搜档网
当前位置:搜档网 › 电子器件温度控制技术

电子器件温度控制技术

电子器件温度控制技术
电子器件温度控制技术

电子器件温度控制技术

王文李庆友

(上海交通大学制冷与低温工程研究所上海 200030)

wenwang@https://www.sodocs.net/doc/9c16614545.html,

摘要:随着电子器件的高频、高速以及集成电路技术的迅速发展和MEMS(Micro Electronical Mechanical System)技术的进步,电子元器件的总功率密度大幅度增长而物理尺寸却越来越小,热流密度也随之增加,所以高温的温度环境势必会影响电子元器件的性能,这就要求对其进行更加高效的热控制。因此,有效解决电子元器件的散热问题已成为当前电子元器件和电子设备制造的关键技术。本文针对电子元器件的散热与冷却问题,综述了当前应用研究中不同的散热和冷却方法,并进行了适当的分析。

关键词:散热,冷却,电子器件

1、引言

近几年来特别是微电子机械(MEMS)技术发展十分迅猛,并逐渐拓展于多个应用场合,微小型化已成为当代科技发展的重要方向之一。微型制冷技术既依赖于MEMS技术的发展,也同时是MEMS技术发展的需要。众所周知,集成电路技术的快速发展,导致各种电子器件和产品的体积越来越小,集成器件周围的热流密度越来越大,以计算机CPU为例,其运行过程中产生的热流密度已经达到60-100W/cm2,半导体激光器中甚至达到103 W/cm2数量级。另

?水平上每增加一方面,电子器件工作的可靠性对温度却十分敏感,器件温度在70-80C

?,可靠性就会下降5%。较高的温度水平已日益成为制约电子器件性能的瓶颈,而高效1C

电子器件的温度控制目前已经渐渐成为一个研究热点。

电子器件的温度控制(或称热控制)的目的是保证其工作的稳定性和可靠性,其中涉及的传热学、流体力学、材料等多个学科背景。从实施的角度看,电子器件的温度控制一般可分为被动控制和主动控制。

2、被动温控技术

被动控制指利用高导热材料作为热桥与热沉或热源形成一个传热通道,从而使热桥另一端的器件维持在某个设计温度范围内,大多数情况下这里的热沉是依靠自然对流或辐射换热向环境散热的金属框架、具有专门的散热片等;或者根据对象的需要,在局部设计绝热结构以隔绝温度敏感元件与一些热源的主要传递途径;也有根据需要在一些局部设计相变材料作为储能和释能的单元维持温控需要的能量。

2.1 自然散热或冷却方法

自然散热或冷却方法是指不使用任何外部辅助能量的情况下,实现局部发热器件向周围环境散热达到温度控制的目的,这其中通常都包含了导热、对流和辐射三种主要传热方式,其中对流以自然对流方式为主,自然散热或冷却往往适用对温度控制要求不高、器件发热的热流密度不大的低功耗器件和部件,以及密封或密集组装的器件不宜(或不需要)采用其它冷却技术的情况下。有时,也因地制宜利用被控部件自身特点增强与邻近热沉的导热或辐射、通过结构设计强化自然对流,在一定程度上提高系统向环境散热能力。

2.2 辐射换热

在空气稀薄、环境温度较高和较低温度的场合辐射换热则在其中占较大比重。辐射换热的换热量主要与换热体之间的温度水平以及温度差、换热体表面吸收率和发射率、换热体之间的相对位臵关系等。以航天领域电子器件温度控制为例,由于带有电子器件的物体大多处于空气稀薄环境,辐射换热是其主要手段,在热控设计时,需要考虑辐射换热面的表面涂层、

换热面的折叠、遮掩与展现等。

2.3 相变蓄热的应用

物质发生相变时,通常伴随着大量的相变潜热。利用其这一特性,可以在短暂使用或者热流密度很大,而且很难组织与环境有效的热交换的应用场合,通常可以考虑选择一些常压下在某些电子器件工作温度区段进行固液相变的材料,可利用相变材料相变潜热吸收一定时段内运行的电子器件(如移动电话、便携式电脑)产生热量,从而对电子器件进行保护。相变蓄热材料分石蜡类、非石蜡类、无机盐水合物、金属等。

3、主动温控技术

主动温控通常指另外增加动力对某些器件进行温度控制,例如电加热提高温度、风扇造成强制对流换热、依靠各种形式的泵提供驱动的液体冷却系统,以及利用制冷或热泵技术形成局部的热源或热沉进行更强的温度控制等。

3.1 强制散热或冷却方法

强制散热或冷却方法主要是借助于风扇等强迫器件周边空气流动,从而将器件散发出的热量带走的一种方法。这种方法是一种操作简便、收效明显的散热方法。如果部件内元器件之间的空间适合空气流动或适于安装局部散热器,就可尽量使用这种冷却方法。提高这种强迫对流传热能力的方法主要有:增大散热面积(散热片)和在散热表面产生比较大的强迫对流传热系数(紊流器、喷射冲击、静电作用)。增大散热器表面的散热面积来增强电子元器件的散热,在实际工程中得到了非常广泛的应用。工程中主要是采用肋片来扩展散热器表面的散热面积以达到强化传热的目的。肋片式散热器又称气冷式冷板,如:型材、叉指、针状等各种型式,长期、广泛地作为热耗电子器件的延伸表面与所处环境(主要是空气)的换热器件。如普通台式电脑芯片上肋片散热器和风扇等。如果在散热器(热沉)上加工上微通道,这样可以减小热沉热阻,进一步提高散热效果。例如,冷却大功率半导体激光器的微通道热沉[5]。对一些较大功率的电子器件,在现有型材散热器中增加数小片扰流片在散热器表面的流场中引入紊流可以显著提高换热效果。

当然,散热器本身材料的选择跟其散热性能有着直接的关系。目前,散热器的材料主要是用铜或铝,其扩展换热面经折叠鳍/冲压薄鳍等工艺制成,其特点主要是导热系数高、延展性好和性质稳定等。另外,随着MEMS技术发展,硅基加工技术越来越成熟,将散热结构与集成电路制造统一起来也是集成电路设计和制造一个发展方向。此外,在一些特殊场合新材料技术也在不断发展,例如,电绝缘、高导热率的陶瓷材料的开发与制造等。

3.2 液体冷却方法

对电子元器件采用液体冷却的方法进行散热,主要是针对芯片或芯片组件提出的概念。液体冷却包括直接冷却和间接冷却。间接液体冷却法就是液体冷却剂不与电子元件直接接触,而热量经中间媒介或系统(如液冷模块、导热模块、喷射液冷模块、液冷基板等)从发热元件传递给液体。通常需要在这种系统中配臵泵以维持液体的循环,例如在近几年的台式机和笔记本产品中有采用水冷系统散热结构。近年来为了满足不断增长的芯片级液体冷却需求,伴随着MEMS技术的发展,各种微泵技术获得了极大的发展。比较典型的微泵主要是由硅、高分子材料、压电材料等组成的各种振膜式压缩机。

直接液体冷却法(又称浸入冷却)是指液体与电子元件直接接触,由冷却剂吸热并将热量带走,它适用于热耗体积密度很高或那些必须在高温环境下工作且器件与被冷却表面之间的温度梯度又很小的部件以及高度封装或大功率电子器件的2-D或3-D封装。例如,在一些高速计算机里直接把电子器件浸在氟化烃溶液中,利用它进行直接冷却。也有研究者提出了一种振动诱导雾化冷却系统,这是一种液滴冷却技术。其特点是:使用电介质冷却液作为工作介质,通过控制液滴直径和频率来控制冷却功率,可以被用来冷却芯片。

3.3 制冷方式或冷却方法

制冷从客观上讲,就是给高温热源提供一个连续低温的热源,使其温度得到控制。从制冷的方式来讲,在电子器件中采用主要有利用制冷剂相变制冷和Peltier效应制冷。

制冷剂的相变冷却

这是利用制冷剂发生相变时大量吸收热量的特性,在特定场合下对电子器件进行冷却。一般所说的相变冷却主要指制冷剂蒸发从环境吸热,其包括两种情况:容积沸腾(静止液体沸腾,又叫池沸腾)和流动沸腾。IBM公司曾研制出采用浸渍式池状沸腾冷却方案的液体封装组件(LEM),它的换热系数可高达1700~5700W/m2〃K,组件的热耗量达300W。然而,对于相变冷却的应用,还有一些技术问题尚待解决,特别是流动沸腾。

在某些情况下,深冷技术也在电子元器件冷却方面发挥了重要的作用。如ETA大型计算机就是使用了深冷技术。对于某些大功率巨型计算机系统,其芯片的冷却也可以采用循环效率较高的蒸汽压缩式制冷装臵。这种方法的优点是制冷量及制冷温度范围方面均比较宽广,机器设备结构紧凑,循环效率可达4.0,比热电制冷高一个数量级。

Peltier制冷

用制冷的方式来散热或冷却常规的电子元器件,制冷装臵体积小、质量轻、安装和拆卸要方便往往是首要考虑的因素,而小型的半导体制冷就符合这样的要求。半导体制冷又称热电制冷,是利用半导体材料的Peltier效应。当直流电通过两种不同半导体材料串联成的电偶时,在电偶的两端即可分别吸收热量和放出热量,从而实现制冷的目的。它是一种产生负热阻的制冷技术,其特点是无运动件,可靠性也比较高,主要缺点是效率较低、成本高,只适用于体积紧凑、制冷要求不高等特殊场合。其散热温度≤100℃;冷却负载≤300W。

4.电子器件温度控制中的热管技术

在电子器件的热设计中,常常因为电路板空间十分有限,需要将电子器件所散发出的热量传递到另外一个地方集中或更高效地向环境散热。随着电子电路集成化程度越来越高,各种大功率电子器件容量的逐渐增加,电子器件或装臵物理尺寸越来越小,这就要求散热装臵本身必须具有良好的散热条件。同时,散热装臵的布臵和设计遇到的约束也越来越严重。以微电子芯片为例[2],目前一般已达到60~90W/cm2,最高已达200W/cm2。传统的强制风冷只能用于热流密度不大于10W/cm2,对于这种情况已显得无能为力,而进一步提高扩展散热面往往受当地空间的限制。例如对常规大功率半导体元件如二极管、可控硅整流器、大规模集成芯片(LSIchip)的冷却常规的挤压成形的翅片铝板散热器在散热量达到1000W以上时,铝板的受热就受到了限制,而实践表明热管散热器在这方面有着无可厚非的优势,与铝板散热器相比,其不但重量可减轻50%,而且还可以节省60%的有用空间。热管由于具有极高的导热性、优良的等温性、热流密度可变性、流动方向的可逆性、恒温特性(可控热管)和良好的环境适应性等优点,已经在电气设备、电子元器件冷却、半导体元件以及大规模集成电路板等场合的温度控制中得到了广泛的应用,它在大多数情况下可以满足电子电气设备对散热装臵紧凑、可靠、控制灵活、高散热效率等要求。

热管应用始于航天工程的需要,随着电子元器件、集成电路温度控制的需要,小型和微型槽道热管技术的发展获得了广泛关注,此外毛细泵回路、脉动热管等发展也十分迅速。热管应用中另一个需要关注的问题是可靠性,由于其制造材料、工艺、管内洁净度等问题会导致一段时间后传热性能下降,所以要严格控制其产品质量,进行老化试验同时必须对被冷却的器件进行温度监控。

5. 热隔离方法

热隔离即绝热,这里主要指根据关键部件温度控制的需要,将其与一些对其温度波动影

响较大的对象进行绝热。从传热原理角度来说,绝热可以分为真空绝热和非真空绝热[17],而在电子元件上温度控制上普遍应用的基本上是非真空绝热。非真空绝热是借助于低导热系数的绝热材料来实现的。这种绝热形式又称为容积绝热,因为其绝热效果与绝热材料的厚度有关。此外材料的导热系数等物性参数对隔热效果的影响很大。

这种方法主要应用在需要控制局部器件的温度,而阻止某些方面的高温器件或物体对特殊受控部分可能产生的升温影响。可以保证特殊受控元件的可靠、正常工作,从而延长整个设备的工作寿命。

需要指出的是,由于电子器件温度控制的市场需求非常大,新的技术不断有研究者提出并深入开发。例如现有制冷系统的微型化,包括前面提及的压缩制冷的微型化,以及机构比较简单的脉冲管制冷系统以及热声制冷系统的微型化等也有人在探讨。结合微泵技术,微型喷溅冷却也是一有潜力的技术,其结构也非常简单,主要由一个腔体和一个驱动膜片构成。工质一般为气体,在驱动膜片对面的腔体壁上开一小孔或狭缝。当膜片的振动频率足够大时,就会在空外形成连续的射流场。据报道,主流区的最大喷射速度可达30m/s。这种方法在微电子器件冷却方面应用前景非常广阔。

6、热分析以及散热或冷却方法的选择

在对电子器件及其系统进行热管理和热设计时,首先需要对研究对象要有一尽量系统全面的认识,即利用工程热物理背景知识对部件或系统建立模型进行分析,或利用现有的有限元工具,对虚拟系统进行流场、温度场和热流场分析,将系统的热设计与其功能设计、结构设计等统一起来,基于样品或样机试验的基础上,确定最终设计方案。

散热或冷却方法是根据质量因素热耗体积密度(或热耗密度)、热阻来选择的。常用冷却技术单位面积的最大功耗见表1。

在散热与冷却技术权衡中应该考虑的典型因素有:热阻、重量、维护要求或维修性、可靠性(包括辅助设备,如风机和泵)、费用、制造容差、后勤状况(特殊的元器件和冷却剂)、热效能、效率或有效系数、耐环境及严酷度(冲击、振动、腐蚀)、对人体的危害程度(冷却剂或蒸汽的毒性)、尺寸、复杂性、功耗及对设备电性能的影响。

需要指出的是:一个冷却方案不限于一种冷却方式,大多数方案都是根据具体情况,包含几种冷却方式,相互配合使用。

综上,随着集成电路技术飞速发展,电子元件的集成密度和热量密度都会不断增大,它们的散热问题变得日益突出。因此,良好的散热或冷却方法是这些电子元器件发挥良好性能的有力保障。著名美国物理学家Richard P.Feynman曾于1959年12月29日在加州理工学院举行的美国物理协会的年度会议上发表了题为“There’s Plenty of Room at the Bottom”的演讲,敏锐地预言设备和系统的微小型化将在今后科学技术发展中占有非常广阔的发展空间和重要意义。当前MEMS加工技术发展非常迅猛,发展新的散热或冷却方式势在必行。国内外学者正研究和开发微型的换热器和微型制冷系统,这也给微电子技术进一步提供了契机,同时这也为现代传热学的发展注入了新的活力。

参考文献(略)

【CN110099548A】一种电子器件散热装置与方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910359479.0 (22)申请日 2019.04.30 (71)申请人 西安交通大学 地址 710049 陕西省西安市咸宁西路28号 (72)发明人 魏进家 袁博 张永海  (74)专利代理机构 西安通大专利代理有限责任 公司 61200 代理人 安彦彦 (51)Int.Cl. H05K 7/20(2006.01) (54)发明名称一种电子器件散热装置与方法(57)摘要一种电子器件散热装置与方法,包括设置在流动通道内的电子器件,电子器件布置在流动通道的底面上;流动通道顶面上开设有第一出口与第二出口,与第一出口相连的第一管道上设置有第一电磁阀,与第二出口相连的第二管道上设置有第二电磁阀,流动通道底面上开设第一入口和第二入口,与第一入口相连的第三管道上设置有第三电磁阀;与第二入口相连的第四管道上设置有第四电磁阀。由一台PLC控制四枚电磁阀两两一组进行交替的开启与闭合,通过往复流动的液体对电子器件表面气泡的进行持续高效冲击,促使气泡脱离加热表面,并离开流道,显著提升了换热系数和临界热流密度,达到高热流密度条件 下电子器件散热的需求。权利要求书1页 说明书4页 附图3页CN 110099548 A 2019.08.06 C N 110099548 A

权 利 要 求 书1/1页CN 110099548 A 1.一种电子器件散热装置,其特征在于,包括设置在流动通道(5)内的电子器件,电子器件布置在流动通道(5)的底面上;流动通道(5)顶面上开设有第一出口与第二出口,与第一出口相连的第一管道(13)上设置有第一电磁阀(1),与第二出口相连的第二管道(14)上设置有第二电磁阀(2),流动通道(5)底面上开设第一入口和第二入口,与第一入口相连的第三管道(15)上设置有第三电磁阀(7);与第二入口相连的第四管道(16)上设置有第四电磁阀(11)。 2.根据权利要求1所述的一种电子器件散热装置,其特征在于,流动通道(5)的横截面为矩形。 3.根据权利要求1所述的一种电子器件散热装置,其特征在于,第一入口与第二入口之间的距离以及第一出口与第二出口之间的距离均大于电子器件的长度10mm。 4.根据权利要求1所述的一种电子器件散热装置,其特征在于,第一电磁阀(1)、第二电磁阀(2)、第三电磁阀(7)与第四电磁阀(11)均与可编程逻辑控制器相连。 5.根据权利要求1所述的一种电子器件散热装置,其特征在于,第三电磁阀(7)与第四电磁阀(11)的入口均与流量计(6)相连。 6.根据权利要求5所述的一种电子器件散热装置,其特征在于,流量计(6)与离心泵(12)相连。 7.根据权利要求1所述的一种电子器件散热装置,其特征在于,电子器件连接有直流电源(10)。 8.根据权利要求1所述的一种电子器件散热装置,其特征在于,当第一电磁阀(1)与第四电磁阀(11)开启时,第二电磁阀(2)与第三电磁阀(7)闭合;当第二电磁阀(2)与第三电磁阀(7)开启时,第一电磁阀(1)与第四电磁阀(11)闭合。 9.一种基于权利要求1-8中任意一项所述散热装置的散热方法,其特征在于,通过可编程逻辑控制器相连控制第一电磁阀(1)与第四电磁阀(11)开启,第二电磁阀(2)与第三电磁阀(7)闭合,流动通道(5)内液体从右向左流过电子器件表面,进行流动沸腾换热;在经过一个动作周期后,第二电磁阀(2)与第三电磁阀(7)开启,第一电磁阀(1)与第四电磁阀(11)闭合,液体反向,从左向右流过电子器件表面;如此反复切换电磁阀工作状态,实现液体的高频往复流动,从而实现对电子器件的散热。 10.一种根据权利要求(9)所述的散热方法,其特征在于,一个动作周期为50ms。 2

电子器件冷却技术概况与进展

电子器件冷却技术概况与进展1.引言 随着科技的发展,人们平时生活普遍用电子产品。这些给人们带来了很大的方便。所以人们现在最热门研究科目之一就是电子产品的性能提高。电子器件的冷却是非常重要的。由于高温导致的实效在所有电子设备是小中所占的比例大于50%,传热问题甚至成为电力电子装置向小型化发展的瓶颈。电子器件用于 电子计算机容量和速度的快速发展以及导弹,卫星,宇宙探索和军用雷达等等。这些对高性能模块和高可靠大功率器的要求,一方面器件的特征尺寸愈小愈好,已从微米量级向亚微米发展;另一方面器件的集成度持续快速增加。空间微尺度和时间微尺度条件下的流动和传热问题的研究显得十分重要。 传热是最普遍的一种自然现象。几乎所有的工程领域都会遇到一些在特定条件下的传热问题,包括有传质同时发生的复杂传热问题。现代科学技术突飞猛进,传热学的工程应用研究也已跨越传统的能源动力,工艺过程节能的范畴,在材料的制备和加工、航天技术的发展、信息器件的温控、生物技术、医学、环境净化与生态维护、以及农业工程化、军备现代化等不同领域都有所牵涉。特别是高技术的迅猛发展,正面临着温度场、速度场、浓度场、电磁场、光场、声场、化学势场等各种场相互耦合下的热量传递过程和温度控制,从而使传热学迅速发展为当今技术科学中了解各种热物理现象和创新相应技术的重要基础学科。现就电子器件冷却方面的传热学最新研究动态作简要的介绍。 2.冷却技术 (1)微通道冷却技术 微通道换热器是指在基体上用光刻或其它刻蚀法制成截面尺寸仅有几十到上百微米的槽道,换热介质在这些小槽道中流过与换热器基体并通过基体与别的换热介质进行换热. 换热器的基体材料可以是金属、玻璃、硅或其它任何合适的材料. 这种换热器的突出优点是: ① 热系数大,换热效果很好。由于几何尺寸极小,流体流过通道时 的流动状态与常规换热器有很大区别。雷诺数一般增大一个数量级,因 而换热系数明显增大. 换热介质与基体之间温差很小。 ② 体积很小,特别适合电子器件的冷却。 ③ 制造工艺采用电子器件制造工艺,有利于降低成本、批量生产。 ④ 由于换热介质与基体间温差小,槽道间距离短,所以基体本身的 导热系数对总的换热导数影响小,所以,基体导热系数差一些也影响不大,因此可以选用多种材料作换热器。

详解最新PCB冷却技术

随着消费者对更小、更快要求的进一步加强,在解决密度日益提高的印刷电路板(PCB)散热问题方面出现了艰巨的挑战。随着堆叠式微处理器和逻辑单元达到GHz工作频率范围,高性价比的热管理也许已经成为设计、封装和材料领域的工程师亟需解决的最高优先级问题。 制造3D IC以获得更高的功能密度已经成为当前趋势,这进一步增加了热管理的难度。仿真结果表明,温度上升10℃会使3D IC芯片的热密度翻一倍,并使性能降低三分之一以上。 微处理器的挑战 国际半导体技术蓝图(ITRS)的预测表明,在今后三年内,微处理器内难以冷却区域中的互连走线将消耗高达80%的芯片功率。热设计功耗(TDP)是评估微处理器散热能力的一个指标。它定义了处理器达到最大负荷时释放出的热量以及相应的壳温。 Intel和AMD公司最新微处理器的TDP在32W至140W之间。随着微处理器工作频率的提高,这个数字还会继续上升。 拥有数百个计算机服务器的大型数据中心特别容易遭遇散热问题。根据一些估计数据,服务器的冷却风扇(可能消耗高达15%的电能)实际上已经成为服务器中及其本身的一个相当大的热源。另外,数据中心的冷却成本可能占数据中心功耗的约40%至50%.所有这些事实对局部和远程温度检测及风扇控制提出了更高的要求。 热量管理挑战在遇到安装包含多内核处理器的PCB时将变得更加艰巨。虽然处理器阵列中的每个处理器内核与单内核处理器相比可能消耗较少的功率(因而散发较少的热量),但对大型计算机服务器的净效应是给数据中心的计算机系统增加了更多的散热。简言之,在给定面积的PCB板上运行更多的处理器内核。 另外一个棘手的IC热管理问题涉及到芯片封装上出现的热点。热通量可以高达 1000W/cm2,这是一种难以跟踪的状态。 PCB在热管理中发挥着重要作用,因此需要热量设计版图。设计工程师应该尽可能使大功率元件相互间隔得越远越好。另外,这些大功率元件应尽可能远离PCB的角落,这将有助于最大化功率元件周围的PCB面积,加快热量散发。 将裸露的电源焊盘焊接到PCB上是常见的做法。一般来说,裸露焊盘类型的电源焊盘可以传导约80%的通过IC封装底部产生并进入PCB的热量。剩下的热量将从封装侧面和引线散发掉。 散热帮手 设计工程师现在可以向许多改良的热管理产品寻求帮助。这些产品包括散热器、热导管和风扇,可以用来实现主动和被动的对流、辐射和传导冷却。即使是PCB上安装芯片的互连方式也有助于减轻散热问题。 例如,用于将IC芯片互连到PCB的普通裸露焊盘方法可能会增加散热问题。当把裸露的路径焊接到PCB上时,热量会很快逸出封装并进入电路板,然后通过电路板的各个层散发进周围的空气。 德州仪器(TI)发明了一种PowerPAD方法,能把IC裸片安装到金属盘上(图1)。这个裸片焊盘将在制造过程中支撑裸片,并作为良好的散热路径将热量从芯片中散发出去。

电子器件散热技术现状及进展

电子器件散热技术现状及进展 随着电子及通讯技术的迅速发展,高性能芯片和集成电路的使用越来越广泛。电子器件芯片的功率不断增大,而体积却逐渐缩小,并且大多数电子芯片 的待机发热量低而运行时发热量大,瞬间温升快。高温会对电子器件的性能产 生有害的影响,据统计电子设备的失效有55 %是温度超过规定值引起的,电子器件散热技术越来越成为电子设备开发、研制中非常关键的技术。电子器件散 热的目的是对电子设备的运行温度进行控制(或称热控制),以保证其工作的稳 定性和可靠性,这其中涉及了与传热有关的散热或冷却方式、材料等多方面内容,目前主要有空气冷却技术和液体冷却技术两大类。 1 空气冷却技术 空气冷却技术是目前应用最广泛的电子冷却技术,包括自然对流空气冷却技 术和强制对流空气冷却技术。自然对流空气冷却技术主要应用于体积发热功率 较小的电子器件,利用设备中各个元器件的空隙以及机壳的热传导、对流和辐 射来达到冷却目的。 自然对流依赖于流体的密度变化,所要求的驱动力不大,因此在流动路径中 容易受到障碍和阻力的影响而降低流体的流量和冷却速率。对于体积发热功率 较大的电子器件,如单一器件功耗达到7 W(15~25 W-cm-2),板级(印制电路板) 功耗超过300 W(2~3W-cm-2)时,一般则采用强制对流空气冷却技术。强制散热或冷却方法主要是借助于风扇等设备强迫电子器件周边的空气流动,从而将 器件散发出的热量带走,这是一种操作简便、收效明显的散热方法。提高这种 强迫对流传热能力的方法主要有增大散热面积(散热片)以及提高散热表面的强 迫对流传热系数(紊流器、喷射冲击、静电作用)。对一些较大功率的电子器件,可以根据航空技术中的扰流方法,通过在现有型材散热器中增加小片扰流片,

散热器高效散热技术及应用研究阚宏伟

散热器高效散热技术及应用研究 摘要:随着电子技术的发展,使得电子器件的热流密度不断增加,这样势必对电子器有更高的散热要求,因此有效地解决散热问题已成为电子设备必须解决的关键技术。针对现代电子设备所面临的散热问题,就散热基本原理以及各种主流散热技术,包括自然对流散、强制风冷散热、液体冷却、热管、微槽道冷却、集成热路、热电致冷等常用的电子设备散热技术及某些前沿的研究现状、发展趋势及存在问题分别予以阐述。 关键词:热传递自然对流强制风冷热管散热热电制冷 引言:据统计,55%的电子设备失效是由温度过高引起的。可见,电子设备的主要故障形式为过热损坏,因此对电子设备进行有效的散热是提高产品可靠性的关键。电子设备的主要散热技术电子设备的高效散热问题与传热学(包括热传导、对流和热辐射)和流体力学(包括质量、动量和能量守恒三大定律)等原理的应用密切相关。 一:热传递主要有三种方式: 传导:物质本身或当物质与物质接触时,能量的传递就被称为热传导,这是最普遍的一种热传递方式,由能量较低的粒子和能量较高的粒子直接接触碰撞来传递能量。相对而言,热传导方式局限于固体和液体,因为气体的分子构成并不是很紧密,它们之间能量的传递被称为热扩散。 热传导的基本公式为“Q=K×A×ΔT/ΔL”。其中Q代表为热量,也就是热传导所产生或传导的热量;K为材料的热传导系数,热传导系数类似比热,但是又与比热有一些差别,热传导系数与比热成反比,热传导系数越高,其比热的数值也就越低。举例说明,纯铜的热传导系数为396.4,而其比热则为0.39;公式中A代表传热的面积(或是两物体的接触面积)、ΔT代表两端的温度差;ΔL则是两端的距离。因此,从公式我们就可以发现,热量传递的大小同热传导系数、热传热面积成正比,同距离成反比。热传递系数越高、热传递面积越大,传输的距离越短,那么热传导的能量就越高,也就越容易带走热量。 对流:对流指的是流体(气体或液体)与固体表面接触,造成流体从固体表面将热带走的热传递方式。 具体应用到实际来看,热对流又有两种不同的情况,即:自然对流和强制对流。自然对流指的是流体运动,成因是温度差,温度高的流体密度较低,因此质量轻,相对就会向上运动。相反地,温度低的流体,密度高,因此向下运动,这种热传递是因为流体受热之后,或者说存在温度差之后,产生了热传递的动力;强制对流则是流体受外在的强制驱动(如风扇带动的空气流动),驱动力向什么地方,流体就向什么地方运动,因此这种热对流更有效率和可指向性。

电子器件冷却技术概况与进展

电子器件冷却技术概况与进展 1.引言随着科技的发展,人们平时生活普遍用电子产品。这些给人们带来了很大的方便。所以人们现在最热门研究科目之一就是电子产品的性能提高。电子器件的冷却是非常重要的。由于高温导致的实效在所有电子设备是小中所占的比例大于50%,传热问题甚至成为电力电子装置向小型化发展的瓶颈。电子器件用于电子计算机容量和速度的快速发展以及导弹,卫星,宇宙探索和军用雷达等等。这些对高性能模块和高可靠大功率器的要求,一方面器件的特征尺寸愈小愈好,已从微米量级向亚微米发展;另一方面器件的集成度持续快速增加。空间微尺度和时间微尺度条件下的流动和传热问题的研究显得十分重要。传热是最普遍的一种自然现象。几乎所有的工程领域都会遇到一些在特定条件下的传热问题,包括有传质同时发生的复杂传热问题。现代科学技术突飞猛进,传热学的工程应用研究也已跨越传统的能源动力,工艺过程节能的范畴,在材料

的制备和加工、航天技术的发展、信息器件的温控、生物技术、医学、环境净化与生态维护、以及农业工程化、军备现代化等不同领域都有所牵涉。特别是高技术的迅猛发展,正面临着温度场、速度场、浓度场、电磁场、光场、声场、化学势场等各种场相互耦合下的热量传递过程和温度控制,从而使传热学迅速发展为当今技术科学中了解各种热物理现象和创新相应技术的重要基础学科。现就电子器件冷却方面的传热学最新研究动态作简要的介绍。 2.冷却技术(1)微通道冷却技术微通道换热器是指在基体上用光刻或其它刻蚀法制成截面尺寸仅有几十到上百微米的槽道,换热介质在这些小槽道中流过与换热器基体并通过基体与别的换热介质进行换热. 换热器的基体材料可以是金属、玻璃、硅或其它任何合适的材料. 这种换热器的突出优点是: ①?? 热系数大,换热效果很好。由于几何尺寸极小,流体流过通道时的流动状态与常规换热器有很大区别。雷诺数一般增大一个数量级,因而换热系数明显增大. 换热介质与基体之间温差很小。②?? 体积很小,特别

贴片式功率器件的散热计

贴片式功率器件的散热计算 Heat Dispersion Calculation of Surface Mounted Power Device 北京航空航天大学方佩敏 自上世纪90年代开始,贴片式封装器件逐步替代了穿孔式封装器件。近年来,除少数大功率器件还采用穿孔式封装外,极大部分器件都采用贴片式(SMD)封装。由于贴片式功率器件封装尺寸小,不能采用加散热片的方法来散热,只能用印制板的敷铜层作为散热(一定的面积)。因此在贴片式功率器件的应用中需要在印制板(PCB)布局前,考虑所需的敷铜层散热面积。 本文介绍Micrel 公司推荐的一种简单计算方法,它可以根据选定的功率器件和使用的条件进行计算,并用查图表的方式得出所需的散热敷铜层的面积。由于实际情况较复杂,会影响到计算的正确性,比如使用印制板的厚度尺寸不同、敷铜层的厚度尺寸不同、印制板走线的宽度不同及机壳的容积大小和有无散热孔等,所以这种计算是一种粗略的估算。计算过程中,可以发现设定的使用条件是否合理,选择器件的封装尺寸大小是否能满足散热的需求。 两种过热保护 功率器件在工作过程中会产生热量使管芯的温度升高,在最大的功率输出时产生的热量最大,使管芯的温度升得最高。如果散热条件不佳,则管芯的结温超过150℃时,使器件损坏(一般称为“烧掉”)。如果散热条件良好,但使用过程中出现故障(如负载发生局部短路、线性稳压电源发生调整管短路等),则输出功率超过最大允许输出功率,会使功率器件损坏。功率器件设计者设计了两种过热保护措施:自动热调节和过热关闭保护,提高了器件的安全性及可靠性。 用户在设计PCB 散热面积时,要保证在正常最大输出功率时不出现自动热调节(自动减小输出功率)和热关闭(无输出)现象。只有在出现故障时才出现过热保护。 散热与热阻 功率器件在工作时,管芯的热量通过封装材料传导到管壳、经管壳传到敷铜板散热面,再由散热面传到环境空气中。这种热的传导过程中会有一定的热阻,如管芯传到管壳的热阻JC θ,管壳传到敷铜板的热阻CS θ,敷铜板散热面传到环境控制的热阻SA θ,这种热的传导(热的流向) 如图1所示,图中管芯的温度结温为J T 、环境空气的温度为A T 。温度由高的流向低的,从管芯到环境空气总的热阻JA θ与热传导过程的各热阻的关系为: SA CS JC JA θθθθ++=⑴ 各种热阻的单位是℃/W。热阻大,散热差。 管芯 环境 空气 J T A T JA θJC θCS θSA θ热的流向 图1

各种电力电子器件技术特点的比较及应用

《电力牵引交流传动及其控制系统》报告——各种电力电子器件技术特点的比较及其应用

电力电子器件及其应用装置已日益广泛,这与近30 多年来电力电子器件与电力电子技术的飞速发展和电力电子的重要作用密切相关。20 世纪80 年代以后,电力电子技术等)的飞速发展,给世界科学技术、经济、文化、军事等各方面带来了革命性的影响。电子技术包含两大部分:信息电子技术(包括:微电子、计算机、通信等)是实施信息传输、处理、存储和产生控制指令;电力电子技术是实施电能的传输、处理、存储和控制,保障电能安全、可靠、高效和经济地运行,将能源与信息高度地集成在一起。 事实表明,无论是电力、机械、矿冶、交通、石油、能源、化工、轻纺等传统产业,还是通信、激光、机器人、环保、原子能、航天等高技术产业,都迫切需要高质量、高效率的电能。而电力电子正是将各种一次能源高效率地变为人们所需的电能,实现节能环保和提高人民生活质量的重要手段,它已经成为弱电控制与强电运行之间、信息技术与先进制造技术之间、传统产业实现自动化、智能化改造和兴建高科技产业之间不可缺少的重要桥梁。而新型电力电子器件的出现,总是带来一场电力电子技术的革命。电力电子器件就好像现代电力电子装置的心脏,它对装置的总价值,尺寸、重量、动态性能,过载能力,耐用性及可靠性等,起着十分重要的作用。因此,新型电力电子器件及其相关新型半导体材料的研究,一直是电力电子领域极为活跃的主要课题之一。 一个理想的功率半导体器件,应当具有下列理想的静态和动态特性:在阻断状态,能承受高电压;在导通状态,能导通高的电流密度并具有低的导通压降;在开关状态和转换时,具有短的开、关时间,能承受高的d i/d t 和d u/d t,具有低的开关损耗;运行时具有全控功能和良好的温度特性。自20 世纪50 年代硅晶闸管问世以后,功率半导体器件的研究工作者为达到上述理想目标做出了不懈努力,并已取得了世人瞩目的成就。早期的大功率变流器,如牵引变流器,几乎都是基于晶闸管的。到了20 世纪80 年代中期,4.5kV 的可关断晶闸管得到广泛应用,并成为在接下来的10 年内大功率变流器的首选器件,一直到绝缘栅双极型晶体管的阻断电压达到 3.3kV 之后,这个局面才得到改变。与此同时,对GTO 技术的进一步改进导致了集成门极换流晶闸管的问世,它显示出比传统GTO 更加显著的优点。目前的GTO 开关频率大概为500Hz,由于开关性能的提高,IGCT 和功率IGBT 的开通和关断损耗都相对较低,因此可以工作在1~3kHz 的开关频率下。至2005 年,以晶闸管为代表的半控型器件已达到70MW/9000V 的水平,全控器件也发展到了非常高的水平。当前,硅基电力电子器件的水平基本上稳定在109~1010WHz 左右,已逼近了由于寄生二极管制约而能达到的硅材料极限,不难理解,更高电压、更好开关性能的电力电子器件的出现,使在大功率应用场合不必要采用很复杂的电路拓扑,这样就有效地降低了装置的故障率和成本。 1电力电子器件 电力电子器件又称为功率半导体器件,主要用于电力设备的电能变换和控制电路方面大功率的电子器件(通常指电流为数十至数千安,电压为数百伏以上)。 电力电子器件目前的制约因素有耐压,电流容量,开关的速度。电力电子器件的分类多种多样。按照电力电子器件的开关控制能力,电力电子器件可分为三类:不可控器件、半控型器件、全控型器件。按照驱动电路加在电力电子器件控

电子器件该怎么散热

电子器件该怎么散热 01 电子元器件都怎么散热 在电子元器件的高速发展过程中,它们的总功率密度不断增大,但尺寸却越来越较小,热流密度因而持续增加,这种高温环境势必会影响电子元器件的性能指标。对此,必须要加强对电子元器件的热控制。如何解决电子元器件的散热问题是现阶段的重点。本文章主要对电子元器件的散热方法进行了简单的分析。 电子元器件的高效散热问题,受到传热学以及流体力学的原理影响。电气器件的散热就是对电子设备运行温度进行控制,进而保障其工作的温度以及安全性,主要涉及到散热、材料等各个方面的不同内容。现阶段电子元器件散热主要有自然、强制、液体、制冷、疏导、热隔离等方式。 1、自然散热或冷却方式 自然散热或冷却方式就是在自然的状况之下,不接受任何外部辅助能量的影响,通过局部发热器件以周围环境散热的方式进行温度控制,其主要的方式就是导热、对流以及辐射集中方式,而主要应用的就是对流以及自然对流等方式。 自然散热或冷却方式主要就是应用在对温度控制要求较低的电子元器件、器件发热的热流密度相对较低的低功耗器材以及部件之中。在密封以及密

集性组装的器件中,如果无需应用其他冷却技术,也可以应用此种方式。在一些时候,对于散热能力要求相对较低的情况,也可以利用电子器件自身的特征,适当增加其与临近的热沉导热或者辐射影响,并在通过优化结构优化自然对流,进而增强系统的散热能力。 2、强制散热或冷却方式 强制散热或冷却方式就是通过风扇等方式加快电子元器件周边的空气流动,从而带走热量的一种方式。此种方式较为简单便捷,应用效果显著。在电子元器件中,如果其空间较大使空气更易流动,或者安装一些散热设施,就可以应用此种方式。在实践中,提升此种对流传热能力的主要方式具体如下:要适当增加散热的总面积、要在散热表面产生相对较大的对流传热系数。 在实践中,增大散热器表面散热面积的方式应用较为广泛。在工程中主要就是通过翅片的方式拓展散热器的表面面积,进而强化传热效果。而翅片散热方式可以分为不同的形式,包括在一些热耗电子器件的表面应用的换热器件,以及空气中应用的换热器件。应用此种模式可以减少热沉热阻,也可以提升其散热的效果。而对于一些功率相对较大的电子器件,则可以应用航空中的扰流方式进行处理,通过对散热器中增加扰流片,在散热器的表面流场中引入扰流,则可以提升换热的效果。

论电力电子器件及其应用的现状和发展

论电力电子器件及其应用的现状和发展 发表时间:2019-03-12T16:14:19.577Z 来源:《电力设备》2018年第27期作者:宗思邈 [导读] 摘要:电力电子器件我们也称之为功率半导体器件,以下简称为电子器件,主要作为电力设备中的大功率电子器件的功率转换和控制。 (东文高压电源(天津)股份有限公司 300220) 摘要:电力电子器件我们也称之为功率半导体器件,以下简称为电子器件,主要作为电力设备中的大功率电子器件的功率转换和控制。目前,电力电子器件已广泛应用于机械行业、冶金业、电力系统等一系列领域中去。并扩展到汽车、家用电器、医疗设备和照明等各个生活领域中。二十一世纪,随着技术的不断更新,它作为信息产业与传统产业之间的桥梁,一定会迎来一个新的发展趋势。并且在国民经济中占有非常重要的地位。 关键词:电力;电子器件;应用 1电力电子技术的产生和发展 1.1电力电子技术的产生 电力电子技术产生于二十世纪,美国通用电气公司研制出第一个晶闸管为电力电子技术的诞生标志,电子电力技术设备在不同领域中的广泛应用,为社会发展带来了传动技术,其中晶闸管是电力电子技术的主要运用表现,开启了电力电子技术的新纪元。因为晶闸管的出现,可控型的整流装置被研制出来,从此电力系统逐渐进入了变流器时代,加速了电力电子技术的发展。 1.2电力电子技术的发展 电力电子技术的产生促进了电力系统的发展,产生多代电力电子器件,其中第一代电力电子器件主要以晶体管和晶闸管为典型代表。晶闸管出现后,因为它比较良好的电气性能和控制性能,使之很快取代了对人体有害的且电压落差极大的水银整流器,并且其使用范围迅速扩大。二十世纪七十年代,以门极可关断晶闸管、电力双极型晶体管为主导地位的全控型器件高速发展,这些全控型器件具有既可让门极开通也可让门极关断的功能,且它的开关速度比晶闸管快很多,所以全控型器件通常用于开关频率较高的场所。它又将电力电子技术推向了一个新的发展阶段。在二十世纪八十年代,以绝缘栅极双极型晶体管为代表的复合型器件的出现,因为具有驱动功率小、开关速度快、通态压降小、载流能力大、可承受电压高等优点,使其迅速成为现代电力电子技术的主导器件,这些复合型器件常常综合了多个器件的优点,在大量电力系统场合中得到了大量运用。 2电力电子器件的应用发展 自上世纪50年代以来,世界上诞生了第一台晶闸管,它标志着电力电子器件在现代电气传动的历史舞台上的到来。基于可控硅的可控硅整流器成为电力传动行业的一个变革。 到了上世纪70年代,晶闸管已经发展成能够承受高电压和高电流的产品。这一代的半控装置被称为第一代电子电气设备。然而,晶闸管的缺点是不能关闭。随着电力电子器件的不断进步,研制了一种全控型的GTR、GTO和MOSFET。这种类型的产品被称为第二代电力电子设备。 之后便出现了第三代电子器件,主要为绝缘栅双极晶体管。第三代电子器件具有频率快、反射速度快、能耗低等特点。近年来,微电子技术与电力电子器件开始相结合,创造出一种多功能、更智能、更高效的全控性能集成器件。电流整流器可以改善电性能、降低电路能量损耗和提高电流效率方面起着重要作用。 上世纪70年代,GTR产品推出时便大获成功。它的额定值达到当时非常高的标准,同时拥有非常强大的灵活性,而且还具备开关能耗低、时间短等多个优点。它在中等容量和频率电路中起着很重要的作用。第三代绝缘栅双极晶体管可以控制电压,具有输入电阻大、驱动功率小的优点,有非常大的发展潜力。 3电力电子器件的具体应用 首先太阳能光伏发电对于电力电子器件的发展来说是比较重要的,光伏建筑一体化应用对于电力电子器件的完善也发挥了独特的作用。光伏电池发电和建筑物外电池存在很多问题,虽然这类电池原件的成本比较低,但是总的来说这类电池和电子元件适合低日照水平,电池转换效率高,原材料比较易得。但是某些电力电子器件的转换效率一般,淘汰的产品还会污染环境。电力电子器件的开发和利用促进了光伏建筑一体化的进程,土地成本过高和二氧化碳的排放量过高等问题都可以得到有效解决,而且我国最新研发出的电力电子器件可以节省光伏电池支撑结构,节省光伏电池的具体安装成本,帮助相关建筑工作人员实现土地资源的合理利用。与此同时,电力电子器件可以将太阳能和建筑物进行有效结合,帮助相关工作人员解决电能供给的难题,而且也丰富了电力电子器件的原材料。首先我们可以发现,在进行电力电子器件的研究与开发时候,运用碳化硅制造的电子器件已经成为主要的研究方向。这主要是因为碳化硅电力电子器件的高压和高温的特性与我国传统的电力电子器件相比,具有很大优越性,完全可以保障新型电力电子器件的成本和质量。尤其是碳化硅的耐高压和高温,足以帮助相关工作人员展开对于新型电力电子器件的研究。 4浅析电力电子器件发展趋势 4.1对破化硅的应用 碳化硅作为一种创新性较高的宽带半导体材料,得到人们的广泛关注。它本身带有一定的电性能,并且物理材质稳定,属于上等的电力电子器件原材料。与原始型的制作材料相比,具有耐高压和耐高温的优势。将碳化硅合理应用于电力电子器件的原材料中.能够推动电力电子器件的整体发展。但是现阶段,由于生产成本相对较高、产难以保证等原因,导致碳化硅难以被广泛生产使用。因此,应加强对电力电子器件材料的深人探究,及时改进、解决存在的问题,使碳化硅的良好性能得到充分开发与利用。 4.2对氮化稼的应用 氮化稼是电力电子器件生产过程中较为常见的原材料,它与碳化硅存在很多不同点。虽然氮化稼是一种较为优良的电力 电子器件原材料,但是在实际制作过程中,应以碳化硅的晶片或者蓝宝石作为生产底料,因此这一因素限制了氮化稼的发展速度。近几年,这一问题得到了有效缓解,随着氮化稼在LED照明装置中的广泛运用,也促使氮化稼的异质结外延技术得到了进一步的强化。除此之外,因为氮化稼的实用性较强,其应用范围不断拓展,基于氮化稼的半导体材料具备优异的物理性能和化学性能,所以其不仅在LED市场中被广泛应用,更是逐步拓展到了更多的应用领域。但是由于氮化稼电子器件的耐高温性能较差,一旦温度超过1000摄氏度,就会产生

电子元件封装大全及封装常识

电子元件封装大全及封装常识 一、什么叫封装 封装,就是指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连接.封装形式是指安装半导体集成电路芯片用的外壳。它不仅起着安装、固定、密封、保护芯片及增强电热性能等方面的作用,而且还通过芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件相连接,从而实现内部芯片与外部电路的连接。因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能下降。另一方面,封装后的芯片也更便于安装和运输。由于封装技术的好坏还直接影响到芯片自身性能的发挥和与之连接的PCB(印制电路板)的设计和制造,因此它是至关重要的。 衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。封装时主要考虑的因素: 1、芯片面积与封装面积之比为提高封装效率,尽量接近1:1; 2、引脚要尽量短以减少延迟,引脚间的距离尽量远,以保证互不干扰,提高性能; 3、基于散热的要求,封装越薄越好。 封装主要分为DIP双列直插和SMD贴片封装两种。从结构方面,封装经历了最早期的晶体管TO(如TO-89、TO92)封装发展到了双列直插封装,随后由PHILIP公司开发出了SOP小外型封装,以后逐渐派生出SOJ (J型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、TSSOP (薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路)等。从材料介质方面,包括金属、陶瓷、塑料、塑料,目前很多高强度工作条件需求的电路如军工和宇航级别仍有大量的金属封装。 封装大致经过了如下发展进程: 结构方面:TO->DIP->PLCC->QFP->BGA ->CSP; 材料方面:金属、陶瓷->陶瓷、塑料->塑料; 引脚形状:长引线直插->短引线或无引线贴装->球状凸点; 装配方式:通孔插装->表面组装->直接安装 二、具体的封装形式 1、SOP/SOIC封装 SOP是英文Small Outline Package 的缩写,即小外形封装。SOP封装技术由1968~1969年菲利浦公司开发成功,以后逐渐派生出SOJ(J型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路)等。 2、DIP封装 DIP是英文Double In-line Package的缩写,即双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。DIP是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。 < 1 > 3、PLCC封装 PLCC是英文Plastic Leaded Chip Carrier 的缩写,即塑封J引线芯片封装。PLCC封装方式,外形呈正方形,32脚封装,四周都有管脚,外形尺寸比DIP封装小得多。PLCC封装适合用SMT表面安装技术在PCB上安装布线,具有外形尺寸小、可靠性高的优点。 4、TQFP封装 TQFP是英文thin quad flat package的缩写,即薄塑封四角扁平封装。四边扁平封装(TQFP)工艺能有效利用空间,从而降低对印刷电路板空间大小的要求。由于缩小了高度和体积,这种封装工艺非常适合对空间要求较高的应用,如PCMCIA 卡和网络器件。几乎所有ALTERA的CPLD/FPGA都有TQFP 封装。 5、PQFP封装 PQFP是英文Plastic Quad Flat Package的缩写,即塑封四角扁平封装。PQFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大规模集成电路采用这种封装形式,其引脚数一般都在100以上。 6、TSOP封装 TSOP是英文Thin Small Outline Package的缩写,即薄型小尺寸封装。TSOP内存封装技术的一个典型特征

基于快速热响应相变材料的电子器件散热技术

华南理工大学学报(自然科学版) 第35卷第7期Journal of Sou th C hina U n iversity of Technology V ol .35 N o .7 2007年7月 (N atu ral Science Edition )July 2007 文章编号:10002565X (2007)0720052205    收稿日期:2006209226 3基金项目:广东省自然科学基金资助项目(05006551) 作者简介:尹辉斌(19802),男,博士生,主要从事传热强化与数值模拟研究.E 2mail:peppy222@https://www.sodocs.net/doc/9c16614545.html, 通讯作者:高学农,副教授,E 2mail:cexngao@scut .edu .cn 基于快速热响应相变材料的电子器件散热技术 3 尹辉斌1  高学农1  丁 静2  张正国 1 (1.华南理工大学传热强化与过程节能教育部重点实验室,广东广州510640;2.中山大学工学院,广东广州510006) 摘 要:以石蜡为相变材料,利用膨胀石墨的高导热系数和多孔吸附特性,制备出高导热系数的快速热响应复合相变材料,其导热系数可达41676W /(m ?K ).将该材料应用于电子器件散热装置,在不同的发热功率条件下,储热材料散热实验系统的表观传热系数是传统散热系统的1136~2198倍,其散热效果明显优于传统散热系统,可有效提高电子元器件抗高负荷热冲击的能力,保证电子电器设备运行的可靠性和稳定性.关键词:相变材料;热性能;电子器件;散热 中图分类号:TK124;T Q 021.3 文献标识码:A 随着电子及通讯技术的迅速发展,高性能芯片和大规模及超大规模集成电路的使用越来越广泛.电子器件芯片的集成度、封装密度以及工作频率不断提高,而体积却逐渐缩小(例如,微处理器的特征尺寸在1990至2000年内从0135μm 减小到0118μm ),这些都使得芯片的热流密度迅速升高 [1] .由于高温会 对电子元器件的性能产生有害的影响,如过高的温度会危及半导体的结点,损伤电路的连接界面,增加导体的阻值和形成机械应力损伤 [2] .随着温度的升 高,其失效率呈指数增长趋势,甚至有的器件在环境温度每升高10℃,失效率增大1倍以上,被称为10℃法则.据统计,电子设备的失效率有55%是温度超过规定的值引起的 [3] .同时,大多电子芯片的待机 发热量低而运行时发热量大,使瞬间温升快.因此抗热冲击和散热问题已成为芯片技术发展的瓶颈.相变储热材料由于具有蓄能密度大、蓄放热过程近似等温、过程易控制等优点,备受研究者的关注,而提高其热性能更成为了研究热点 [426] .近年来,将相变 储热材料应用于电子元件的散热技术在国外已受到 广泛重视,并在航空、航天和微电子等高科技系统及军事装备中 [7211] 得到一定应用. 将快速热响应复合相变储热材料应用于电子器件的散热器中,针对大多数电子器件满负荷工作时间短而待机时间长的特点,对电子器件及芯片因散热而引起的表面温度升高可起到移峰填谷的作用.当电子器件满负荷工作时可将部分热量储存起来,而在其待机发热量低时再释放出储存的热量,这样可有效提高电子器件抗高负荷热冲击的能力,保证电子电器设备运行的可靠性和稳定性,同时在低温环境中电子器件可不经过预热便能正常工作.复合相变储热材料的散热技术可广泛应用于各类电子产品中,具有良好的应用前景. 1 复合相变材料的热性能 与传统的散热方式不同,对于基于快速热响应储热材料的散热技术除要求相变材料的储热密度大之外,还要求材料具有较高的导热系数,传热速率快.为解决传统相变材料高储热密度和低导热系数之间的矛盾,根据电子元件散热技术领域对快速热响应相变储热材料的性能(如密度、相变温度、储热密度)要求,实验选定导热系数高且密度低的膨胀石墨作为无机支撑材料,石蜡作为有机相变材料,利用石蜡与膨胀石墨间的固、液表面张力,孔隙结构的

海拔对电子元件影响

海拔对电子元件器件影响 高海拔环境的两个主要特点及影响 ?高海拔空气稀薄、气压低: 气压低——>电气间隙(Clearance)的击穿电压低 空气稀薄——>风流量减小,散热量降低 ?海拔高度增加,宇宙射线粒子增加 宇宙射线粒子——>破坏器件的电荷区电场,造成器件失效 海拔超过2000米时,元气件的绝缘性能将下降,需要使用大爬距的加强型绝缘件。 另外还把过高时还需考虑元器件的降容系数,具体到每个元件,厂家会有说明降容系数的。 空气稀薄散热差元件降容系数大,易击穿,因此电气间隙要大。 电气元件和成套标注的2000米是针对试验条件的,不代表不能在2000米以上应用。 海拔高度对温升的影响 很多公司在电子设备产品的设计时,都要求设备能在高海拔下稳定工作。通常“高海拔”指的是海拔 1500m(约5000英尺)或3000m(10000英尺)的高度。对于设计和质量控制来说,预测产品在高海拔下运行时的温升是非常重要的。有许多方法可以用于修正海拔高度对于温升的影响,而其中的许多方法都为了简化计算过程而牺牲了精度。尽管许多公司确实使用了有依据的修正方式,然而其他很多公司不必要使用这样的复杂公式。 如今电子设备的结构很复杂。电路板上安装着不同的电子元件,这些电子元件使得流经电路板的空气有着复杂的流场,如回流,死区和其他热源引起的热尾流。如果不考虑这些造成分析的困难,所有表面温度的计算和海平面的测量数据都可以使用本文中的推荐方法外推到任何海拔高度(超过海拔6000米就不好这样修正了,当然,提供的数据也截止到6000m,即20000英尺) 高度修正 以海平面为条件测量或者计算得到的空气冷却的表面温度能够使用系数进行修正得到高海拔条件下的结果。这种方式适用于任何依赖空气对流散热的表面,如壳温,电路板的温度和散热片的温度,甚至在不知道准确的耗散功率的情况下也能使用这种方法。并且在一个强迫风冷系统中的空气温升也可以使用这种方法估算。高度修正系数表达了特定的高度下对流环境的影响。这种方法首先是参考文献1所提出的。电子设备的对流环境包括:轴流/离心风扇冷却系统,有通风孔的机箱中的或是直接暴露在外以自然对流冷却的电子元件。系数表如下表1。

电力电子设备的冷却技术研究进展

热加工工艺技术与材料研究 电力电子设备的冷却技术研究进展 张小京1,易志华2 (11西南科技大学信息工程学院,四川绵阳621010;21西安电子科技大学电子工程学院,陕西西安710071) 摘 要:为了适应电力电子集成技术高热密度散热的需求,在对传统的冷却方式不断改进的同时,一些新型高效的冷却方式不断涌现。本文对几种常用冷却方式的原理、优缺点及最新的研究动态进行了综述,为电力电子设备热设计人员选择合适的冷却方式,进而设计出高效的散热装置提供方便。 关键词:电力电子设备;冷却技术;散热装置中图分类号:T K 123文献标志码:B 近年来电力电子集成技术的迅速发展,使得电力电子装置设计和维护难度显著降低,极大地推广了电力电子装置的应用范围。目前,电力电子集成技术面临的问题,概括地讲就是如何使电力电子装置的功能越来越完善,体积越来越小,这对装置的材料、工艺以及电路本身都提出了巨大的挑战;而随之在装置内部产生的高热流密度更是受到了人们的普遍关注,甚至认为传热问题成为了电力电子集成技术继续进步的瓶颈[1]。 由于电力电子设备的小型化和集成化,要求其散热装置具有紧凑性、可靠性、灵活性、高散热效率、不需要维修等特点,从而为现代传热技术在电子冷却领域的应用提出了新的课题。这就要求广大从事电子设备热设计的科技人员在对传统的冷却方式改进的同时,不断探索、研究、开发新型高效的冷却装置。以下就对几种常用冷却方式的原理、优缺点及目前的研究进展分别介绍。 1 各种冷却方式的特点及新进展 图1 风冷翅片散热器1.1 风冷翅片散热器 风冷翅片散热器分2个部分,和热源直接接触的部分为翅片散热器,他负责将热源发出的热量引出;风扇则用来给散热器强制对流冷却降温。其冷却效果与使用的散热器的结构密切相关。目前有关研究主要集中在散热器的散热特性及结构、材料的优化上。影响强制对流冷却效果的另一个参数是风速,风速越大,散热器的热阻越小,但流动阻力越大,适当提高风速有利于热阻的降低,但风速 超过一定数值之后再提高已无多大意义[2]。 该散热方式由于具有结构简单,价格低廉,安全可靠,技术成熟的优点,而成为最常用的散热方法之一;其缺点则是:不能将温度降至室温以下;且因风扇的转动而存在噪音;风扇寿命有时间限制。1.2 水冷 虽然风冷翅片散热器成本低廉,但受到散热能力的限制,随着热流密度不断提高,具有更大散热能力的水冷装置的应用将大行其道。根据文献[3],气体强制对流换热系数的大致范围为20~100 W/(m 2?℃ ),水强制对流的换热系数高达15000W/(m 2?℃ ),是气体强制对流换热系数的百倍以上。 图2 某大功率模块底部结构 目前,很多电力电子装置都是用水冷装置作为散热系统,该系统通常由散热器,水管及一个水泵组成。散热器有一个进水口及出水口,在其内部有多条水道,这样可以充分发挥水冷的优势,带走更多的热量。同时因水冷系统没有风扇,所以不会产生振动,噪声也会相对较小。该系统的缺点是价格比较昂贵,水在密闭状态下容易发生结垢、变质,在使用过程中还要完全杜绝漏水、断水等情况的发生。同时该系统在使用过程中由于水的流动会造成电子元件周围电磁场的一些变化,可能会影响到系统的稳定性。 图2是某大功率模块水冷系统上部的照片,从图上可以看出,1根进水管和1根出水管直接连到封装结构内部,一旦漏水将对系统造成很大的损失。1.3 微通道冷却 微通道冷却 ? 34?《新技术新工艺》?热加工工艺技术与材料研究 2008年 第1期

相关主题