搜档网
当前位置:搜档网 › 无线光通信系统

无线光通信系统

国家重点实验室无线光通信系统综述

Introduction to Optical Wireless Communication Systems

报告人:刘增基

资料提供:易湘岳鹏尚韬姚明旿

ISN国家重点实验室

2012年3月

1

国家重点实验室无线光通信系统综述

?概述

?无线光通信链路的组成和基本原理

?无线光通信的信道特征

?无线光通信系统的信息传输技术

?无线光通信的捕获瞄准跟踪(APT)技术

?无线光通信系统的研究与发展(举例)

2

国家重点实验室无线光通信系统概述

定义与分类

?定义:无线光通信系统是以光波为信息载

体的无线通信系统。

?按工作波段可分为红外光通信、可见光通

信、紫外光通信。

信紫外光通信

?按应用环境可分为室内光通信、近地大气

激光通信、地对空/空对地光通信、空对空

光通信、水下光通信。

光通信水下光通信

3

国家重点实验室无线光通信系统概述

特点(1)

?无需申请频率使用许可证,频谱资源丰富申率许谱富

4

国家重点实验室无线光通信系统概述

特点(2~10)

?

拥有光纤传输的宽带性能

?传输隐蔽性和安全性好

?抗电磁干扰能力强

?快速链路部署,建网速度快(与光纤比)

?设备尺寸小(与微波比)

?对上层协议透明

?实施成本相对低廉

?大气激光通信受气象条件(特别是雾)影响较大般采用定向天线(束散角为几毫弧度至几十微?一般采用定向天线(束散角为几毫弧度至几十微

弧度),需要自动捕获瞄准跟踪(APT)系统。

5

国家重点实验室无线光通信系统概述

应用场景

?室内LED可见光无线局域网

?近地大气激光通信用于切不便于铺设光

用于一切不便于铺设光缆或光缆中断的场合,实现宽带接入、基

站互联、点对点专用链路及组网通信。

站互联点对点专用链路及组网通信

?卫星激光通信,包括星际通信和星地通信。

?深空激光通信

?蓝绿激光对潜通信

6

国家重点实验室

无线光通信链路的组成线信

?点对点无线光通信双向链路由光发射机及天线、光波信道、

光接收机及天线以及电的控制终端等设备组成

光接收机及天线以及电的控制终端等设备组成。?光发射机(E/O ):实现光载波的产生、调制、功率放大。光发射天线实现已调光载波的定向发射?光发射天线:实现已调光载波的定向发射。?光接收天线:聚集已调光载波的能量。

):将接收的光信号转换为电基带信号?光接收机(O/E ):将接收的光信号转换为电基带信号。?电控制终端设备:实现双向通信控制及用户信息的收发。

光电电光发射机

光接收机

光接收天线光发射天线

波信道

控制终控制终7

端光发射机

光接收机光接收天线光发射天线

国家重点实验室无线光通信的基本原理?发端(E/O):载有信息的基带电信号对特定波长的光载波进行调制,变换为已调光信号,然后通过光学天线向特

波进行调制变换为已调光信号然后通过光学天线向特

定的空间和方向发射光波。

传播:源点发射的光波经过空间的传播到达目的点。

?传播:源点发射的光波经过空间的传播到达目的点

?收端(O/E):通过光学天线接收微弱的已调光信号,通过检测(解调)、放大等处理还原为基带电信号。

?调制方式:直接调制(内调制)、间接调制(外调制)?光源:光电二极管(LED)、激光器(LD)

?光检测器:PIN、APD、光电倍增管、CCD

?光学天线:球面镜或非球面镜

调制传播解调

基带电信号已调光信号微弱光信号基带电信号

8

国家重点实验室无线光通信的信道特征

(1)几何衰减

光波自由空间传播

θ

(能量扩散)衰减,发收

国家重点实验室无线光通信的信道特征

(2)大气衰减效应

?光波在大气层中传播的过程中势必受到大气分子

(H O、CO)和气溶胶粒子(雨、雪、雾、霾22

等粒子)的吸收和散射。

般情况下气溶胶粒子的吸收作用和气体分子的?一般情况下气溶胶粒子的吸收作用和气体分子的

散射作用不明显,可忽略不计,而通过选择合适

的大气窗口波段也可以避免气体分子的吸收;

的“大气窗口”

?主要考虑气溶胶粒子的散射引起的衰减。

?不同气象条件下的衰减系数和能见度的关系如下

表所示。

?大气衰减与波长的关系(后述)

大气衰减与波的关系

10

国家重点实验室

无线光通信的信道特征

(2)大气衰减效应

衰减系数和能见度的关系(波长1550nm)

气象状态能见距离V 衰减系数

-1

对数衰减系

-1 (km)数(dBkm)

无线光通信的信道特征

国家重点实验室

(2)大气衰减效应

衰减系数对数衰减系

能见距离V

(km-1) 数(dBkm-1)

1km 2.3291-10.1152

国家重点实验室

无线光通信的信道特征

(2)大气衰减效应

衰减与波长的关系衰减与波长的关系:3913.91)()()

0.550.55

m V δ

δ

λ

λμ??=

国家重点实验室无线光通信的信道特征

(3)大气湍流效应

?当激光束直径远小于湍流尺度时,湍流使光束产

当激光束直径远小于湍流尺度时湍流使光束产

生随机偏折,而产生光束漂移。

?当激光束直径与湍流尺度差不多时,湍流使光束

当激光束直径与湍流尺度差不多时湍流使光束

截面发生随机偏转,形成到达角起伏,在光探测

器的光敏面上将出现像点抖动。

器的光敏面上将出现像点抖动

?当激光束直径远大于湍流尺度时,激光束截面内

包含许多涡旋,使光束的强度和相位在空间和时

使光束的强度和相位在空间和时间上出现随机变化。

湍流的效应不是孤立存在的湍流尺度在一定范?湍流的效应不是孤立存在的,湍流尺度在一定范

围内分布,不同尺度的湍流各自起相应的作用。

14

国家重点实验室无线光通信的信道特征

(3)大气湍流效应

?当激光束直径远大于湍流尺度时,激光束截面内包含许多涡旋,它们具有不同的折射率。光波入射到这些气团

后发生折射,从而使光波经过多条传播路径到达接收点,

后发生折射从而使光波经过到达接收点

这些射线产生干涉,从而使光束的强度和相位在空间和

时间上出现随机变化。光强的随机起伏(闪烁),表现

为接收信号的快衰落。在采用较大孔径接收天线的条件

下,观察到的衰落深度可达20~30dB;衰落频率可达几

十Hz 。

光斑

发收

15

国家重点实验室

无线光通信的信道特征

(3)大气湍流效应

接收信号快衰落记录样品16

(数值越大,信号越弱)

4km

国家重点实验室

无线光通信的信道特征

(3)大气湍流效应

17

弱湍流

国家重点实验室

无线光通信的信道特征

(3)大气湍流效应

Gamma 模型

认为光强闪烁是大尺度涡旋元和小尺度涡旋元联合作用的结果。归一化y 分别为大尺度和小尺度涡旋元引起的光强起伏随机

过程,分别服从参数为α和β的Gamma 分布,可推导出服从

Gamma-布()/2)αβαβ+

+

国家重点实验室无线光通信的信道特征

)系统中的噪声--背景光噪声

是一种外部噪声,其光生噪声电流的均方值为

种外部噪声其光生噪声电流的均方值为

+

2x B

国家重点实验室无线光通信的信道特征

)系统中的噪声--量子噪声

电流均方值(与接收光功率成正比)

均值

+

(2)x B

大专通信技术论文题目

大专通信技术论文题目 1.移动短消息平台的研究与实现 2.基于Widget技术移动终端应用集成方案的设计与实现 3.第四代移动通信技术研究 4.基于GPRS的嵌入式系统无线通信技术的研究 5.基于GPS/GPRS的车辆管理系统的设计与研究 6.基于嵌入式技术的移动终端设计 7.公交车辆运营管理系统设计与实现(基于先进的CDMA数字移动通信技术及开放式信息处理技术) 8.移动支付技术研究 9.短消息业务服务系统的研制 10.GSM移动通信在煤矿井下应用的研究 11.基于嵌入式技术的GSM移动终端系统的软件开发 12.嵌入式移动通信技术的研究与应用 13.基于.NET技术的移动库存管理系统研究与实现 14.基于J2ME的移动通信技术的研究与应用 15.远程监控自动报警系统的研究与实现 16.第三代移动通信技术及其应用 17.现代移动通信技术研究的探讨 18.3G移动通信技术在电网管理中的应用 19.3G移动通信技术的分析

20.3G移动通信技术的应用 21.3G技术下手机购物模式分析 22.基于ARM的GPRS无线数据传输监控系统的分析 23.手机病毒分析及防范 24.基于手机的电子商务 25.图书管理系统手机终端的实现 26.移动通信技术的发展趋势 27.CDMA技术的3g系统和Wimax通信系统的比较 28.移动通信系统的关键技术,关键技术之一: 29.LTE系统的关键技术 30.LTE技术的发展及其应用 31.下一代无线网络技术 32.Wimax技术及其应用 33.CDMA2000系统的发展及其应用 34.WCDMA系统的发展及其应用 35.TD-SCDMA系统的发展及其应用 36.超宽带技术的发展及其应用 37.RFID在移动通信中的应用 38.RFID技术的发展及其应用 无线公网通信技术在配电自动化系统中的应用 随着通信技术的飞速发展,在配电网出现了光纤通信、公网无线通信、配电线载波通信等多种通信方式。而在配网主站与线路上的配网自动化终端之间的通信方式,则是现今配网自动化系统通信的

无线测试方案

WLAN系统测试方案 深信服科技 2014年7月

目录 一、概述 (5) 二、测试环境 (5) 2.1设备信息 (5) 2.2测试要求 (5) 2.4测试组网 (5) 三、测试内容 (6) 3.1基础性能 (6) 3.2认证与加密 (6) 3.3授权管理 (7) 3.4终端漫游 (7) 3.5应用识别 (7) 测试用例 (7) 4.1基础性能测试 (7) 1、AP吞吐量测试 (7) 2、AP零配置 (8) 3、丢包率 (9)

4、并发用户接入 (10) 4.2身份认证 (10) 1、本地认证 (10) 2、外部服务器认证 (11) 3、短信认证 (12) 4、二维码认证 (13) 5、微信认证 (13) 6、内置CA证书认证 (14) 7、802.1X 认证自动配置 (14) 4.3授权管理 (14) 1、不同角色策略控制 (14) 2、不同用户的访问控制策略 (15) 4.4、漫游 (16) 漫游功能测试 (16) 4.5应用识别 (17) 应用识别测试 (17) 四、测试结果: (18)

一、概述 本方案规定了WLAN接入设备的测试项目、测试要求、测试范围和测试内容等,提出了WLAN接入设备的功能、安全、性能、管理和维护等的测试要求。 二、测试环境 2.1设备信息 2.2测试要求 1、所有产品必须在同一测试环境条件下进行,以实际环境为标准。 2、所测试主要产品WAC和AP必须是各厂商相近档次设备。 3、测试位置:仟吉办公大楼现场,WAC及AP的安装位置均相同。 2.4测试组网 1、要求 (1)AP测试时放置位置有较大空间(两个AP距离为15米或以上); (2)AC能接通模拟测试服务器(如AD域服务器)或其它模拟测试设备,并提供正常网络连接; (3)测试点时需经过玻璃墙、砖墙等环境,以实际环境为准。

无线通信系统的基本工作原理

前言: 无线通信(Wireless communication)就是利用电磁波信号可以在自由空间中传播的特性进行信息交换的一种通信方式,近些年信息通信领域中,发展最快、应用最广的就就是无线通信技术。在移动中实现的无线通信又通称为移动通信,人们把二者合称为无线移动通信。 无线通信主要包括微波通信与卫星通信。微波就是一种无线电波,它传送的距离一般只有几十千米。但微波的频带很宽,通信容量很大。微波通信每隔几十千米要建一个微波中继站。卫星通信就是利用通信卫星作为中继站在地面上两个或多个地球站之间或移动体之间建立微波通信联系。 一、无线通信系统的类型 按照无线通信系统中关键部分的不同特性, 有以下一些类型: 1、按照工作频段或传输手段分类, 有中波通信、短波通信、超短波通信、微波通信与卫星通信等。所谓工作频率, 主要指发射与接收的射频(RF)频率。射频实际上就就是“高频”的广义语, 它就是指适合无线电发射与传播的频率。无线通信的一个发展方向就就是开辟更高的频段。 2、按照通信方式来分类, 主要有(全)双工、半双工与单工方式。 3、按照调制方式的不同来划分, 有调幅、调频、调相以及混合调制等。 4、按照传送的消息的类型分类, 有模拟通信与数字通信, 也可

以分为话音通信、图像通信、数据通信与多媒体通信等。 各种不同类型的通信系统, 其系统组成与设备的复杂程度都有很大不同。但就是组成设备的基本电路及其原理都就是相同的, 遵从同样的规律。本书将以模拟通信为重点来研究这些基本电路, 认识其规律。这些电路与规律完全可以推广应用到其它类型的通信系统。 二、无线通信系统的基本工作原理 无线通信系统组成框图 各部分作用: 1信息源:提供需要传送的信息 2变换器:待传送的信息(图像、声音等)与电信号之间的互相转换 3发射机:把电信号转换成高频振荡信号并由天线发射出去 4传输媒质:信息的传送通道(自由空间) 5接收机:把高频振荡信号转换成原始电信号 6受信人:信息的最终接受者

无线系统测试方案

海淀区中小学智慧校园 无线网络班班通达标一期工程项目第五包 测 试 方 案 北京金山顶尖科技股份有限公司 二〇一九年十二月

目录 1 测试依据----------------------------------------------------------------------------------------3 2 测试环境---------------------------------------------------------------------------------------- 3 2.1 主要设备 ----------------------------------------------------------------------------------3 2.2 辅助工具 ---------------------------------------------------------------------------------- 4 2.3 测试要求 ----------------------------------------------------------------------------------4 2.4 组网要求 ----------------------------------------------------------------------------------4 2.5 测试人员 ----------------------------------------------------------------------------------5 3 测试内容和安排 ------------------------------------------------------------------------------5 3.1 关键内容 ----------------------------------------------------------------------------------5 3.2 AP吞吐量测试 ---------------------------------------------------------------------------5 3.3 无线Mesh功能--------------------------------------------------------------------------6 3. 4 接入设备识别★ -------------------------------------------------------------------------7 3. 5 BYOD功能与访客管理★ -------------------------------------------------------------7 3. 6 非WiFi信号抗干扰测试 --------------------------------------------------------------9 3. 7 WiFi抗干扰测试-------------------------------------------------------------------------9 3. 8 语音漫游测试 -------------------------------------------------------------------------- 10 3.9 视频业务承载测试★ ----------------------------------------------------------------- 11 4、测试结果 ------------------------------------------------------------------------------------ 12

无线光通信的原理和核心部件的一些思考

无线光通信的原理和核心部件的一些思考 摘要:现阶段,随着科技水平的不断提升,在很大程度上促进着我国通信行业 的发展。通信技术作为通信行业的重要支撑力量,在很大程度上决定着传输效率。以往传统的无线电以及光纤通信技术,虽然不会受到地形方面的影响,信道容量 非常大,但是传输效率却非常慢。在这种情况下,我们积极的应用无线光通信技术,不仅不会受到地形因素的影响,而且还有着较强的保密性以及较快的传输效率。基于此,本文深入浅出地阐述了无线光通信原理;其次分析了无线光通信核 心部件;最后探讨了无线光通信优缺点。 关键词:无线光通信;优缺点;研究分析 一、无线光通信原理概述 无线光通信技术的的工作原理,主要包含着以下三个方面的内容:首先,需 要发射出数据信号,然后借助光信号进行传输,最终接收完成信息传输任务。无 线光通信系统应用的是光电转换技术,在调制完成电信号对光发射机的光源之后,借助具备天线功能的光学望远镜来传输光信号,在望远镜接受到信号后,将信号 全部集中在光电检测器,其次信号到达接收机后,完成光信号转换成电信号,然 后经过调制调解器,完成信息读取工作,最终接入无线光信号。但是,在这一过 程当中需要我们指出的是,光波信号的不同,其透过率也是存在着一定的差异的。在这种情况下,我们要想更加有效的提升透过率以及系统功率,我们就必须要选 择更高性能的波段窗口,来确保光信号的稳定传输。 二、无线光通信核心部件分析 (一)无线光通信发射机 无线光信号主要是借助发射机所产生的,通过将不同类型的电信号,在经过 调制解调器的转换之后,成为光信号。无线光通信并不是借助光缆进行传输的, 因此光信号主要是椭圆光斑,是由激光管芯激发进而产生的。在这一过程当中, 光学行为耦合替代了以往的同轴耦合,传输距离越远的话,那么耦合准值也就越高。我们在设定耦合准值的过程当中,需要充分结合光学耦合效率来进行,避免 影响到信号的接收。此外,我们在借助发射机发射光信号的过程当中,应积极的 做好人眼防护措施,避免造成危害。 (二)无线光通信光学天线 无线光信号并不会受到光纤输送路径方面的影响,因而在实际的发射过程当中,往往会存在一定的发散角,导致信号出现泄露的现象。在这种情况下,我们 要想最大限度的确保最终的接受准确度,我们就应在接收端设置一套光学天线系统,充分借助其凸、凹透镜的聚焦原理,更好的聚集光信号,降低信号的泄露。 光学天线的增益效果和天线的孔径存在密切的关联,如果孔径过大或者过小的话,都会在一定程度上影响着最终的接收效益。在这种情况下,我们在选取天线孔径 的时候,就需要充分的结合我们的实际工作状况来进行。除此之外,我们还要严 格的设定聚光斑点尺寸的精确度,切实提高光信号的接收效率。 (三)无线光通信接收机 光信号在传播的整个过程当中,所存在的反射以及折射的现象,会产生码间 串扰现象。不仅如此,光信号如果受到空气散射的话,也会消耗信号。在这种情 况下,我们在选择接收机的时候,就必须要选择一些有着信号接收灵敏度较强、

无线传感器检测系统

边坡监测传感器系统的硬件设计 尧春燕余清华林兴立 (暨南大学土木工程系广州510632) 摘要:本文从系统组成、工作原理及硬件设计三个方面详细介绍本创新成果——边坡监测传感器系统。 无线传感器网络WSN是随着微电子技术、计算机技术和无线通信技术的进步而兴起的一项新技术,它由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织网络系统,其目的是协作地感知、采集、和处理网络覆盖区域中感知对象的信息,并发送给观察者。本课题将无线传感器网络应用于边坡稳定的长期监测,可以实现一天二十四小时自动监测,从而实时获取精确的监测数据,具有自动化、智能化程度高和效率高等特点。 1、边坡监测传感器系统组成 本边坡监测传感器系统基于无线传感器网络,其主要由硬件部分和软件部分组成,硬件部分包括监测区域内的节点模块、基站模块(中继)、GPRS模块和监测中心计算机;软件部分包括单片 机控制程序和监测中心计算机中的应用程序。系统中每一部分都是模块化的,具有结构紧凑、易于维护等优点。 传感器系统组成简图

2、系统的工作原理 本监测系统主要有数据采集、数据传输、数据转换并加入数据库、数据处理五项功能。数据采集由监测区域内各节点完成,监测区域内的节点组成数据采集网络,单个节点可以是加速度传感器、土压力传感器、孔隙水压力传感器、温度传感器等及其组合,用于测量该节点各层土体中的土压力、土体位移、孔隙水压力、土体温度等数据,并将数据通过传感器内置的单片机进行初步处理,再通过埋设的电缆把数据传递给埋设在表层的无线发射装置。各节点的无线发射装置将数据汇集到监测区域的基站中,数据采集过程完成。数据传输过程则由基站将数据通过GPRS发射装置发送到无线GSM网络,经由国际互联网,传递到数据接收终端(这里采用个人计算机)。终端接收到数据后,数据采集装换软件将数据纳入数据库。数据库处理软件便可以通过长期监测建立起来的数据库调用数据,列出供人查询,更进一步,软件可以根据数据绘制出边坡位移、压力、温度等曲线,直观的将边坡的变化呈现出来,通过设定位移等参数的阀值,并设置数据自动更新,可以动态地监测边坡的变化并在数据达到阀值时发出报警。 3、传感器系统硬件设计: 3、1、传感器模块(原理参照中期成果) 加速度传感器、电阻应变式土压力传感器以及温度传感器。由于本系统主要用来监测边坡位移,因此节点设计的重点放在加速度传感器上。 本设计采用MMA7260Q高集成度三轴加速度传感器。MMA7260Q是一种低成本单芯片三轴向高灵敏度加速度传感器,基于表面微机械结构,集成信号调理电路、单极点低通滤波器和温度补偿部分,并且具有4种不同的灵敏度选择模式。滤波器截止频率已在出厂前设定,不需要外部调整。同时它包含一种睡眠模式,使其成为小型电池供电便携式设备的理想之选。MMA7260Q能在XYZ三个轴向上以极高的灵敏度读取低重力水平的坠落、倾斜、移动、放置、震动和摇摆,它是同类产品中的第一个单芯片三轴向加速器。主要具有以下特点:①XYZ:在一个设备中提供三轴向检测灵敏度。②可选灵敏度:1.5、2、4和6 g。③低功耗:500uA 。 ④睡眠模式:3uA ,是电池供电的手持电子产品的理想之选。⑤低压运行:2.2—3.6 V。⑥快速启动:lms。⑦低噪音:达到更高的分辨率、更高的精确度。 ⑧封装:16引脚6 mm×6 mm×1.45 mm方体扁平封装(QFN)。

空间光通信技术简介

空间光通信技术简介 空间光通信又称为激光无线通信或无线光通信。根据用途又可分为卫星光通信和大气光通信两大类。自从60年代激光器问世开始,人们就开研究激光通信,这时的研究也主要集中在地面大气的传输中,但因各种困难未能进入实际应用。低损耗光纤波导和实用化半导体激光器的诞生为激光通信的实际应用打开了大门,目前光纤通信已经遍布世界各国的各个城市。由于对无线通信的需求的增长,再有卫星激光通信的快速发展,自从90年代开始,人们又开始重新对地面无线光通信感兴趣,进行了大量的研究,并且开发出可以实用的商业化产品。 一、开展空间光通信研究的意义及应用前景 1.作为卫星光通信链路地面模拟系统的技术组成部分 卫星光通信链路系统在上卫星前必须有地面模拟演示系统,以保障电子系统、光学系统、机械自动化控制系统等各子系统的良好工作。在链路捕捉完成以后,与以太网相连的无线光通信系统借助于光链路的桥梁,源源不断地输送以太网上的信息,这是考验光链路稳定性能的重要指标。 2.为低轨道卫星与地面站间的卫星光通信打下良好的技术基础 低轨道卫星与地面站的通信会受到天气的影响,选择干旱少雨地区建立地面站在相当程度上缓解了这一矛盾,再通过地面站之间的光纤网可以把卫星上信息送到所需地点,这从技术上牵涉到空间光通信网与光纤网连接问题,这方面问题已经基本得到解决。 3.空间光通信具有巨大的潜在市场和商业价值 ●可以克服一些通常容易碰到的自然因素障碍 当河流、湖泊、港湾、马路、立交桥和其它自然因素阻碍铺设光纤时,无线光通信系统可跨越宽阔的河谷,繁华的街道,将两岸或者岛屿与陆地连接起来。 ●提供大容量多媒体宽带网接入 用无线光通信系统作为接入解决方案,不需耗资、耗时地铺设光纤就能满足对办公大楼或商业集中区大容量接入的需要。 ●可为大企业、大机关提供部大容量宽带网 无线光通信系统能在企业、机关围为建筑物与建筑物之间的大容量连接提供一种开放空间传送的解决方案。 ●为公安、军队等重要部门提供高速宽带通信。 ●支持灾难抢救的应急系统 无线光通信系统可为灾难抢救提供一种大容量的临时通信解决方案 ●为一时性大规模的重要活动提供临时的大规模通信系统 例如,奥运会和其他体育运动会、音乐会、大型会议以及贸易展览会等专门活动往往需要大容量宽带媒体覆盖。无线光通信系统能提供一种迅速、经济而有效的解决方案,不受原有通信系统的带宽限制,也不用再去办理光纤铺设许可证。 二、空间光通信的优势 1.组网机动灵活 无线光通信设备将来可广泛适用于数据网(Ethernet,Token Ring,Fast Ethernet,FDDI,ATM,STM-x等)、网、微蜂窝及微微蜂窝(E1/T1—E3/T3,OC-3等)、多媒体(图像)通信等领域。可以把这些网上信息加载在光波上,在空气中直接传输出去,这种简便的通信方式对于频率拥挤的环境是非常理想的,例如:城市、大型公司、大学、政府机构、办公楼群等。

水质无线监测系统方案

水质无线监测系统方案 上海正伟数字技术有限公司授权网络免费发布 https://www.sodocs.net/doc/9a10893844.html, 一、概述 环境监测是环境保护工作的重要组成部分,是环境管理的基础和技术支持。随着我国工业化和城市化的迅速发展,环境保护也相应大力发展起来。这样就迫切需要加快全国环境管理基础能力的建设,提高环境监测能力和环境监督执法管理水平。 排污口水环境实时自动监测系统的研制在我国刚刚起步,欧美一些发达国家在这方面已趋向成熟,例如美国等一些工业发达国家,几乎在每个排污口都安装了有关监测仪器,对污水处理设施的运行情况以及排污流量、PH值、DO、电导、烛度、温度等值进行自动监控,在监控中心可以随时知道排污口染物的排放情况。在韩国已有50%的企业做到了对以下四项指标的实时自动监控:污水处理设备运行情况、流量、PH值和溶氧。 我国目前大部分地区的水环境监测主要是以化学化为主。即人工定期(或不定期)的现场采样、化验、水质分析。这样工作量大且具有随机性,不能准确反映整个水量水质的变化过程,因而不能做到为水环境评价和环境治理的可靠依据。 由于我国经济发展过程中出现越来越多的水环境污染问题,近年来国家已充分重视和加强对环境污染的治理。为了配合这项工作,改进水环境监测手段和方法已显得尤为重要。上海正伟数字技术有限公司在充分调研、考察、征询客户意见等基础上,研制开发了集自动化、即时化、智能化于一体的经济实用的水质量无线监测系统。该系统可以对排污口污水的PH值、DO、温度、电导和排污流量进行实时监控,通过GPRS/CDMA无线终端将数据传送到监控中心和环境管理部门,工作人员可以在监控中心或办公室进行远程监测,随时得到即时数据报告,实现远端无人值守。 二、系统组成、工作原理 系统主要是由一个监测中心,若干个固定监测站和专用GPRS/CDMA无线终端组成。监测中心对各个监测站进行控制指挥,各监测站收集各种污染参数,两者间的控制信号和监

什么是光通信技术

什么是光通信技术 光通信是一种以光波为传输媒质的通信方式。光波和无线电波同属电磁波,但光波的频率比无线电波的频率高,波长比无线电波的波长短。因此,它具有传输频带宽、通信容量大和抗电磁干扰能力强等优点。 光波按其波长长短,依次可分为红外线光、可见光和紫外线光。红外线光和紫外线光属不可见光,它们同可见光一样都可用来传输信息。光通信按光源特性可分为激光通信和非激光通信;按传输媒介的不同,可分为有线光通信和无线光通信(也叫大气光通信)。常用的光通信有: 大气激光通信。信息以激光束为载波,沿大气传播。它不需要敷设线路,设备较轻,便于机动,保密性好,传输信息量大,可传输声音、数据、图像等信息。大气激光通信易受气候和外界环境的影响,一般用作河湖山谷、沙漠地区及海岛间的视距通信。 光纤通信。是一种有线通信,光波沿光导纤维传输。光源可以是激光器(又称半导体激光二极管),也可以是发光二极管。光纤通信传输衰减小、容量大、不受外界干扰、保密性好,可用于大容量国防干线通信和野战通信等。 蓝绿光通信。是一种使用波长介于蓝光与绿光之间的激光,在海水中传输信息的通信方式,是目前较好的一种水下通信手段。 红外线通信。是利用红外线(波长300 ~0.76 微米)传输信息的通信方式。可传输语言、文字、数据、图像等信息,适用于沿海岛屿间、近距离遥控、飞行器内部通信等。其通信容量大、保密性强、抗电磁干扰性能好,设备结构简单,体积小、重量轻、价格低。但在大气信道中传输时易受气候影响。 紫外线通信。是利用紫外线(波长0.39 ~60 × 10 微米)传输信息的通信方式。其基本原理与红外线通信相似,与红外线通信同属非激光通信。 因为激光是一种方向性极强的相干光,沿光纤传输是目前最理想的恒参信道。从发展的观点看,激光通信特别是光纤通信将被广泛采用。mvt_lotte发表于2009-4-29 09:55:00

光通信与无线通信融合新技术

光通信与无线通信融合新技术 学校:北京邮电大学 作者:宋国伟

微波通信技术 一、微波通信概述 微波通信是指用微波频率作载波携带信息,通过无线电波空间进行中继(接力)通信的方式。数字微波通信是指利用微波(射频)携带数字信息,通过在大气中传输的一种通信方式。 微波通信的工作频段。微波频率指300MHz~300GHz,波长为1m-1mm范围的电磁波。人们习惯上将微波划分为分米波、厘米波、毫米波和亚毫米波等波段。通常用不同的字母代表不同的微波波段,如:S代表10 cm波段,C代表5 cm 波段,X代表3 cm波段,Ka代表8 mm波段,U代表6 mm波段,F代表3 mm波段等。 二、微波通信的发展历史 微波的发展是与无线通信发展是分不开的。1901年马克尼使用800KHz中波信号进行了从英国到北美纽芬兰的世界上第一次横跨大西洋的无线电波的通信试验;无线通信初期,人们使用长波及中波来通信;20世纪20年代初,人们发现了短波通信,直到20世纪60年代卫星通信的兴起,它一直是国际远距离通信的主要手段,并且对目前的应急和军事通信仍然很重要。 由于电磁波各波段的传播特性各异,因此,可以用于不同的通信系统。中波主要沿地面传播,绕射能力强,适用于广播和海上通信。而短波具有较强的电离层反射能力,适用于环球通信。超短波和微波的绕射能力较差,可作为视距或超视距中继通信。 微波通信由于其通信的容量大而投资费用省(约占电缆投资的五分之一),建设速度快,抗灾能力强等优点而取得迅速的发展。20世纪40-50年代产生了传输频带较宽,性能较稳定的微波通信,成为长距离大容量地面干线无线传输的主要手段。模拟调频传输容量高达2700路,也可同时传输高质量的彩色电视,而

无线通信技术论文

目录 摘要 (1) Abstract(英文摘要) (2) 第一章引言 (3) 1.1研究的目的和意义 (3) 1.2当前现状 (4) 1.3系统方案论证和预期目标 (4) 1.4论文设计概述 (5) 第二章系统的硬件构成与分析 (7) 2.1系统描述 (7) 2.2 MSP430微控制器简介 (7) 2.3 无线数据传输模块 (7) 2.4 系统模块介绍 (8) 2.4.1电源电路 (12) 2.4.2复位电路 (13) 2.4.3数据采集电路 (13) 2.4.4无线串口通信电路 (14) 2.4.5显示电路 (15) 2.4.6单片机电路 (16) 第三章系统软件设计 (18) 3.1上位机处理程序 (18) 3.1.1VB串口通信 (19) 3.1.2无线传输接口和协议 (20) 3.1.3通信模块设计 (21) 3.1.4数据处理 (22) 3.1.5数据保存 (22) 3.2下位机处理程序 (22) I

3.2.1系统初始化 (23) 3.2.2数据采集处理模块 (24) 3.2.3显示模块 (25) 3.2.4无线串口通信模块 (26) 3.2.5中断子程序 (27) 3.2.6主处理模块 (27) 第四章系统调试及结果分析 (28) 4.1系统硬件调试 (28) 4.2系统软件的调试、分析 (29) 4.2.1上位机软件调试 (29) 4.2.2下位机软件调试 (29) 4.2.3联机调试 (30) 第五章总结 (31) 参考文献 (32) 致谢 (33) II

摘要 无线数据传输技术在测控领域得到越来越广泛的应用,该技术最大的特点是通信双方省去布线,易于维护。无线数据传输技术为现代测控仪器的连接提供了灵活的结构设计方案,特别是在一些难于采用导线连接的环境中。本文的双级测控系统由单片机构成的下位机完成现场信号的采集工作,并借助无线通信模块将数据传送到上位机(PC机)进行进一步处理。文中主要包括三部分内容:一是系统硬件的选用及电路设计。其中,微处理器MCU选用的是美国TI 公司出品的新型16位RISC结构的MSP430微处理器;无线数字传输器件采用SRWF-108型微功率无线数传模块。二是下位机系统软件部分的开发。程序采用MSP430微处理器的汇编语言编写。该语言是一种典型的精简指令集系统。结合16位的总线结构,大大增加了程序运行总体速度。三是上位机数据通信与管理程序的设计。采用易学、易用的VB6.0开发。 关键词:MSP430单片机,SWRF—108无线模块,串口通信,MSComm控件 - 1 -

光通信技术论文

光通信技术论文 无线光通信技术 摘要:随着信息化社会的到来,通信技术也得到了日新月异的发展。在过去的几年中,人们对传输速率的要求越来越高,使用高速 率数据传输的用户数量每年都在递增,光纤通信因为能传输高速率 的数据,成为广域通信网的骨干网络,如今在广域通信网中80%以 上的信息是通过光纤传输的。但是从光纤骨干网到用户之间的"最后 一英里",如果铺设光缆,不仅花费大而且耗时;许多无线通信技术 可以解决"最后一英里"的问题,但是这些技术需要向无线电管理委 员会申请频率执照,不仅要使用户支付大量的频率占用费,而且申 请也要花费数月的时间。 关键词:高速率数据传输系统构成 随着信息化社会的到来,通信技术也得到了日新月异的发展。在过去的几年中,人们对传输速率的要求越来越高,使用高速率数据 传输的用户数量每年都在递增,光纤通信因为能传输高速率的数据,成为广域通信网的骨干网络,如今在广域通信网中80%以上的信息 是通过光纤传输的。但是从光纤骨干网到用户之间的"最后一英里",如果铺设光缆,不仅花费大而且耗时;许多无线通信技术可以解决" 最后一英里"的问题,但是这些技术需要向无线电管理委员会申请频 率执照,不仅要使用户支付大量的频率占用费,而且申请也要花费 数月的时间。 无线光通信因为无需频率申请,机型小方便架设,能够简单的解决最后一英里的问题,为宽带接入的快速部署提供一种灵活的解决 方案。 无线光通信可在以下一些范围发挥重要作用: ·可以作为预防服务中断的光纤通信和微波通信的备份;

·可以应用于移动通信基站间的互连,无线基站数据回传; ·应用于近距离高速网的建设以及最后一英里接入; ·不宜布线或是布线成本高、施工难度大、经市政部门审批困难的地方; ·用于企业内部网互连和数据传输。 1无线光通信系统的构成 无线光通信系统是以大气作为传输媒质来进行光信号的传送的。只要在收发两个端机之间存在无遮挡的视距路径和足够的光发射功率,就可以进行通信。 2无线光通信系统的特点和优势 2.1频带宽,速率高 从理论上讲,FSO的传输带宽与光纤通信的传输带宽相同,只是 光纤通信中的光信号在光纤介质中传输,而FSO的光信号在空气介 质中传输。FSO产品目前最高速率可达2.5Gbit/s,最远可传送4km。 2.2频谱资源丰富 与微波技术相比,FSO设备多采用红外光传输,有相当丰富的频 谱资源,不需要申请频率执照,也不需要交纳频率占用费,这是一 般微波通信和无线通信无法比拟的。 2.3适用任何通信协议 适用于任何环境,不依赖某种协议。现在通信网络常用的SDH、ATM、以太网、快速以太网等都能通过,并可支持2.5Gbit/s的传输 速率,用于传输数据、声音和影像等各种信息。 2.4架设灵活便捷 FSO可以直接架设在屋顶,以及在江河湖海上进行通信,可以完 成地对空、空对空等多种光纤通信无法完成的通信任务,而且无需

多点温度无线检测系统

多点温度无线检测系统 Last updated at 10:00 am on 25th December 2020

电路综合系统课程设计题目多点温度无线检测系统 学院电子信息与电气工程学院

摘要 本文论述的远程温度控制是将无线发射与接收和自动控制相结合的一种控制。基于这种技术,本系统以STC89C51系列单片机为控制单元,采用Dallas单线数字温度传感器DS18B20和无线收发模块NRF905对温度数据进行远程无线测量与控制。整个系统包括主、从两个子系统,其中主系统完成对温度值、采集及显示、和接收数据功能;副系统完成温度采集、温度控制和发送数据功能。试验表明,该系统结构简单实用、功能齐全,通用性强,可被应用于许多工业生产领域,它可使操作人员与恶劣的工作环境分离开来,实现生产自动化,提高企业的生产效率。 关键词:STC89C51;温度传感器;NRF905;显示; Abstract The long-distance temperature controlling this paper presents is a technology of linking wireless receiving and sending to automation. Based on the technology, the system is based on the control of STC89C51 SCM, using Dallas single line digital thermometer DS18B20, wireless receiving and sending module NRF905 to test and control the temperature data of a experiencing place. The whole system consists of the main system and subsystem. The main system completes the functions of initializing and displaying the temperature value, displaying actual temperature, alarming when it is out of control, and receiving. The subsystem completes the functions of receiving, and temperature collecting, controlling, and sending. The design concludes that this system has many advantages, such as its uniqueness, simple, convenience, and such common using. It can be widely used in lots of industrial producing and controlling fields, applying this system can depart operators from execrable environment, realize producing automation, and improve corporation’s producing efficiency. Key words: STC89C51; Temperature senior; NRF905; Display; 目录

单工无线通信系统..

单工无线呼叫系统(D题) 摘要:单工无线呼叫系统分发射和接收两大部分。发射部分采用锁相环式频率合成器技术,MC145152和MC12022芯片组成锁相环,将载波频率精确锁定在35MHz,输出载波的稳定度达到4×10-5,准确度达到3×10-5,由变容二极管V149和集成压控振荡器芯片MC1648实现对载波的调频调制;末级功放选用三极管2SC1970,使其工作在丙类放大状态,提高了放大器的效率,输出功率达到设计要求。接收部分以超大规模AM/FM立体声收音集成芯片CXA1238S为主体,灵敏度、镜像抑制、信噪比等各项性能指标均达到设计要求;音频功率放大器采用集成芯片LM386,电压放大倍数最大为200。音频输入和数据输入可自动转换;AT89S52作为整个系统的控制部分,程序设计采用C语言在KEIL51的编译器上编程实现;显示采用128×64点阵型液晶显示。经测试,整机功能齐全,各项性能指标符合系统要求,接收波形稳定,无明显失真。 关键词:锁相环、压控振荡器、灵敏度 simplex wireless-calling system Abstract: The simplex wireless-calling system consists of two parts: transmit part and receive part.The transmit part adopts the phase-locked loop pattern of frequency synthesizing technology and uses the MC145152 and MC12022 chips to compose the phase-locked loop.It locks the frequency of the carrier-wave at 35MHz.The stabilization of the carrier-wave can be 4×10-5,the accuracy can be 3×10-5.The frequency modulation and the confection of the carrier-wave are realized by the capacity-changing diode V149 and the integration voltage-control oscillator MC1648 chip.The end power amplifier uses the audion 2SC1970 to make it work in the third magnifying state,it improves the efficiency of the magnifier and the power of the output reaches the design demand.The receive part uses the super cosmically AM/FM dimensional sound stereo radio reception integration chip CXA1238S as the main part.The sensitivity、the mirror-control restrain、the SNR and every capability index all reach the design demand.The audio frequency power amplifier adopts the integration chip LM386.The maximum voltage amplifying multiple is 200..The input of the audio frequency and the data can be automatically transformed. AT89S52 is used as the controlling part of the whole system.The design of the program adopts the C language to make it be programmingly realized in the translator.The display adopts 128×64 lattice LCD to show.After tested,the whole machine’s function is very complete,every demand can be realized,the receiving wave is stable,without evident distortion. Key word:PLL、VCO 、Sensitivity 目录

无线光通信FSO技术简介

无线光通信FSO技术简介 FSO是光通信和无线通信结合的产物,是用小功率红外激光束在大气中传送光信号的通信系统,也可以理解为是以大气为介质的激光通信系统。 FSO有两种工作波长:850纳米和1550纳米。850纳米的设备相对便宜,一般应用于传输距离不太远的场合。1550纳米波长的设备价格要高一些,但在功率、传输距离和视觉安全方面有更好的表现。1550纳米的红外光波大部分都被角膜吸收,照射不到视网膜,因此,相关安全规定允许1550纳米波长设备的功率可以比850纳米的设备高两个等级。功率的增大,有利于增大传输距离和在一定程度上抵消恶劣气候给传输带来的影响。FSO和光纤通信一样,具有频带宽的优势,能支持155Mbps~10Gbps的传输速率,传输距离可达2~4公里,但通常在1公里有稳定的传输效果。 在基础网的建设方面,使用光纤技术的高速网络正在不断完善。与此同时,光空间通信方式作为高速网络最后一公里的宽带通信方式,近来正受到各方面的关注。特别是,在城市宽带网络建设中,由于市政建设基本定形,新设光纤的施工需要繁琐的市政批准。有些地方如跨铁路、公路的施工非常困难,该通信方式的实用化对城市高速宽带通信网络的建设不失为一种极其有效的方法。 光通信方式分为利用光纤技术的有线通信方式和利用光空间通信技术(Free - Space Optics:FSO)的无线通信方式两种。光空间通信方式是将自由空间作为传送媒体,主要用半导体振荡器做光源,以激光束的形式在空间传送信息。对该领域的开发研究曾经风行一时。 FSO技术的历史可追溯到20世纪60年代。1960年,梅曼发明了自然界不存在的红宝石振荡器,作为相干性光源使用。第二年,HE-Ne 振荡器在贝尔实验室开发成功。以后,1962年,又成功的开发了GaAIAs 半导体振荡器。1970年,GaAIAs振荡器在日本、美国以及前苏联实现了连续振荡。小型、高速且可调制半导体振荡器的出现成为光传送研究得以大幅度发展的契机。 自从发明振荡器后,很快就有人尝试将其用于室外光通信。在日本,从1965年开始,用1年多的时间,利用He-Ne振荡器,进行了6.3公里的折返传送实验,以比较光空间通信与微波通信的区别。另外,NTT公司从1970年到1973年,利用3年时间在东京都中心地区设置了4个路径,进行了距离在520m~2.5Km的传送实验。此次实验使用的是He-Ne振荡器(波长0.63μm)和半导体的LED(波长0.8μm)。实验报告表明,光源性质的不同造成的传播特性上的差异并非很大。同时,实验还表明,空中传播造成的偏振面的变动较少,且传播损耗的大小在很大程度上取决于视程。此后,由于低损耗的光纤的出现,使得光空间通信方面的研究纷纷转向光纤技术领域,光空间通信的研究受到了冷落。 最近几年,由于光空间通信所需要的各种设备的价格下降导致光空间通信装置本身的价格降低,同时,光空间通信所持有的简便性、宽带性、无电磁干扰性、无需申请市政批准等特性,使得这种通信方式重新受到广泛的关注。 任何一种技术都有其局限性,光空间通信方式是在空中以激光束方式传播信号,需在可视距离内进行通信,并易受气象条件等因素的影响。

无线光通信的原理和核心部件的一些思考

无线光通信的原理和核心部件的一些思考 发表时间:2018-12-17T14:31:34.300Z 来源:《防护工程》2018年第27期作者:吴峥[导读] 需要发射出数据信号,然后借助光信号进行传输,最终接收完成信息传输任务。 联通(广东)产业互联网有限公司摘要:现阶段,随着科技水平的不断提升,在很大程度上促进着我国通信行业的发展。通信技术作为通信行业的重要支撑力量,在很大程度上决定着传输效率。以往传统的无线电以及光纤通信技术,虽然不会受到地形方面的影响,信道容量非常大,但是传输效率却非常慢。在这种情况下,我们积极的应用无线光通信技术,不仅不会受到地形因素的影响,而且还有着较强的保密性以及较快的传输效率。基 于此,本文深入浅出地阐述了无线光通信原理;其次分析了无线光通信核心部件;最后探讨了无线光通信优缺点。关键词:无线光通信;优缺点;研究分析 一、无线光通信原理概述无线光通信技术的的工作原理,主要包含着以下三个方面的内容:首先,需要发射出数据信号,然后借助光信号进行传输,最终接收完成信息传输任务。无线光通信系统应用的是光电转换技术,在调制完成电信号对光发射机的光源之后,借助具备天线功能的光学望远镜来传输光信号,在望远镜接受到信号后,将信号全部集中在光电检测器,其次信号到达接收机后,完成光信号转换成电信号,然后经过调制调解器,完成信息读取工作,最终接入无线光信号。但是,在这一过程当中需要我们指出的是,光波信号的不同,其透过率也是存在着一定的差异的。在这种情况下,我们要想更加有效的提升透过率以及系统功率,我们就必须要选择更高性能的波段窗口,来确保光信号的稳定传输。 二、无线光通信核心部件分析(一)无线光通信发射机无线光信号主要是借助发射机所产生的,通过将不同类型的电信号,在经过调制解调器的转换之后,成为光信号。无线光通信并不是借助光缆进行传输的,因此光信号主要是椭圆光斑,是由激光管芯激发进而产生的。在这一过程当中,光学行为耦合替代了以往的同轴耦合,传输距离越远的话,那么耦合准值也就越高。我们在设定耦合准值的过程当中,需要充分结合光学耦合效率来进行,避免影响到信号的接收。此外,我们在借助发射机发射光信号的过程当中,应积极的做好人眼防护措施,避免造成危害。(二)无线光通信光学天线无线光信号并不会受到光纤输送路径方面的影响,因而在实际的发射过程当中,往往会存在一定的发散角,导致信号出现泄露的现象。在这种情况下,我们要想最大限度的确保最终的接受准确度,我们就应在接收端设置一套光学天线系统,充分借助其凸、凹透镜的聚焦原理,更好的聚集光信号,降低信号的泄露。光学天线的增益效果和天线的孔径存在密切的关联,如果孔径过大或者过小的话,都会在一定程度上影响着最终的接收效益。在这种情况下,我们在选取天线孔径的时候,就需要充分的结合我们的实际工作状况来进行。除此之外,我们还要严格的设定聚光斑点尺寸的精确度,切实提高光信号的接收效率。(三)无线光通信接收机光信号在传播的整个过程当中,所存在的反射以及折射的现象,会产生码间串扰现象。不仅如此,光信号如果受到空气散射的话,也会消耗信号。在这种情况下,我们在选择接收机的时候,就必须要选择一些有着信号接收灵敏度较强、滤波作用较强的接收机。除此之外,我们都知道无线光信号的传输环境是非常复杂的,因此也就会有非常多的因素影响到光信号,这也就需要无线光通信接收机具备更加广泛的接收范围。(四)无线光通信辅助系统无线光通信辅助系统可以说是一套完善的瞄准跟踪伺服系统,这一系统能够实现对光学天线的自动校准,以此来最大限度的确保光纤通信过程当中的可靠高效的传输链路连接。无线光辅助通信系统,在一定程度上增加了通信系统的经济成本以及设备空间,因此厂家往往会将光学天线和收发器两者进行有机的融合,进而制成一体化的机器。对于输送距离比较近的通信系统,我们可以采用高倍望远镜来取代无线光辅助系统,这能够有效的降低经济成本支出。 三、无线光通信优缺点探讨(一)无线光通信的优点无线光通信技术的最大优势,就是其传输效率非常快,并且有着丰富的频谱资源。无线光通信主要是采用无线激光,然后结合波分复用技术,能够有效的将信号传输效率提升到10Gbit/s,这和以往传统的宽带传输速率相比较而言,得到了极大的提升。丰富的频谱资源,这充分的体现在并不需要申请频率许可证的红外光传输上,这一传输技术并不会受到相关技术协议的影响,并且其抗干扰能力也非常强,这也就赋予了无线光通信更大的优势。在经济成本方面,无线光通信和传统的通信技术相比较而言,也得到了一定的降低,并且其适用范围更加的广泛,不会受到地形方面的影响。(二)无线光通信的劣势在这里需要我们注意的是,无线光通信技术也是存在着一定的劣势的,其传输质量,经常受大气环境因素影响,因此在应用场合方面,也就受到了一定的限制。气象因素也会在很大程度上影响到无线光传输的性能,举个例子来说,如果出现大雾天气的话,就会导致光信号出现发散的现象;在面对雨天天气的时候,就会在一定程度上增加光信号的衰减损耗。在这种情况下,我们在使用无线光通信技术的过程当中,就应积极的结合微波通信,然后将其作为备份节点,以此来提高光通信性能。与此同时,由于无线光通信频谱并不具备频率许可证书,因此在实际的应用过程当中,也就存在着一系列的安全问题。例如:激光射频系统,如果在使用的过程当中存在不规范的现象的话,那么我们在远视的过程当中,极有可能会受到一定的伤害。在这种情况下,我们就应加快构建更加完善的无线光通信安全使用标准,确保操作规范。结语

相关主题