搜档网
当前位置:搜档网 › 激光器知识讲解

激光器知识讲解

激光器知识讲解
激光器知识讲解

激光器基本知识

激光的意思是光受激发射,激光器的意思就易理解了吧!类似于放大镜聚焦火柴,不过激光能量大,可连续和脉冲,

分类

激光器的种类就越来越多。按工作物质的性质分类,大体可以分为气体激光器、固体激光器、液体激光器;按工作方式区分,又可分为连续型和脉冲型等。其中每一类激光器又包含了许多不同类型的激光器。按激光器的能量输出又可以分为大功率激光器和小功率激光器。大功率激光器的输出功率可达到兆瓦量级,而小功率激光器的输出功率仅有几个毫瓦。如前所述的He-Ne激光器属于小功率、连续型、原子气体激光器。红宝石激光器属于大功率脉冲型固体材料激光器。自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X射线的广阔波段。按工作方式分,有连续式、脉冲式、调Q和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的0.7毫米,最短波长为远紫外区的210埃,X射线波段的激光器也正在研究中。

除自由电子激光器外,各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。激光器中常见的组成部分还有谐振腔,但谐振腔(见光学谐振腔)并非必不可少的组成部分,谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的方向性和相干性。而且,它可以很好地缩短工作物质的长度,还能通过改变谐振腔长度来调节所产生激光的模式(即选模),所以一般激光器都具有谐振腔。

激光器工作原理

激光器广泛用于各种产品和技术,其种类之多令人惊叹。从CD播放机、牙钻、高速金属切割机到测量系统,似乎所有东西都有激光器的影子,它们都需要用到激光器。但是,到底什么是激光器呢?激光光束和手电筒光束的区别何在呢?

NASA供图

美国国家航空航天管理局兰利研究中心(Langley Research Center)

的光学损伤阀值测试装置有三部激光器:高能脉冲钕-钇铝

石榴石激光器、钛-蓝宝石激光器和谐振氦氖激光器。

整个宇宙中大约只有100多种不同的原子。我们看到的所有东西都是由这100多种原子以穷极无限的方式组合而成。这些原子之间排列组合的方式决定了构成的物体是一杯水、一块金属或是汽水瓶中的泡沫!

原子是永恒运动着的。它们不停地振动、移动和旋转,就连构成我

们座椅的原子也是不断运动着的。固体实际上也在运动!原子有几种不同的激发状态,换言之,它们具有不同的能量。如果赋予原子足够的能量,它就可以从基态能量层级上升到激发态能量层级。激发态能量层级的高低取决于通过热能、光能、电能等形式赋予原子的能量有多少。

下图可以很好地阐释原子的结构:

最简单的原子模型

由原子核和沿轨道旋转的电子组成。

简单原子由原子核(含有质子和中子)和电子云组成。我们可以把电子云中的电子想象成沿多个不同轨道环绕原子核运动。

想一想上一页中的原子结构图。即便以现代技术观察原子,我们也无法看到电子的离散轨道,但把这些轨道设想成原子不同的能级会对我们的理解有所帮助。换言之,如果我们对原子加热,处于低能量轨道上的部分电子可能受激发而跃迁到距离原子核更远的高能量轨道。

能量吸收:

原子可以吸收热能、光能、电能等形式的能量。然后电子可以从低能量轨道跃迁至高能量轨道。

尽管这种描述很简单,但它确实揭示了原子形成激光的核心原理。

电子跃迁至更高能轨道后,最终仍要回到基态。在此过程中,电子以光子(一种光线粒子)的形式释放能量。您会发现,原子不断地以光子形式释出能量。例如,烤箱中的加热元件变成亮红色,其中的红色就是由于原子受热激发而释放的红色光子。观看电视屏幕上的图像时,您看到的其实是磷原子受高速电子激发所释放的各种不同颜色的光线。任

1. 未发射状态的激光器

2. 闪光管闪光并将光线射入红宝石棒。光线激发红宝石内的原子。

3. 其中的部分原子释放出光子。

4. 部分光子沿红宝石轴的平行方向运动,因而在两块反光镜之间来回反弹。它们经过红宝石晶体时,还会继续激发其他原子。

5. 单色、单相柱状光线通过半反射镜射出红宝石棒,形成激光!以下是真实的三级激光器的工作原理示意图。

激光警示标志

根据可能造成的生理伤害,激光器可分为四个广泛的种类。每套激光设备都应具有以下四种标志之一:

I级:这种激光器不会构成任何已知程度的伤害。

I.A.级:这是一个特殊的级别,指“不适宜用眼睛直接观看”的激光器,比如超市使用的激光扫描器。此级别激光器的最高限定功率为4.0毫瓦。

II级:指低功率可见光激光器,其发射功率比I级高,但是辐射功率不高于1毫瓦。人类对强光的自动防御反应可以保护人类不受伤害。

IIIA级:指中低功率激光器(连续波:1-5 mW),只有光束内视的

情况下才会构成危险。多数的笔状激光指示器都属于该级别。

IIIB级:指普通功率的激光器。

IV级:指高功率激光器(连续波:500毫瓦,脉冲波:10 J/cm2或漫反射极限值),任何情况下,无论直接还是间接观测都有危险,而且可能引发火灾或灼伤皮肤。IV级激光设备必须接受严格的控制。

激光器的热透镜效应讲解

新型光学谐振器和热透镜效应 Thomas Graf Rudolf Weber, and Heinz-P. Weber 应用物理研究所,Beme Sidlerstrasse 5大学,CH - 301 2 Beme,瑞士 概要 激光谐振腔支持稳定的振荡的最大功率范围主要是由活性介质(热)材料常数和冷却方法所决定。通过控制稳定的基本模式操作的功率范围,可以转移到更高的能量,具有特殊的腔设计和腔内光学但稳定范围的宽度不会受到影响。此外,在泵的活性介质强度增加也加剧了非球面元件的热诱导的扭曲。因此,开发新颖的谐振器时,分析这些热效应具有重大意义。我们目前对热诱导的扭曲,一种新型的多棒激光腔,变量配置的谐振器(VCR)进行分析。对热效应进行了数值模拟和实验的研究。我们目前对各种抽水和冷却方案进行比较后发现复合棒端面泵浦激光器提供最有效的冷却。VCR被开发调控基本模式激光器的功率范围。由于其能力作为法布里- 珀罗谐振器,它克服了稳定性与传统的多棒谐振器相关的问题,并允许一个新的Q开关技术作为一种环形腔运行。 关键词:固态激光器,二极管泵浦激光器,光学谐振器,热透镜效应,热致双折射。 1.介绍 二极管泵浦固态激光器,有着广泛的工业和科学应用。二极管激光器价格的不断下降,应用正在扩展到高功率范围。此外,泵浦方式的改善使二极管激光辐射高效和紧聚焦到激光材料。由于大量吸收功率,这将导致强烈的局部加热。因此,在固态激光材料的热效应已经获得了相当高功率,半导体激光泵浦全固态激光器作为一个发展中的关键问题的重要性被提高。 选中激光材料后,热效应只与冷却的方法有关,然后必须采用适当的谐振器设计。我们在下面的实验和数值调查报告二极管激光的热效应泵浦全固态激光器和特殊的光学谐振器的发展。热透镜效应和应力引起的双折射用于比较四种不同的冷却技术。完全验证的数值有限元(FE)代码,它也适用于区分不同的热透镜效应的贡献- 比如弯曲的表面和折射率变化与温度和应力性曲折分析高功率激光器的功率调整的极限。进一步的功率调节功能则需要使用更长的侧面泵浦激光棒多棒谐振器的使用。多棒谐振器特别适合规模在几十瓦的顺序输出功率,高光束质量的激光器的输出功率。在这种情况下,热扭曲分发到几个激光棒,在同一个腔泵的功率降低。我们报告一个独特的激光谐振腔,变量配置的谐振器(VCR),他具有反向泵浦多棒谐振器的可调性。特别是录像机的稳定性能与传统的多棒的法布里- 珀罗谐振解决了严重的稳定性问题,并允许一个新的Q开关技术。在下面的章节中,我们将首先考虑球面镜片的近似热引起的扭曲,并讨论TEM0模式激光器的规定下能量的限制。 我们对不同的激光棒的冷却方法进行了比较。热致双折射所造成的损失在短期内第3节中讨论。

半导体激光器基础知识

半导体激光器的近场分布是指LD发光面上的辐射强度分布,即反映P-N结上光强的分布;而远场分布则是指远离激光器无穷远处的辐射强度分布(光强与角度的分布)。远场分布是近场分布的富氏(Fourie r)变换。半导体激光器的模式分为空间模和纵模(轴模)。前者描述围绕输出光束轴线某处光强分布,或者是空间几何位置上的光强(或者光功率)的分布,也称为远场分布;后者则表示是一种频谱,它反映所发射的激光其功率在不同频率(或者波长)分量上的分布。两者都可能是单模或者出现多个模式(多模)。边发射半导体激光器具有非圆对称的波导结构,而且在垂直于结平面方向(称横向)和平行于结平面方向(称侧向)有不同的波导结构和光场限制。横向都是由双异质结构成的折射率波导结构来限制光场;而在侧向,则可由折射率导引结构或增益导引结构,大功率半导体激光器大多采用增益波导结构。因此半导体激光器的空间模式又有横模和侧模之分。如图5-1表示了这两种空间模式。 图1 半导体激光器的横模与侧模 由于有源层厚度都很小(约为0.15μm),根据平板波导原理,在横向LD都能保证单横模输出;而在侧向,由于其宽度相对较大,因而可能出现多侧模。如果在这两个方向都能以单模(或称基模)工作,则输出为理想的TE00模,此时光强峰值在光束中心且呈“单瓣”。这种光束的发散角最小,亮度最高,能实现与单模光纤的高效率耦合,也能通过简单的光学系统聚焦到很小的斑点,这对激光器的应用是非常有利的。相反,若LD工作在多侧模下,则其发光面上的光场(即近场)在侧向表现出多光丝,好似一些并行的发光丝,而其远场分布则相当复杂。 对于发光尺寸为1×50μm 的半导体激光器,沿1μm方向称为快轴方向,沿50μm方向称为慢轴方向。在快轴方向光束横截面内光强基本上按正弦(余弦)函数形式分布。半导体激光器的发散角是光束的基本参数,其定义为远场平面上光强为峰值一半处的两点相对于发光点的夹角

激光的发明及广泛应用讲解

激光的发明及广泛应用摘要:激光器的发明是20世纪科学技术有划时代意义的一项成就。从近代一开始,激光理论、激光器件、激光应用各方面的研究广泛开展,各种激光器如雨后春笋一般涌现。几十年来,激光科学成果累累,已成为影响人类社会文明的又一重要因素。 关键字:受激辐射粒子数反转放大器 1960年5月16日,世界上第一个激光器——红宝石激光器发出了一束神奇的光,它的名字叫“激光”。最初中文的名称叫做“镭射”、“莱塞”,是它的英文名称LASER的音译。LASER是英文“受激辐射的光放大”的缩写。 什么叫做“受激辐射”?他基于伟大的科学家爱因斯坦在1916年提出了的一套全新的理论。这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。这就叫做“受激辐射的光放大”,简称激光。 普朗克的能量子假说和爱因斯坦的光量子理论为量子电子学的发展奠定了基础。特别是爱因斯坦1916年对辐射

理论的分析,为激光提供了理论基础。 而美国马萨诸塞州坎布里奇的麻省理工学院的汤斯(CharlesH.Townes,1915—)也为此做出了不可磨灭的贡献。他研究的是微波和分子之间的相互作用。他计算出把分子束系统的高能态与低能态分开,并使之馈入腔中的条件。他还考虑到腔中应充有电磁辐射以便激发分子进一步辐射,从而提供了反馈,保持持续振荡。 这时拍赛尔和庞德在哈佛大学已经实现了粒子数反转,不过信号太弱,人们无法加以利用。当时人们已经认识到,粒子数反转是放大的必要条件。汤斯认为是粒子没有办法放大。他一直在苦思这个问题。他设想如果将介质置于诸振腔内,利用振荡和反馈,也许可以放大。汤斯很熟悉无线电工程,所以别人没有想到的,他先想到了。 汤斯开始按他的新方案进行工作。这个组的成员有博士后齐格尔(H.J.Zeiger)和博士生戈登(J.P.Gordon)。后来齐格尔离开哥伦比亚,由中国学生王天眷接替。汤斯选择氨分子作为激活介质。这是因为他从理论上预见到,氨分子的锥形结构中有一对能级可以实现受激辐射,跃迁频率为23870 MHz。氨分子还有一个特性,就是在电场作用下,可以感应产生电偶极矩。氨的分子光谱早在1934年即有人用微波方法作出了透彻研究。1946年又有人对其精细结构作了观察,这都为汤斯的工作奠定了基础。

激光基本知识问答题深刻复习资料

一、概念题: 1.光子简并度:处于同一光子态的光子数称为光子简并度 n。(光子简并度具有以下几种相同的含义,同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。) 2.集居数反转:把处于基态的原子大量激发到亚稳态E2,处于高能级E2的原子数就可以大大超过处于低能级E1的原子数,从而使之产生激光。称为集居数反转(也可称为粒子数反转)。 3.光源的亮度:单位截面和单位立体角内发射的光功率。 4.光源的单色亮度:单位截面、单位频带宽度和单位立体角内发射的光功率。 5.模的基本特征:主要指的是每一个摸的电磁场分布,特别是在腔的横截面内的场分布;模的谐振频率;每一个模在腔内往返一次经受的相对功率损耗;与每一个模相对应的激光束的发散角。 6.几何偏折损耗:光线在腔内往返传播时,可能从腔的侧面偏折出去,这种损耗为几何偏折损耗。(其大小首先取决于腔的类型和几何尺寸,其次几何损耗的高低依模式的不同而异。) 7.衍射损耗:由于腔的反射镜片通常具有有限大小的孔径,当光在镜面上发生衍射时所造成一部分能量损失。(衍射损耗的大小与腔的菲涅耳数N=2a/Lλ有关,与腔的几何参数g 有关,而且不同横模的衍射损耗也将各不相同。) 8.自再现模:光束在谐振腔经过多次反射,光束的横向场分布趋于稳定,场分布在腔内往返传播一次后再现出来,反射只改变光的强度大小,而不改变光的强度分布。 9.开腔的自再现模或横模:把开腔镜面上的经一次往返能再现的稳态场分布称为开腔的自再现模或横模。 10.自再现变换:如果一个高斯光束通过透镜后其结构不发生变化,即参数ω。或f不变,则称

这种变换为自再现变换。 11.光束衍射倍率因子2M 定义:实际光束的腰半径与远场发射角的乘积与基模高斯光束的腰半径与远场发散角的乘积的比。 12.均匀加宽:如果引起加宽的物理因素对每个原子都是等同的,则这种加宽称作均匀加宽。(均匀加宽,每个发光原子都以整个线型发射,不能把线型函数上的某一特定频率和某些特定原子联系起来,或者说,每一发光原子对光谱线内任一频率都有贡献。包括自然加宽、碰撞加宽及晶格振动加宽。) 13.非均匀加宽:原子体系中每个原子只对谱线内与它的表观中心频率相应的部分有贡献,因而可以区分谱线上的某一频率范围是由哪一部分原子发射的,这种加宽称作均匀加宽。(气体工作物质中的多普勒加宽和固体工作物质中的晶格缺陷加宽均属非均匀加宽。) 14.表观中心频率:沿z 方向传播的光波与中心频率为0ν并具有速度z υ的运动原子相互作用 时,原子表现出来的中心频率为运动原子的表观中心频率。 15.反转集居数的饱和:反转集居数) (111 0ννs I I n n + ?= ?,当1νI 足够强时,将有0n n ?

简述气体激光器讲解

简述气体激光器 这是一类以气体为工作物质的激光器。此处所说的气体可以是纯气体,也可以是混合气体;可以是原子气体,也可以是分子气体;还可以是离子气体、金属蒸气等。多数采用高压放电方式泵浦。最常见的有氦-氖激光器、氩离子激光器、二氧化碳激光器、氦-镉激光器和铜蒸气激光器等。氦-氖激光器是最早出现也是最为常见的气体激光器之一。它于1961年由在美国贝尔实验室从事研究工作的伊朗籍学者佳万(Javan)博士及其同事们发明,工作物质为氦、 这是一类以气体为工作物质的激光器。此处所说的气体可以是纯气体,也可以是混合气体;可以是原子气体,也可以是分子气体;还可以是离子气体、金属蒸气等。多数采用高压放电方式泵浦。最常见的有氦-氖激光器、氩离子激光器、二氧化碳激光器、氦-镉激光器和铜蒸气激光器等。 氦-氖激光器是最早出现也是最为常见的气体激光器之一。它于1961年由在美国贝尔实验室从事研究工作的伊朗籍学者佳万(Javan)博士及其同事们发明,工作物质为氦、氖两种气体按一定比例的混合物。根据工作条件的不同,可以输出5种不同波长的激光,而最常用的则是波长为632.8纳米的红光。输出功率在0.5~100毫瓦之间,具有非常好的光束质量。氦-氖激光器是当前应用最为广泛的激光器之一,可用于外科医疗、激光美容、建筑测量、准直指示、照排印刷、激光陀螺等。不少中学的实验室也在用它做演示实验。 比氦-氖激光器晚3年由帕特尔(Patel)发明的二氧化碳激光器是一种能量转换效率较高和输出最强的气体激光器。目前准连续输出已有400千瓦的报导,微秒级脉冲的能量则达到10千焦,经适当聚焦,可以产生1013瓦/米2的功率密度。这些特性使二氧化碳激光器在众多领域得到广泛应用。工业上用于多种材料的加工,包括打孔、切割、焊接、退火、熔合、改性、涂覆等;医学上用于各种外科手术;军事上用于激光测距、激光雷达,乃至定向能武器。 与发明二氧化碳激光器同年,发明了几种惰性气体离子激光器,其中最常见的是氩离子激光器。它以离子态的氩为工作物质,大多数器件以连续方式工作,但也有少量脉冲运转。氩离子激光器可以有35条以上谱线,其中25条是波长在408.9~686.1纳米范围的可见光,10条以上是 275~363.8纳米范围的紫外辐射,并以488.0纳米和514.5纳米的两条谱线为最强,连续输出功率可达100瓦。氩离子激光器的主要应用领域包括眼疾治疗、血细胞计数、平版印刷及作为染料激光器的泵浦源。 1968年发明的氦-镉激光器以镉金属蒸气为发光物质,主要有两条连续谱线,即波长为325.0纳米的紫外辐射和441.6纳米的蓝光,典型输出功率分别为1~25毫瓦和1~100毫瓦。主要应用领域包括活字印刷、血细胞计数、集成电路芯片检验及激光诱导荧光实验等。 另一种常见的金属蒸气激光器是1966年发明的铜蒸气激光器。一般通过电子碰撞激励,两条主要的工作谱线是波长510.5纳米的绿光和 578.2纳米的黄光,

激光考证知识大全

激光装配工考证题目(一) 一、填空题 1.要产生激光至少要具备、和三个基本条件。2.激光打标机上的声光调Q晶体在设备中起到了作用。3.一般金属对激光 比激光吸收要高。(填“YAG”或“CO2”)4.一般工业上常用的激光器有激光器和激光器。5.为了使激光被更好地聚焦,激光设备上常用先对激光进行。6.二氧化碳激光器一般比固体激光器的电光转换效率。7.为了更好的进行激光切割,一般在激光切割前要进行激光。8.灯泵浦YAG激光打标机上装有灯,焊接机上装灯。9.正离焦激光焊接是激光聚焦面处于加工工件表面的方,而负离焦激光焊接是激光聚焦面处于加工工件表面的方。(填“上”或“下”) 10.激光焊接机进行PLC编程自动焊接时,只按下驱动、程序按钮,激光器不会出激光但数控工作台会按程序运动,如果要按程序出激光进行加工则必须按下按钮。 11.在激光打标过程中,当发现结尾的笔划出现火材头时,很可能是激光打标参数中的参数设置过长。12.工业用激光器属于类激光产品。13.如果脉冲激光一个脉冲能量为E,脉冲完后为T,则该激光的峰值功率 为,如果激光频率为f,则其平均功率为。二、简答题。14.请画出工业固体激光打标机的结构简图。15.一般来说激光切割质量评价指标包括那些方面,并说明其影响因素。16.在激光焊接时,发现焊接材料表面发黑,并且基本上被击穿,此时一般要调节那些工艺参数可能改善焊接质量。17.如何对激光焊接机进行调光?18.为了得到更小的激光聚焦光斑,可以采用哪些措施实现?19.如果你是公司工艺部部长,现有一名客户拿着一件样品要进行激光打孔工艺实验,请说说你如何接待客户,并大致说明按什么样的步骤安排激光打孔工艺实验。三、激光加工编程20.要求激光焊接设备工作台走一条顺时针的圆,如图,试编写PLC程序。(单位mm) 激光装配工考证题目(二) 一、填空题1.输出高阶横模激光的激光器的功率一般比输出较低阶横模激光的激光器功率,为了抑制高阶横模,在实际加工设备上常常采

激光器介绍

激光器介绍 WALC4020数控激光切割机 更快、更宽、更厚的钣金切割专家 1、产品简介 更高性能的激光切割系统: WALC4020选择了世界最先进的激光器、切割头。拥有最高质量的部件和最好的结构。如西门子的控制系统和直线驱动系统,STAR的直线导轨。 更先进的结构型式: A.横梁 WALC4020激光切割机采用横梁倒挂结构,此结构有如下优势: 1.与横梁悬臂式相比,横梁的运行速度更高,运行更平稳,可达200米/分。这是因为驱动力的作用点位于横梁的重心,不会产生附加力矩,驱动效率更高,运行更平稳。 2.与小龙门移动式相比,电气控制更简单,系统更可靠。操作更方便。 因此,WALC4020更适用于高速,高功率切割。 B.交换工作台: 采用垂直升降式交换工作台,此型式的交换方式与目前使用的斜升式相比有如下优点: A.提升能力更大,安装更方便。 B.与横梁倒挂结构配合,结构更合理。 C.在切割区内,工作台下的空间更大,以便布置排渣装置及抽风除尘装置。 C.驱动: WALC4020激光切割机的X、Y轴采用了西门子的控制系统和直线驱动系统,与传统电机+滚珠丝杠(齿条)相比,驱动力更大,加速度更高。加速度可达3G,速度最高可达200米/分。而且运行更平稳。 X,Y,Z轴的导轨采用STAR高品质直线导轨,精度更高,运行更平稳。 2、产品特性 WALC4020融合了激光最新技术的应用 一.控制 WALC4020的控制器是SIEMENS 840D。该控制器的界面已经进行了改进,以适合激光切割系统的应用。 二.穿透检测 在打孔时,穿透检测使用传感器来确定光束是不是已经穿透了板材,这样可以得到最高质量的穿透效果,节省时间。

激光基础知识

激光基础知识 1.目的 了解激光的发展简史,清楚激光的产生原理及特性,熟知激光的危害等级及激光发振器的结构 2.激光的产生及发展史 2.1世界上第一台激光器是由美国科学家梅曼(T.H.Maiman)于1960年研究成功的,这台红宝石激光器作为发光物质(棒两头镀上银膜形成反射镜面),棒外面套上一支螺旋状的氪气灯,为了充分利用氪灯光,梅曼又在螺旋灯外套上一个反射率很高的圆柱,以便使更多的氪灯光照在红宝石上。 其实,早在1916年爱因斯坦就曾发表过一篇论文,提出了一种现在叫光学感应吸收和光学感应发射的观点(又叫受激吸收和发射),这一观点后来竟成为激光器的主要理论基础,1952年,美国马里阑大学的韦伯开始运用上述概念去放大电磁波,但工作没能往前发展,只有激光的发明人汤期(C.TOWES)向韦伯索要了论文,继续这一工作,才打开了一个新的领域。 汤斯的最初设想:由四个反射镜围成一只玻璃盒,盒内充以铊,盒外放一个铊灯,用这一装置可产生激光,汤斯的合作者肖洛(A.schawlow)擅长于光譜学,对原子光譜及两平行反射镜的光学特性十分熟悉,便对汤斯的设想提出两条修改意见,一是他证明铊原子不可能产生光放大,建议改用钾(其实钾也不易产生激光),二是建议只用两面反射镜便可形成光的振荡器,不必沿用微波放大器的封闭盒子作为谐振器。直到现在,汤斯和肖洛研制

出来的,但是他们提出的基本概念和构想却被公认是对激光领域划时代的贡献。 2.2激光的产生原理 由原子结构可知,电子绕核高速旋转,各自有不同轨迹道,这些轨迹道称为能级电子,处于不同的能级。原子系统的能量不同,由于粒子有趋于低能级的特性,平衡状态时,低能级粒子吸收能量,跃迁到高能级上,(分布规律符合玻而兹曼公式)。如果提供一个能源,使低能级粒子吸收能量,跃迁到高能级上,使高能级粒子数多于低能级粒子数,这就是所谓的“粒子聚集数反转”,高能级粒子有向低能级自发跃迁的趋势,一个电子自发跃迁时,一个能级差放出一个光子,称自发辐射,自发辐射放出光子的频率的跃迁的能差成正比,符合普朗克公式hr=E1-E2,式中H=6.626x10^-34(J.S)为普朗克常数;r为光子频率;E2,E1分别为高能级和低能级能量,此光子又激发E2能级的粒子,使E2能级的粒子受激放出频率,相位,方向完全一致的光子即受激发射,此时E2能级一个粒子,产生了二个完全相同的光子,这两个光子再出激发E2能级的粒子,就产生了四个相同光子,这种雪崩式的反应,使入射光得到放大,使光强迅速增强,如果在粒子受激辐射系统的两端设置二块相互平行的反射镜,构成光学谐振腔,那么平行于谐振腔轴线的光,在二个反射镜之间振荡放大,越来越强,直到E2能级的粒子都受激跃迁到E1能级时,“粒子聚集反转”现象消失,随时逸出谐振腔外而消失,最后得到的光束方向一致,亮度最高的单色光即激光(LASER-Light,Amplification by

激光器的分级标准及激光安全管理讲解

激光器的分级标准及激光安全管理 激光器按波长分各种类型,由于不同波长的激光对人体组织器官伤害不同。因而在各类型的激光器中按其功率输出大小及对人体伤害分以下四级。 第一级激光器:即无害免控激光器。这一级激光器发射的激光,在使用过程中对人体无任何危险,即使用眼睛直视也不会损害眼睛。对这类激光器不需任何控制。 第二级激光器:即低功率激光器。输出激光功率虽低,用眼睛偶尔看一下不至造成眼损伤,但不可长时间直视激光束。否则,眼底细胞受光子作用而损害视网膜。但这类激光对人体皮肤无热损伤。 第三级激光器:即中功率激光器。这种激光器的输出功率如聚焦时,直视光束会造成眼损伤,但将光改变成非聚焦,漫反射的激光一般无危险,这类激光对皮肤尚无热损伤。 第四级激光器:即大功率激光器,此类激光不但其直射光束及镜式反射光束对眼和皮肤损伤,而且损伤相当严重,并且其漫反射光也可能给人眼造成损伤。 根据上述激光器的分级来看,对人眼睛及皮肤损害最大的是第四级激光器。前述了激光对人体的危害,尤其是对眼睛的损伤,其损伤程度可以使眼睛视力降低,甚至完全失明。但这种损伤并非所有量级激光能引起,而是有一最低限度——即致伤阈值,只有当激光能量密度或功率密度超过此阈值时才能对眼睛造成伤害。激光器的级别分类给我们提供了一个安全的参考值。 激光安全管理措施 使用不同级别激光器的管理措施 1.使用第一级激光器的管理 由于第一级激光器是无害免控激光器,因此不需任何控制措施。激光器不必使用警告标记,但须避免不必要长久地直视第一级激光束。 2.第二级激光器的使用安全措施

第二级激光器为低水平激光器,如偶尔照射到人眼还不至于引起伤害,可连续观察激光束时能损伤眼睛。因此,不能长时间地直视激光束,此是对第二级激光器的最重要控制措施。此外,还应该在安放第二级激光器的房门上及激光的外壳及其操作面板上张贴警告标记。3.第三级激光器的使用安全措施 由于第三级激光器是中等功率激光器,可能对眼有损伤,必须对这一级激光器定出措施,确保安全:(1)对操作激光器的工作人员进行教育和培训,使他(她)们明白操作此级激光器时可能出现的潜在危险,并对他(她)们进行恰当的激光安全训练,以及出现危险时紧急处理方法。由于激光对眼睛的损伤均为不可逆性,培训教育了解和掌握激光器的安全运用实属必要。 (2)工程技术管理 管理使用激光器必须由专业(职)人员来进行,未经培训教育人员不得擅自开启使用激光机。如激光器上的触发系统上装设联锁钥匙开关,确保只有用钥匙打开联锁开关以后才能触发启动,拔出钥匙就不能启动。对于安放激光器的房间要有明亮的光线,人在明亮光线的环境中,眼睛的瞳孔缩小,以防在激光光束射入眼睛时可减少透射到视网膜上的进光量。对于安放激光器的高度,激光束路径应避开正常人站立或坐着时的眼睛的水平位置,视轴不能与出光口平行对视。 (3)激光器应严格控制 在存放使用的激光器房间内不要无故地把激光束对准人体,尤其是眼睛。因为激光对眼睛的损伤要恢复极其困难,均为永久性损害,而且每一个人的一生中只有一双眼睛,大家务必时刻牢记,在开动激光器之前,必须告诫现场中人员可能出现的危害,并戴上安全防护眼镜。在有强激光器的工作区内外明显的位置上及激光手术室、实验室的房门上张贴出危险标记。 (4)激光受控区 第三级激光器必须只能在一定的区域内使用激光设备。按一般要求设立门卫及安全的弹簧锁、联锁等,以确保外人与未受保护人员不得进入受控区,即使意外门被打开时,激光器的激励也能立即停止。房间不应透光,以阻止有害

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

典型激光器介绍

典型激光器的原理、特点及应用 摘要:本文介绍了四种典型的激光器,固体、气体、染料和半导体激光器,并分别介绍了特点及应用。 关键词:典型激光器,原理和特点,应用 一、引言 自梅曼发明了第一台红宝石激光器至今,激光器得到了飞速发展,在激光工作物质方面也得到了很大的改进,激光器根据激活媒质可分为固体、气体、染料和半导体激光器。各类激光器各有特色,并在相关的领域里发挥着重要的作用。 二、固体激光器 固体激光器是以掺杂离子的绝缘晶体或玻璃作为工作物质的激光器,基本上都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成的。最常采用的固体工作物质仍然是红宝石、钕玻璃、掺钕钇铝石榴石(Nd3+:Y AG)等三种。图1是固体激光器的基本结构示意图。 图1 固体激光器的基本结构示意图 1.红宝石(Cr3+:A12O3) 红宝石是在三氧化二铝(A12O3)中掺入少量的氧化铬(Cr2O3)生长成的晶体。它的吸收光谱特性主要取决于铬离子(Cr3+),铬离子与激光产生有关的能级结构如图2所示。它属于三能级系统,相应于图(1-3)的简化能级模型,其激发态E3为4F1和4F2能级,激光上、下能级E2和E1分别为2E和4A2。它的荧光谱线有两条:R1线和R2线,在室温下对应的中心波长分别为694.3nm和692.9nm。由于R1线的辐射强度比R2大,在振荡过程中总占优势,所以通常红宝石激光器产生的激光谱线均为R1线(694.3nm)。

红宝石激光器的优点是机械强度高,容易生长大尺寸晶体,容易获得大能量的单模输出,输出的红颜色激光不但可见,而且适于常用硅探测器探测。红宝石激光器的主要缺点是阈值高和温度效应非常严重。随着温度的升高,激光波长将向长波长方向移动,荧光谱线变宽,荧光量子效率下降,导致阈值升高,严重时会引起“温度猝灭”。因此,在室温情况下,红宝石激光器不适于连续和高重复率工作,但在低温下,可以连续运转。目前在医学方面和动态全息方面还有应用价值。 2.掺钕钇铝石榴石(Nd 3+:YAG) 这种工作物质是将一定比例的A12O 3、Y 2O 3,和Nd 2O 3在单晶炉中进行熔化,并结晶而成的,呈淡紫色。它的激活粒子是钕离子(Nd 3+),Nd 3+与激光产生有关的能级结构如图3所示。它属于四能级系统。其激光上能级E 3为4F 3/2,激光下能级E 2为4I 13/2、4I 11/2,其荧光谱线波长为1.35μm 、1.06μm ,4 I 9/2相应于基态E 1。由于1.06μm 比1.35μm 波长的荧光强约4倍,所以在激光振荡中,将只产生1.06μm 的激光。 图3 Nd 3+:Y AG 的能级结构 Y AG 激光器的突出优点是阈值低和具有优良的热学性质,这就使得它适于连续和高重图2 红宝石中铬离子的能级结构

激光的基础知识

激光的基础知识 相信激光这名词对大家来说一点也不陌生。在日常生活中,我们常常接触到激光,例如在课堂上我们所用的激光指示器,与及在计算机或音响组合中用来读取光盘资料的光驱等等。在工业上,激光常用于切割或微细加工。在军事上,激光被用来拦截导弹。科学家也利用激光非常准确地测量了地球和月球的距离,涉及的误差只有几厘米。激光的用途那么广泛,究竟它有哪些特点,又是如何产生的呢?以下我们将会阐释激光的基本特点和基本原理。 激光的特性 高亮度、高方向性、高单色性和高相干性是激光的四大特性。 (1)激光的高亮度:固体激光器的亮度更可高达1011W/cn2Sr 。不仅如此,具有高亮度的激光束经透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其可能可加工几乎所有的材料。 (2)激光的高方向性:激光的高方向性使其能在有效地传递较长距离的同时,还能保证聚焦得到极高的功率密度,这两点都是激光加工的重要条件。 (3)激光的高单色性:由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。 (4)激光的高相干性:相干性主要描述光波各个部分的相位关系。 正是激光具有如上所述的奇异特性因此在生活、工业加工、军事、科研等领域中得到了广泛地应用。 激光产生原理 激光的发展有很长的历史,它的原理早在1917 年已被著名的物理学家爱因斯坦发现,但要直到1958 年激光才被首次成功制造。激光英文名是Laser,即Light Amplification by the Stimulated Emission of Radiation 的缩写。 激光的英文全名已完全表达了制造激光的主要 过程。但在阐释这个过程之前,我们必先了解物 质的结构,与及光的辐射和吸收的原理。 物质由原子组成。图一是一个碳原子的示 意图。原子的中心是原子核,由质子和中子组成。 质子带有正电荷,中子则不带电。原子的外围布 满着带负电的电子,绕着原子核运动。有趣的是, 电子在原子中的能量并不是任意的。描述微观世 界的量子力学告诉我们,这些电子会处于一些固 定的「能级」,不同的能级对应于不同的电子能 图一碳原子示意图。 量。为了简单起见,我们可以如图一所示,把这 些能级想象成一些绕着原子核的轨道,距离原子核越远的轨道能量越高。此外,不同轨道最多可容纳的电子数目也不同,例如最低的轨道(也是最近原子核的轨道) 最多只可容纳2 个电子,较高的轨道则可容纳8 个电子等等。事实上,这个过份简化了的模型并不是完全正确的[1],但它足以帮助我们说明激光的基本原理。

激光器技术的应用现状及发展趋势_百度文库讲解

激光器技术的应用现状及发展趋势 摘要 :简述了激光精密加工技术及其特点 ; 综述了激光精密加工的应用现状 ; 探讨了激光精密加工技术的发展趋势。激光加工技术在机械工业中的广泛应用, 促进了激光加工技术向工业化发展。为此, 介绍了几种应用较广泛的激光加工技术; 重点讨论了激光硬化和激光珩磨技术的应用和发展趋势。摘要由于在光通信光数据存储传感技术医学等领域的广泛应用近几年来光纤激光器发展十分迅速本文简要介绍了光纤激光器的工作原理及特性 , 并对目前多种光纤激光器作了较为详细的分类 ; 同时介绍了近几年国内外对于光纤激光器的研究方向及其目前的热点是高功率光纤激光器、窄线宽可调谐光纤激光器和超短脉冲光纤激光器 ; 最后指出光纤激光器向高功率、多波长、窄线宽发展的趋势 . :结合河北工业大学光机电一体化研究室近几年对激光加工技术研究的初步成果, 对激光加工技术的特点, 激光加工技术在国内外的应用发展状况, 以及激光加工技术的发展趋势进行了简要介绍, 同时分析了我国激光加工产业面临的机遇与挑战,并提出了应采取的对策 前言 1 概述 激光加工是 20 世纪 60 年代初期兴起的一项新技术,此后逐步应用于机械、汽车、航空、电子等行业, 尤以机械行业的应用发展速度最快。在机械制造业中的广泛使用又推动了激光加工技术的工业化。 20 世纪 70 年代,美国进行了两大研究 :一是福特汽车公司进行的车身钢板的激光焊接 ; 二是通用汽车公司进行的动力转向变速箱内表面的激光淬火。这两项研究推动了以后的机械制造业中的激光加工技术的发展。到了 20 世纪 80 年代后期, 激光加工的应用实例有所增加 , 其中增长最迅速的是激光切割、激光焊接和激光淬火。这 3 项技术目前已经发展成熟, 应用也很广泛。进入 20 世纪 90 年代后期, 激光珩磨技术的出现又将激光微细加工技术在机械加工中的应用翻开了崭新的一页。激光加工技术之所以得到如此广泛的应用, 是因为它与传统加工技术相比具有很多优点:一、是非接触加工, 没有机械力; 二、是可以加工高硬度、高熔点、极脆的难加工材料;三、是加工区小,热变形很小,

激光器原理及其应用讲解

激光器原理及其应用 应用化学0402班宋彬 0120414450201 摘要由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破。关键词激光器激光工作物质激励(泵浦系统光学共振腔分类及应用 正文: 激光器 laser 能发射激光的装置。1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年A.L. 肖洛和C.H. 汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年T.H. 梅曼等人制成了第一台红宝石激光器。1961年A. 贾文等人制成了氦氖激光器。1962年R.N. 霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X 射线的广阔波段。按工作方式分,有连续式、脉冲式、调Q 和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的0.7毫米,最短波长为远紫外区的210埃,X 射线波段的激光器也正在研究中。 除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运)、具有亚稳态能级的工作介质和谐振腔(见光学谐振腔)3部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。

激光技术 答案讲解

考试时间:12月17日 19:00—21:00 考试地点:思源楼411,412, 座位安排:学号03211138-05231022在411教室,05231144—06292044在412教室 第一章作业(激光技术--蓝信鉅,66页)答案 2.在电光调制器中,为了得到线性调制,在调制器中插入一个1/4波片,(1)它的轴向应如何设置为佳? (2)若旋转1/4波片,它所提供的直流偏置有何变化? 答:(1). 其快、慢轴与晶体主轴x 轴成450角(即快、慢轴分别与x’、y’轴平行)。此时,它所提供 的直流偏置相当于在电光晶体上附加了一个V 1/4的固定偏压(E x’和E y’的附加位相差为900);使得调制器在透过率T=50%的工作点上。 (2). 若旋转1/4波片,会导致E x’和E y’的附加位相差不再是900;因而它所提供的直流偏置也 不再是V 1/4。当然调制器的工作点也偏离了透过率T=50%的位置。 3.为了降低电光调制器的半波电压,采用4块z 切割的KDP 晶体连接(光路串联、电路并联)成纵向串联式结构。试问:(1)为了使4块晶体的电光效应逐块叠加,各晶体的x 和y 轴取向应如何? (2) 若λ=0.628μm ,n 。=1.51,γ63=23.6×10—12m /V ,计算其半波电压,并与单块晶体调制器比较之。 解:(1) 为了使晶体对入射的偏振光的两个分量的相位延迟皆有相同的符号,则把晶体x 和y 轴逐块旋转90安置,z 轴方向一致(如下图), (2).四块晶体叠加后,每块晶体的电压为: v 966106.2351.1210628.0412n 41V 41V 123-663302' 2=?????=?==-γλλλ 而单块晶体得半波电压为: v 3864106.2351.1210628.02n V 123-6 63302 =????==-γλλ 与前者相差4倍。 4.试设计一种实验装置,如何检验出入射光的偏振态(线偏光、椭圆偏光和自然光),并指出是根据什么现象? 如果一个纵向电光调制器没有起偏器,入射的自然光能否得到光强调制?为什么? 解:(1)实验装置:偏振片和白色屏幕。 a. 在光路上放置偏振片和白色屏幕,转动偏振片一周,假如有两次消光现象,则为线偏振光。 b. 在光路上放置偏振片和白色屏幕,转动偏振片一周,假如光强有两次强弱变化(但无消光现象发生);则为椭圆偏振光。 c. 在光路上放置偏振片和白色屏幕,转动偏振片一周,假如光强没有变化;则为自然光(或圆偏振光)。区分二者也不难,只需在偏振片前放置一个四分之一波片(可使圆偏振光变为线偏振光, 可出现a 的现象)即可。(这里自然光却不能变成线偏振光) (2)自然光得不到调制。原因是自然光没有固定的偏振方向,当它通过电光晶体后没有固定的位相差; 因而不能进行调制。 x y z x y z x y z x y z

常用激光器简介

几种常用激光器的概述 一、CO 激光器 2 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激

发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外差技术和红外技术等。 4、应用 二氧化碳分子激光器以其独有的特点获得广泛的应用,现就某些方面的应用介绍如下: 1、热效应的应用 可以毫不困难地把激光器的射束直径聚成100微米。在此情况下。300瓦的功率就相当于107瓦/厘米2数量级的能量密度,此值已超过太阳光的能量密度,能达到极高的温度。例如Garver公司研制的800 瓦二氧化碳激光器在2秒钟之内就能烧穿4寸厚的耐火砖。因而,可以想象这些分子激光器可以用于解决高温材料的焊接、融熔和钻孔。例如6200型二氧化碳激光器连续波输出10瓦,可用

激光器的基本参数和基础知识

激光器的基本参数和基础知识 世界上第一台激光器出现于1960年,如今在许多领域中离不开激光器的应用,特别是生产、科研、医疗等这些领域。在不同的应用中所使用的激光器是不同的,所以我们需要了解激光器的参数,它直接决定了使用者对激光光源的选择。本文章整理了常规激光器的一些参数定义并做简单说明,希望能帮助大家能够找到合适的激光产品。 一、输出功率(激光功率) 激光器发出的光是以光能的形成出现,与电能一样,光能也是一种能源。与发电机的输出功率类似,激光器的输出功率也是一个度量单位时间内输出激光能量的物理量,常见的单位毫瓦(mW)、瓦(W)、千瓦(kW)。 二、功率稳定性 功率稳定性表征的是激光输出功率在一定时间内的不稳定度,一般分为RMS稳定性和峰峰值稳定性。 RMS稳定性:测试时间内所有采样功率值的均方根与功率平均值的比值,描述输出功率偏离功率平均值的分散程度。 峰峰值稳定性:输出功率的最大值和最小值之差与功率平均值的百分比,表示的是一定时间内的输出功率的变化范围。 三、光束质量因子(M2因子);光束参数积(BPP) 光束质量因子定义是激光束腰半径和光束远场发散角的乘积与理想基模光束束腰半径和基模发散角乘积的比值,即M2=θw/θ理想w理想。光束质量会影响到激光的聚焦效果以及远场的光斑分布情况,是用来表征激光光束质量的参数,实际激光光束质量因子越接近1,

横模的定义是垂直于激光传播方向上某一横截面上的稳定场的分布,激光器的光斑表征就是横模分布,通过光斑分析仪或激光轮廓分析仪可以将横模分布模拟出来,得到激光器的一些光束特征。常见的横模模式有基横模(TEM),TEM,TEM等,还有图1所示的其他模式,其中TEM模指的是在x方向的截面上有一点光强为0,TEM模指的是在x 和y方向截面均有一点光强为0。

相关主题