搜档网
当前位置:搜档网 › PWM整流技术综述

PWM整流技术综述

PWM整流技术综述
PWM整流技术综述

PWM整流技术综述

摘要:随着电力电子技术的发展,电力半导体开关器件性能不断提高,出现了以脉宽调制(PWM)控制为基础的各类变流器,这些变流器在各个领域取得的广泛的应用。尤其是使变流器实现网侧电流正弦化、运行于单位功率因数,这种可逆双向PWM整理器成为业界的研究重点。本文总结了PWM整流器基本原理及分类,对不同的PWM整流器控制策略进行了分析,为PWM整流器的应用和研究提供了参考。

关键词:PWM整理器;电压型;电流型;空间矢量

一、引言

PWM整流器以其优越的性能和潜在的优势在电力行业取得广泛的应用,经过几十年的研究和发展,PWM整流技术已由最初的半控型发展到如今的全控型,其拓扑由早期的单相、三相结构发展到多相组合及多电平拓扑电路;PWM开关控制由单纯的硬开关调制发展到软开关调制;功率等级也从千万级发展到如今常见的兆瓦级。PWM整流技术随着电力电子技术的发展而取得突飞猛进的发展。

PWM整流器具有输入电流正弦,谐波含量低,功率因数高及双向能量流动等特点,在功率因数补偿,电能回馈,有源滤波等领域得到越来越广泛的应用。其中,按照主电路拓扑及外特性,PWM整流器可以分为电压型和电流型;按照是否具有能量回馈功能,PWM整流器分为无能量回馈和有能量回馈整流器。控制技术是PWM整流器发展的关键。目前常见的控制方法有滞环PWM电流控制、矢量控制、直接功率控制等。

本文就三相电压型PWM整流器拓扑结构以及控制技术进行了分析和综述,并对整流器未来的发展和应用进行分析。

二、电压型PWM整流器的拓扑结构及原理

如图1所示是三相电压型PWM 整流器主电路, 它具有很快的响应和更好的输入电流波形, 稳态工作时, 输出直流电压不变, 开关管按正弦规律脉宽调制, 整流器交流侧的输出电压

和逆变器相同, 忽略整流器输出交流电压的谐波, 变换器可以看作是可控正弦三相电压源, 它和正弦的电网电压共同作用于输入电感, 产生正弦电流波形, 适当控制整流器输出电压

的幅值和相位, 就可以获得所需大小和相位的输入电流。

如图2所示的三电平PWM整流器是目前具有应用前景的整流器, 当应用开关频率较低的GTO 时, 这种电路较合适, 开关频率在300- 600Hz时就能满足对输入电流谐波的要求, 这

种电路的另一优点是每个主开关器件关断时, 所承受的电压仅为直流侧电压的一半, 因此, 该电路特别适合于高电压大容量的应用场合。

图1.电压型三相PWM整流器主电路

图2.三电平PWM整流器电路

三、电压型PWM整流器控制技术

电压型整流器VSR工作时,能够在稳定直流侧电压的同时,实现交流侧在受控功率因素(单位功率因数)条件下的正弦波电流控制。另一方面,常规的VSR控制系统一般采用双闭环控制,即电压外环和电流内环控制。在VSR双闭环控制设计中,电流控制动态性能直接影响VSR电压外环控制性能。目前,VSR电流控制技术主要分为两大类,即间接电流控制和直接电流控制。间接电流控制主要以相幅控制PAC为代表,直接电流控制则以快速电流反馈控制为特征,如滞环电流控制、固定开关频率电流控制、空间矢量电流控制等。这类直接电流控制可以获得较高的品质的电流响应,但是控制结构与算法较间接电流控制复杂。

3.1 VSR间接电流控制

间接电流控制技术的实质上是,通过PWM控制,在VSR桥路交流侧生成幅值、相位受控的正弦波PWM电压。

3.2 VSR直接电流控制

直接电流控制与间接电流控制在结构上的主要差别在于,前者具有网侧电流闭环控制,而后者则无网侧电流闭环控制。由于采用网侧电流闭环控制,使VSR网侧电流动静态性能得

到了提高,同时也使网侧电流控制对系统参数不敏感,从而增强了电流控制系统的鲁棒性。

滞环PWM电流控制技术则具有较高的电流响应,且电流跟踪动态偏差由滞环宽度确定,而不随电流变化率变化而变动。这种控制方法将实际输入电流与指令电流的上、下限相比较,其交点作为开关点。指令电流的上、下限形成一个滞环,从而控制输入电流的变化。控制原理如图3所示。

图.3.三相PWM整流器滞环电流控制

固定开关频率PWM电流控制,一般是指PWM载波(如三角波)频率固定不变,而以电流偏差调节信号作为调制波的PWM控制方法,其电流环控制结构如图4所示。可以看出固定开关频率就是将电流误差信号方法后作为调制波,然后与载波比较,从而输出开关控制PWM信号。

图4.固定开关频率电流控制结构

矢量控制则在dq坐标变换的基础上,通过对PWM整流器有功和无功电流的控制,达到控制输入电流的结果。图5给出了基于dq坐标变换控制的系统框图。这种控制方法具有直接电流控制的动态响应快、稳态性能好、自身有限流保护的优点,还可以消除电流稳态误差。

图5.三相PWM整流器基于dq坐标变换矢量控制

四、PWM整流器的应用

PWM整流器由于其可以实现单位功率因数,甚至可以实现能量的双向流动,因此可以实现“绿色电能变换”。由于PWM整流器网侧呈现出受控电源特性,因而这一特性使PWM整流器及其控制技术获得进一步的发展和拓展,并取得更为广泛的应用,如静止无功补偿器(SVG)、高功率因数整流器(HPFR)、有源电力滤波器(APF)、可再生能源并网发电。

图6.单级式光伏并网结构的拓扑结构

图7.双馈型风力发电拓扑结构

参考文献

[1] 张兴,张崇巍. PWM整流器[M].机械工业出版社,2012.

[2] 胡学芝.PWM整流技术综述[J].电气传动自动化,2008(01)

[3] 屈莉莉,张波.PWM整流技术控制技术的发展[J].电气应用,2007(02)

[4] 程启明,程尹曼,薛阳.三相电压源型PWM整流器控制方法的发展[J].电力系统保护与控制,2012(3)

[5] 伍小杰,罗锐华,乔树通. 三相电压型PWM整流器控制技术综述[J].电工技术学报,2005(12).

pwm技术实现方法综述

p w m技术实现方法综 述 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

PWM技术实现方法综述 摘要:总结了PWM技术问世至今各种主要的实现方法,叙述了它们的基本工作原理,并分析了它们各自的优缺点。 关键词:PWM;空间矢量;直接转矩控制;非线性作者:李旭谢运祥 引言 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。 1 相电压控制PWM PWM技术实现方法综述 1.1 等脉宽PWM法[1] VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。等脉宽PWM法正是为了克服PAM法的这个缺点发展而

PWM 技术综述【文献综述】

毕业论文文献综述 电子信息工程 PWM 技术综述 摘要:本课题主要介绍了基于FPGA的 PWM对于LED灯的设计方法和流程。脉宽调制(Pulse Width Modulation,PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量、通信领域[1]。对模拟信号电平进行数字编码的时候只要带宽足够,任何模拟值都可以使用PWM进行编码,且实践表明本课题所提出的用PWM控制LED灯的方案是合理、有效的。 关键字:PWM;FPGA;脉宽调制;数字编码 1、PWM的概述 PWM是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中,PWM具体的波形图如图1所示。 图1 PWM波形图 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点.由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论 思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。 对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM 用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。对于控制LED灯,PWM可以更加的精确,对于调节灯的明暗灰度,可以更加的容易控制。 2、PWM的原理 随着电子技术的发展,出现了多种PWM的调制方法:其中最具代表性的就是数字脉冲调制和模拟脉冲调制。其中数字脉冲调制主要是依靠时钟信号的输入同时用计数器的计数。然后把信号传

PWM控制技术

主要内容:PWM 控制的基本原理、控制方式与 PWM 波形的生成方法,PW 逆 变电路的谐波分析,PW 整流电路。 重点:PWM 控制的基本原理、控制方式与PWM 波形的生成方法。 难点:PWM 波形的生成方法,PWM e 变电路的谐波分析。 基本要求:掌握PW 控制的基本原理、控制方式与 PW 波形的生成方法,了 解PWM 逆变电路的谐波分析,了解跟踪型 PWM K 变电路,了解PWM6流电路。 PWM(Pulse Width Modulation )控制——脉冲宽度调制技术,通过对一系 列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。第 章已涉及这方面内 容 : 第 3 章:直流斩波电路采用,第 4 章有两处: 节斩控式交流调压电路, 式变频电路。 本章内容 PWMI 制技术在逆变电路中应用最广,应用的逆变 电路绝大部分是 PWM 控制技术正是有赖于在逆变电路中的应用, 重要 地位。 本章主要以逆变电路为控制对象来介绍 PW 控制技术,也介绍PWM S 流电路 1 PWM 控制的基本原理 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。 冲量指窄脉冲的面积。 效果基本相同, 是指环节的输出响应波形基本相同。 低频 段非常接近,仅在高频段略有差异。 图 6-1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图 6-1 所示的电压窄脉冲加在一阶惯性环节( R-L 电路)上,如图 6-2a 所示。其输出电流 i(t) 对不同窄脉冲时的响应波形如图 6-2b 所示。从波形 可以看出,在 i(t) 的上升段, i(t) 的形状也略有不同,但其下降段则几乎完全 相同。脉冲越窄,各 i(t) 响应波形的差异也越小。如果周期性地施加上述脉冲, 则响应 i(t) 也是周期性的。用傅里叶级数分解后将可看出,各 i(t) 在低频段的 特性将非常接近,仅在高频段有所不同。 3、4 节矩阵 PWI 型, 才确定了它在电力电子技术中的

PWM控制的基本原理

PWM控制的基本原理 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图1形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。 图2 冲量相同的各种窄脉冲的响应波形 用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。 SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。 图3 用PWM波代替正弦半波 要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。 PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。 PWM波形可等效的各种波形: 直流斩波电路:等效直流波形 SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM 法、随机PWM、SPWM法、线电压控制PWM等,而本文介绍的是在镍氢电池智能充电器中采用的脉宽PWM法。它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 PWM技术的具体应用

STM8S003F3通过PWM波实现三基色呼吸灯

STM8S003F3通过PWM波实现三基色呼吸灯 前段时间使用STM8S003F3实现了一个三基色灯的各种效果,故写一篇文章作 为一个记录。 1 综述 我们知道,要是的LED灯亮直接通电即可。而要改变灯的亮度,我们有两种方法:改变电流和PWM调光。 我们首先想到的就是改变它的驱动电流,因为LED的亮度是几乎和它的电流直接成正比关系。然而用调正向电流的方法来调节亮度会产生一个问题:在调亮度的同时也会改变它的光谱和色温,这样就会会产生色偏。因为目前白光LED都是用蓝光LED加黄色荧光粉而产生,当正向电流减小时,蓝光LED亮度增加而黄色荧光粉的厚度并没有按比例减薄,从而使其光谱的主波长增长。这个问题对于一般的照明是没有问题的,因为色温的变化量毕竟不是很大。但是对电源来说当电流过小时会产生闪烁,除非电源的恒流范围很宽,完全可以从0到最大。这样才没有问题。简而言之,电流调光有色温变化和电源电流过小产生闪烁的问题。曾经做过一个项目,用于某设备上需要非常非常平稳的调光,显然电流调光是无法实现。同时像本文介绍的三基色调光有颜色要求的显然也不行。因此我们使用PWM调光。 既然PWM调光可以避免上面的两个问题,为什么不直接都用PWM调光呢?因为我们毕竟是做产品,要考虑成本问题。使用PWM调光至少需要一颗能支持PWM的芯片(当然还有外围电路,但是电流调光也是有电路的。我们也应该知道PWM信号也可以由脉冲发生器提供),另外它需要编写程序。所以只有在需要的场合才使用PWM调光(使用PWM调光需要注意的问题是频率不能太低或者太高,推荐150-400Hz之间。)。PWM的优点如下:

● PWM调光就不会产生色偏,因为它总是工作在0或者最大两种状态。 ● PWM的占空比很好控制,而且精度高 ●对电源没有影响,因为不会改变电源的工作条件,只是给电源开或者关。 2 PWM波调光的原理 脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的的技术,广泛应用在从测量、通信到功率控制与变换及LED照明等许多领域中。通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。简言之,PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 2.1 占空比(Duty Cycle or Duty Ratio) 首先我们需要了解占空比,占空比的解释可以归纳为如下几种: ●在一串理想的脉冲序列中(如方波),正脉冲的持续时间与脉冲总周期的比值。例如:脉冲宽度1μs,信号周期4μs的脉冲序列占空比为0.25。 ●在一段连续工作时间内脉冲占用的时间与总时间的比值。 ●在周期型的现象中,现象发生的时间与总时间的比。 通俗一点讲就是电路释放能量的有效时间与总释放时间的比。 2.2 调光比

PWM控制技术实现方法综述

PWM控制技术实现方法综述 引言 采样控制理论采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲脉冲加在具有惯性的环节上时,其效果基本相同。PWMPWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM 控制技术获得了空前的发展。到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。 1 相电压控制PWM 1.1 等脉宽PWM法[1] VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。 1.2 随机PWM 在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。为求得改善,随机PWM方法应运而生。其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析、解决这种问题的全新思路。 1.3 SPWM法 SPWM(Sinusoidal PWM)法是一种比较成熟的、目前使用较广泛的PWM法。前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。该方法的实现有以下几种方案。 1.3.1 等面积法 该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生

各种PWM控制方法的原理及优缺点

引言 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。 1相电压控制PWM 1.1等脉宽PWM法[1] VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。 1.2随机PWM 在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。为求得改善,随机PWM方法应运而生。其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析、解决这种问题的全新思路。 1.3SPWM法

PWM技术的现状、发展和技术难题

PWM技术的现状、发展和技术难题 随着电压型逆变器在高性能电力电子装置,如交流传动、不间断电源和有源滤波器的应用越来越广泛,PWM控制技术作为这些系统的共用及核心技术,引起人们的高度重视,并得到深入研究。所谓PWM技术就是利用半导体器件的开通和关断把直流电压变成一定形状的电压脉冲序列,来实现频率、电压控制和消除谐波的一门技术。自关断器件的发展为PWM技术铺平了道路,目前几乎所有的变频调速装置采用这一技术。PWM技术用于变频器的控制,可以明显改善变频器的输出波形,降低电动机的谐波损耗,并减小转矩脉动,同时还简化了逆变器的结构,加快了调节速度,提高了系统的动态响应性能。 PWM技术除了用于逆变器的控制,还用于整流器的控制,PWM 整流器现在已开发成功,利用它可以实现输入电流正弦和电网功率因数为1。人们称PWM整流器是对电网无污染的“绿色”变流器。 目前已经提出并得到应用的PWM控制方案就不下数十种。尤其是微处理器应用于PWM技术数字化以后,花样更是不断翻新,从最初追求电压波形的正弦,到电流波形的正弦,再到磁通的正弦,从效率最优,转矩脉动最少,再到消除噪音等,PWM控制技术的发展经历了一个不断创新和不断完善的过程。目前仍有新的方案不断提出,这说明该项技术的研究方兴未艾。不少方法已趋成熟,有许多在实际中得到应用。 PWM控制技术一般可分为三大类,即正弦PWM、优化PWM及随

机PWM。从实现方法上来看,大致有模拟式和数字式两种实现方式。从控制特性来看主要可分为两种:开环式(电压或磁通控制型)和闭环式(电流或磁通控制型)。 随着计算机技术的不断进步,数字化PWM已逐步取代模拟式PWM,成为电力电子装置共用的核心技术。交流电机调速性能的不断提高在很大程度上是由于PWM技术的不断进步。目前广泛应用的是在规则采样PWM的基础上发展起来的准优化PWM法,即三次谐波叠加法和电压空间矢量PWM法,这两种方法具有计算简单、实时控制容易的特点。PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点.由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍

几种PWM控制方法

脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。 许多微控制器内部都包含有PWM控制器。例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作: * 设置提供调制方波的片上定时器/计数器的周期 * 在PWM控制寄存器中设置接通时间 * 设置PWM输出的方向,这个输出是一个通用I/O管脚 * 启动定时器 * 使能PWM控制器 PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。 对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。 总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。 几种PWM控制方法 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形.按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率. PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现.直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用.随着电力电子技术,微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论,非线性系统控制思想的应用,PWM控制技术获得了空前的发展.到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法.

PWM基本原理

脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。PWM就是脉冲宽度调制,也就是占空比可变的脉冲波形. PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率 基本原理 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。 具体过程 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于 10Hz,通常调制频率为1kHz到200kHz之间。 许多微控制器内部都包含有PWM控制器。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作:

pwm 文献综述

攀枝花学院 Panzhihua University 本科毕业设计(论文) 文献综述 院(系):电气信息工程学院 专业:电气工程与自动化 班级:2011级1班 学生姓名:刘强学号: 201110502035 2014年12 月25 日

本科生毕业设计(论文)文献综述评价表毕业设计(论文)题目PWM调光LED灯的设计综述名称PWM调光LED灯设计文献综述评阅教师姓名职称 评价项目优良合 格 不合 格 综述结构01 文献综述结构完整、符合格式规范 综述内容02 能准确如实地阐述参考文献作者的论点和实验 结果 03 文字通顺、精练、可读性和实用性强 04 反映题目所在知识领域内的新动态、新趋势、 新水平、新原理、新技术等 参考文献05 中、英文参考文献的类型和数量符合规定要求,格式符合规范 06 围绕所选毕业设计(论文)题目搜集文献 成绩 综合评语: 评阅教师(签字): 年月日

文献综述: PWM调光LED灯的设计 1 前言 随着能源危机的加剧,高效的照明技术得到人们的广泛关注。LED以其高效率、低能耗、低电压驱动、使用寿命长等优点,被越来越多的应用在各种照明场合,在可预见的将来可能完全取代传统的白炽灯、荧光灯照明,给照明产业带来革命性的变化。LED与白炽灯相比有一个显著的不同点,LED的发光亮度与正向流通的电流大小基本上成正比例关系。根据这一特点,通过光传感器可以检测出LED所处环境的光照强度,并转化为清晰明了的数字量,再采用一定的控制技术,依据实际情况改变流经LED负载的平均电流,在不同条件下都能创造出适合人们工作、学习、生活的光照环境。这样不仅营造出具有恒定亮度的舒适环境,而且能够充分利用自然照明,大大节约能源。因此,对LED调光技术的研究显得格外重要。 1.1 LED驱动电路和调光技术的发展与特点 根据LED特有的电压电流特性,现在LED照明基本采用恒流驱动方式。为了更好地发挥LED照明节能的优点,在LED驱动器中加入调光功能是大势所趋。通常,LED驱动器的调光方式有3种:可控硅调光、模拟调光、PWM调光。每种调光方式都有其优点及局限性。PWM调光通过设置周期,改变输出的占空比来控制流经LED负载的电流平均值,但是开关电路PWM的频率必须足够的高,使得人眼无法分辨出LED灯的亮灭,在视觉感受上认为LED是持续发光的。其输出电流只有两种状态:最大额定工作电流和零电流。模拟调光是通过改变输出电流的幅值来实现调光功能,PWM调光可以保证LED的色温恒定,驱动器的效率较高,并且能够进行精确控制,但其缺点是需要MCU控制器。模拟调光相对PWM调光电路简单、容易实现,但会使LED色温发生变化,同时效率低、输出电流精度不易调节、调光范围有限。可控硅调光是通过调节电源的输出功率来实现调光功能,可控硅调光是利用现有的可控硅调光器,通过改变可控硅的导通角,调节输出功率来实现调光,其优点是不用改变原有日光灯调光设备。但是缺点更严重:可控硅调光会严重降低驱动器效率及功率因数,同时也会使LED产生闪烁。相比之下,PWM 调光LED的性能更具有优势,更加符合使用者对照明系统节能、舒适的要求。 1.1.1 PWM调光LED的优点 LED最重要的特点是节能。如果根据LED需要驱动电路控制的特点,加入调光技术部分,充分利用自然光照,这样不仅能创造使人体感觉舒适的亮度的环境,

PWM控制技术在变频调速系统中应用综述

微电机 2009年第42卷第1期 中图分类号:T M32 文献标志码:A 文章编号:100126848(2008)1220070204 P WM 控制技术在变频调速系统中应用综述 郭春平,王 奔,李 泰,黄北军,鲍 鹏,黄崇鑫 (西南交通大学电气工程学院,成都 610031) 摘 要:综述了P WM 控制技术在变频调速系统中常用的控制方式,并对这些控制方式的基本原理和基本算法进行了阐述,指出了它们的优缺点。关键词:脉冲宽度调制;变压变频;综述;电动机控制 Survey on P ulse W i d th an d its Appl i ca t i on s i n V a r i a ble Frequency Syste m G UO Chun 2ping,WA N G Ben,L I Ta i,HU ANG B ei 2jun,BAO Peng,HU ANG Chong 2xin (School of Elec trical Engineering,Southwest Jiaotong University,Chengdu 610031,China )Abstra ct:This paper p r e sented a survey of the c ommon contr ol modes of the pulse width modula tion in variable frequency system s,and expound the basic rationals and algorithm s of these contr ol modes,ac 2cordingly indicated their m erits and its shortcom ings . Key W or ds:Pulse width modulation;VVVF;Survey;Mot or contr ol 收稿日期221 相电压控制型P WM 控制 111 等脉宽P WM 交流电动机变压变频(VV VF)装置在早期是采用脉冲幅值调制(pulse a mplitude modulation,P A M)控制技术来实现的。变压可以通过可控整流器实现,也可以通过不可控整流器加P WM 斩波器方式来实现,而变频则通过逆变器来实现。变压与变频是分开控制的 [1] 。这是PA M 调制方式的一个不足。 等脉宽P WM 法正是为了克服PA M 法的这个缺点发展而来的,是P WM 法中最为简单的一种。它是把每个脉冲的宽度均用脉宽相等的脉冲列作为P WM 信号,通过协调脉冲列的周期和宽度以实现变压变频的目的。相对于P A M 法,该方法的优点在于简化电路结构,提高输入端的功率因数,但同时,在输出电压中除存在基波外,还含有大量的谐波分量。为了克服这个缺点,人们根据采样控制理论,提出了正弦脉宽调制(Sinus oidal P WM,SP WM )控制技术。112 正弦脉宽调制 SP WM 法是一种比较成熟的、使用较为广泛的P WM 法。SP WM 法就是以采样控制理论作为基础,由于期望逆变器的输出电压是正弦波,所以可以将正弦波按一个周期分作N 等分,然后把每一等 分的正弦曲线与横轴所包围的面积都用一个与该面积相等的等高矩形脉冲来等效,矩形脉冲的中点与正弦波每一等分的中点重合。应用采样定理得知:这样所得的N 个等幅而不等宽的矩形脉冲序列所组成的波形就与正弦波形等效。 从理论上讲,这一系列矩形脉冲宽度可以严格地用计算的方法求得,作为控制逆变器中各开关器件通断的依据,但常用的办法是引用通信技术中“调制”概念,以所期望的正弦波作为调制波,而被它调制的信号称为载波。在SP WM 中常用等腰三角波作为载波,当它与一个频率相对较低正弦波相交时,在交点时刻,控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该正弦波的矩形脉冲,如图1所示。图中实线是正弦调制信号,虚线是对称三角载波信号 。 图 S WM 波形的生成方法 :20070924 1P

脉冲宽度调制(PWM)技术原理

一、PWM技术原理 由于全控型电力半导体器件的出现,不仅使得逆变电路的结构大为简化,而且在控制策略上与晶闸管类的半控型器件相比,也有着根本的不同,由原来的相位控制技术改变为脉冲宽度控制技术,简称PwM技术。PwM技术可以极其有效地进行谐波抑制,在频率、效率各方面有着明显的优点使逆变电路的技术性能与可靠性得到了明显的提高。采用PwM方式构成的逆变器,其输人为固定不变的直流电压,可以通过PwM技术在同一逆变器中既实现调压又实现调频。由于这种逆变器只有一个可控的功率级,简化了主回路和控制回路的结构,因而体积小、质量轻、可靠性高。又因为集凋压、调频于一身,所以调节速度快、系统的动态响应好。此外,采用PwM技术不仅能提供较好的逆变器输出电压和电流波形,而且提高了逆变器对交流电网的功率因数。把每半个周期内,输出电压的波形分割成若干个脉冲,每个脉冲的宽度为每两个脉冲间的间隔宽度为t2,则脉冲的占空比γ为此时,电压的平均值和占空比成正比,所以在调节频率时,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频也变压的效果。 二、正弦波脉宽调制(sPwM) 1.sPwM的概念工程实际中应用最多的是正弦PwM法(简称sPwM),它是在每半个周期内输出若干个宽窄不同的矩形脉冲波,每一矩形波的面积近似对应正弦波各相应每一等份的正弦波形下的面积可用一个与该面积相等的矩形来代替,于是正弦波形所包围的面积可用这N个等幅(Vd)不等宽的矩形脉冲面积之和来等效。各矩形脉冲的宽度自可由理论计算得出,但在实际应用中常由正弦调制波和三角形载波相比较的方式来确定脉宽:因为等腰三角形波的宽度自上向下是线性变化的,所以当它与某一光滑曲线相交时,可得到一组幅值不变而宽。度正比于该曲线函数值的矩形脉冲。若使脉冲宽度与正弦函数值成比例,则也可生成sPwM波形。在工程应用中感兴趣的是基波,假定矩形脉冲的幅值Vd恒定,半周期内的脉冲数N也不变,通过理论分析可知,其基波的幅值V1m脉宽δi有线性关系在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲的宽度也最大,而脉冲间的间隔则最小。反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,如图5 3所示;这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减小,称为正弦波脉宽调制。sPwM方式的控制方法可分为多种。从实现的途径可分为硬件电路与软件编程两种类型;而从工作原理上则可按调制脉冲的极性关系和控制波与载波间的频率关系来分类。按调制脉冲极性关系可分为单极性sPwM和双极性sPwM两种。 3.双极性sPwM法双极性控制则是指在输出波形的半周期内,逆变器同一桥臂中的两只元件均处于开关状态,但它们之间的关系是互补的,即通断状态彼此是相反交替的。这样输出波形在任何半周期内都会出现正、负极性电压交替的情况,故称之为双极性控制。与单极性控制方式相比,载波和控制波都变成了有正、负半周的交流方式,其输出矩形波也是任意半周中均出现正负交替的情况 4.sPwM生成方法正弦脉宽调制波(sPwM)的生成方法可分为硬件电路与软件编程两种方式。按照前面讲述的PWM逆变电路的基本原理和控制方法,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对功率开关器件的通断进行控制,就可以生成SPWM波形。但这种模拟电路结构复杂,难以实现精确的控制。微机控制技术的发展使得用软件生成的SPWM波形变得比较容易,因此,目前SPWM波形的生成和控制多用微机来实现。本节主要介绍用软件生成SPWM波形的几种基本算法。

PWM控制的基本原理

PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对 一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM 型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电 子技术中的重要地位。 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如 图2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。 图2 冲量相同的各种窄脉冲的响应波形

用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。 SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。 图3 用PWM波代替正弦半波 要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。 PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。 PWM波形可等效的各种波形: 直流斩波电路:等效直流波形 SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而本文介绍的是在镍氢电池智能充电器中采用的脉宽PWM法。它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。

PWM技术概述

脉冲宽度调制 编辑 PWM即脉冲宽度调制。 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 目录 1简介 2背景介绍 3基本原理 4谐波频谱 5具体过程 6优点 7控制方法 8应用领域 9具体应用 1简介编辑 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS 管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振波开关技术将会成为PWM控制技术发展的主要方向

之一。 2背景介绍编辑 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。 与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V,5V}这一集合中取值。 模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。 尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。 通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。 3基本原理编辑 脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频率。 例如,把正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。这些脉冲宽度相等,都等于∏/n ,但幅值不等,且脉冲顶部不是水平直线,而

pwm技术

1、什么是pwm技术? 答:脉宽调制技术是指利用全控型电力电子器件的导通和关断把电压变成一定形状的电压脉冲,实现变压、变频控制并且消除谐波的技术。 2、pwm的意义及给电机带来的好处? 答:①、及时、准确地实现变压变频控制要求;②、抑制逆变器输出电压或电流中的谐波分量。给电机带的好处:①、降低或消除转矩脉动;②、提高电机的效率;③、扩大调速范围。 3、三个主要的pwm技术? 答:电压正弦PWM法;电流正弦PWM法;电压空间矢量pwm法。 4、电压正弦PWM法? 答:电压SPWM技术就是希望逆变器输出电压是正弦波形,其含义是通过脉冲宽度(脉冲占空比)来调节平均电压的方法。 5、电压正弦波脉宽调制的基本思想。 答:把电压正弦半波分为N等分,然后把每一份的正弦曲线与横线所包围的面积都用一个与此面积相等的等高矩形脉冲来代替。 6、载波比、调制度? 答:载波频率fc与参考波频率fm之比 调制度m定义为调制信号(参考电压)峰值与三角载 波信号峰值之比,m与输出电压成正比。 7、什么是电流滞环SPWM及特点? 答:电流滞环SPWM,即把正弦电流参考波形和电流的实际波形通过滞环比较器进行比较。其结果决定逆变器桥臂上下开关器件的导通和关断。优点是控制简单、响应快、瞬时电流可以被限制,功率开关器件得到自动保护。其缺点是相对的电流谐波较大。 8、磁链轨迹法SPWM技术 答:磁链轨迹法SPWM技术是从电机的角度出发,目的在于使交流电机产生圆形磁场。9、逆变器的输出与开关状态有几种?逆变器空间矢量特点 答:逆变器的输出:逆变器的输出电压模式;逆变器的八种开关模式对应八个电压空间矢量。两个0矢量分别为(000、111);6个非0矢量,每个矢量模值相差相角每个相差60°。10、插入0矢量的作用及原则。 答:磁链空间矢量的运动速度的改变可由在各边中添加零矢量来实现。原则是选择使器件开关次数最少的零矢量。 11、变频器的组成。 答:变频器由交流电动机、电力电子功率变换器、控制器及电量检测器组成。 12、pwm的性能指标。 答:以PWM控制方式运行所引起的主要问题有电流畸变、变换器的开关损耗、负载的谐波损耗以及电机的转矩脉动。这些影响可以用以下性能指标来描述。电流谐波,载波比,最大调制度,转矩脉动,开关频率和开关损耗。 13、交流电动机变频器 所配备的静止式变压变频(VVVF)装置主要由主电路和控制回路两部分组成,其主电路的拓扑结构主要分为两种,一种是交-直-交。另一种是交-交。 14、异步电动机变频器的分类。 答:可分为交-直-交电压源型SPWM变频器和交-直-交电流源型SPWM变频器两种。 15、电压源型和电流源型性能比较。 答:变频器主电路中的中间直流环节采用大电容滤波,使直流电压波形比较平直,对于负载来说,是一个内阻抗为零的恒压源,这类变频调速装置叫做电压源变频器。变频器主电路中

相关主题