源技术研究院 协办单位:上海市新能源行业协会、浙江省太阳能行业协会 支持单位:淘光伏、solzrzoom光伏网、欧姆尼克新能源、索尔光伏 二、培训时间与地点: 时间:2016年6月17-20日(17日全天报到) 地点:苏州市(具体地点另行通知) 三、培训费2000元/人,(含参会费、资料费、参观费等) 食宿统一安排,费用自理。 四、主要培训内容简介(结合实际案例讲解+光伏设计软件实训) 1.国家光伏发电政策及盈利模式 2.分布式光伏电站类型介绍、并网条件、接入电压等级 3. 分布式光伏系统中主要部件(光伏组件、逆变器、支架、线缆等)的选型分析 4.分布式光伏电站现场勘查及设计要点(工商业、民用屋顶) 5. 农光互补电站规划及设计要点、施工建设 6. 荒山坡地光伏电站设计要点、施工建设 7. 水面漂浮式光伏电站设计要点、施工建设 8. 光伏电站的运行维护及日常检查管理 9. 分布式光伏电站的开发模式、报批申请流程、注意事项 10. 光伏电站的成本分析及投资回报(如何开拓市场及业主常问问题解答) 11. 现场实际动手模拟现实中的屋面情况,完成设计施工作业 五、拟邀请专家名单(排名不分前后) 李宝山—中国可再生能源学会秘书长 王斯成—国家发改委能源所研究员 李世民—联合国工业发展组织国际太阳能中心副主任 杨宏—西安交通大学教授 张军军—国网电科院国家能源太阳能发电研发(实验)中心主任 徐永邦—东旭集团副总裁 龚剑军—华威新能源公司总经理 六、参加对象:

1. 各省、市、区光伏发电主管部门负责人; 2. 能源投资公司、光伏发电业主单位主管负责人; 3. 各电网经营企业的负责人; 4. 光伏发电项目咨询、设计、施工、监理等参建单位负责人; 5. 光伏电站设备、材料供应单位负责人; 6. 现代农业公司、现代渔业公司、金融服务机构负责人; 7. 太阳能光伏科研单位、职业院校有关人员等。 8. 其他光伏农业从业人员 七、申请证书所需材料及说明: 1、申请国家人力资源和社会保障部、国家农业部联合颁发的职业资格证书《太阳能利用工》中级、 高级、技师,证书费中、高级800元/个,技师1000元/个 证书所需材料: 1、申请以上证书需提供小2寸彩底照片2张,身份证复印件正反两面、最高学历证明复印件各一 份,证书考试为百分制,60分通过,理论及实操两项考核通过者颁发相应等级证书。 2、申请技师需提供小2寸彩底照片5张,身份证复印件正反两面、最高学历证明复印件各一份, 八、联系方式: 联系人:杨杰, 邮箱:

《光伏发电系统集成与设计》课程整体设计

《光伏发电系统集成与设计》课程整体教学设计 一、管理信息 课程名称:《光伏发电系统集成与设计》制定时间:2011.03.16 课程代码:12317035 所属部门:信息工程学院 制定人:批准人: 二、基本信息 学分:5 课程类型:专业核心课 学时:80 先修课程:《电工基础》、《光伏电子技术》授课对象:光伏应用技术专业后续课程:《光伏发电系统施工与维护》、《智能 光伏产品系统集成》 三、课程设计 1.课程目标设计 (1)能力目标 ①总体能力目标 引入校企合作企业光伏电站、光伏集成系统案例,通过对《光伏发电系统集成与设计》中的典型离网光伏发电系统集成与实施及并网光伏发电系统集成的学习,使能熟练掌握光伏发电系统集成设计的一般过程,掌握典型离网光伏发电的设计与实施,掌握光伏发电系统中的太阳能电池方阵、典型太阳能控制器、蓄电池容量的设计方法及太阳能逆变器配置方法,掌握利用计算机仿真技术实现光伏电站可行性分析技术,掌握各类光伏项目申报流程。 ②单项专业能力培养目标 序号单项能力目标 1 能独立完成离网光伏发电系统的集成与设计 2 能熟练完成典型离网光伏发电系统的组装 3 能正确完成光伏电池方阵设计 4 能正确完成光伏发电系统的蓄电池容量设计 5 能熟练完成典型光伏控制器电路设计与制作 6 能独立完成并网光伏电站系统结构设计 7 能熟练使用RETscreen完成光伏发电系统设计的可行性分析 *8 能熟练使用光伏发电系统组装与测量工具 *9 能解读光伏发电项目文件,完成光伏发电项目的申报工作 *10 能独立完成光伏发电项目方案申报方案设计 (2)知识目标

①掌握离网光伏发电系统及并网光伏发电系统组成结构; ②掌握太阳能资源的组成及获取方法; ③掌握太阳能电池特性、方阵组合容量计算方法; ④掌握光伏用蓄电池特性及蓄电池容量计算方法; ⑤掌握光伏控制器功能、选取方法及典型控制器制作; ⑥掌握离网、并网光伏发电系统整体容量设计方法。 ⑦掌握光伏汇流箱、直流配电柜、交流配电柜的结构组成、功能及选取方法; ⑧掌握光伏电站防雷接地方法; ⑨掌握RETscreen 功能及操作方法。 (3)方法能力 学习方法、逻辑思维能力、分析能力、创造能力、解决问题策略、制定工作计划、获取信息、判 断能力、运用理论知识能力、记忆能力。 (4)社会能力 团队工作、容忍、批评能力、交流能力、组织能力、协调能力、纪律性、环境保护。 2.课程内容设计(图形结构) 光伏发电系统整体容量设计 光伏发电系统其他电气设备配置 与选型 太阳能资源认识及获取 光伏汇流箱认识及应用 光伏电池组件及方阵容量设计 光伏控制器认识及应用光伏逆变器认识及选型太阳能光伏发电系统认识 系统方案设计与项目申报流程

新能源课程设计-离网型光伏发电系统

新能源技术课程设计指导书

1.实验目的与要求 (1)检索资料,了解光伏发电技术的发展状况以及光伏发电原理; (2)掌握光伏电池模型的建立方法,分析、设计仿真模型,并利用MA TLAB 进行仿真实现; (3)掌握光伏电池的测试方法,选择适合的测量器件与量程,验证光伏阵列模拟方法的正确性; (4)分析离网型光伏发电系统的组成,选择合适的电力变换器拓扑结构并进行原理分析、参数计算; (5)查阅相关文献资料,确定系统MPPT 控制策略,建立MPPT 模块仿真模型,并仿真分析; (6)掌握系统联调的方法,调整控制参数。 2.仪器设备 太阳能电池板1 块,万用表2 个,太阳能功率表TENMARS TM-207,滑动变阻器(100 欧姆,200 瓦)1 个,计算机 1 台,系统仿真软件。 3.实验原理 通过集中授课和查阅相关资料了解离网型光伏发电系统的组成和工作原理。具体包括:(1)光伏电池的发电原理和数学模型; (2)DC—DC—AC变换器的拓扑结构、工作原理和参数计算; (3)研究离网型光伏发电系统最大功率跟踪控制的方法; (4)通过将光伏阵列外接一个可变电阻,调节可变电阻,记录不同情况下的电压和电流值,从而得到I/V 特性,将I 和V 相乘后,可得到P,进一步可获得P/V特性,通过光伏 阵列倾角的调节,从而使照射到光伏阵列上的光强产生变化。 4.实验内容与要求 4.1 实验内容 (1)建立光伏阵列数学模型,依托实际光伏电池板参数对光伏电池输出特性进行相关模拟, 研究光强和温度对光伏电池输出特性的影响,并设计实际光伏电池的检测电路进行实验验证;(2)设计离网型光伏发电系统,包括确定DC-DC-AC变换器拓扑结构、计算电力变换电路参数、确定MPPT控制策略; (3)在MA TLAB环境下建立含光伏阵列模块、电力变换电路模块、MPPT控制模块及输出负载的离网型光伏系统模型,系统调试,在光强和温度突变时系统能够快速、准 确、稳定地实现最大功率跟踪控制。 4.2 实验要求 (1)画出系统框图及原理图,实验接线图,软件流程图。 (2)不同实验步骤时接线不同则要按实验步骤分别给出接线图。 (3)给出接线图中所测量参数的测量点,指明所测参数的变化范围。 (4)指明测量每个参数所对应仪表及选用依据。 (5)指明在测量数据之前对实验线路、实验装置所必须的调试整定工作。

相关主题