搜档网
当前位置:搜档网 › 电力系统的中性点运行方式及低压配电系统的接地型式资料

电力系统的中性点运行方式及低压配电系统的接地型式资料

电力系统的中性点运行方式及低压配电系统的接地型式资料
电力系统的中性点运行方式及低压配电系统的接地型式资料

电力系统的中性点运行方式及低压配电系统的接地型式

一、电力系统的中性点运行方式

电力系统中的电源(含发电机和电力变压器)中性点有下三种运行方式:一种是中性点不接地;一种是中性点经阻抗接地;再一种是中性点直接接地。前两种一般合称为小电流接地;后一种称为电流接地。

(一)、中性点不接地的电力系统

分布电容及相间电容

发生单相接地故障时的中性点不接地系统

分析见教材原件

(二)、中性点经消弧线圈接地的电力系统

对消弧线圈“消除弧光接地过电压”的异议

(三)、中性点直接接地或经低阻接地的电力系统

二、低压配电系统接地型式

按保护接地的型式,分为

(一)TN系统、中性点直接接地系统,且都引出有中性线(N 线),因此都称为三相四线制系统。

1、TN-C

2、TN-S

3、TN-C-S

(二) TT系统

(三) IT系统中性点不接地或经阻抗(约1000欧)接地,且

通常不引出中性线,因此它一般为三相三线制系统。

第四节供电质量要求及用电企业供配电电压的选择

一、供电质量

电压对电器设备运行的影响:

电压和频率被认为是衡量电力系统电能质量的两个基本参

数。

二、供电频率、频率偏差及其改善措施

三、供电电压、电压偏差及其调整措施电力系统的电

1.三相交流电网和电力设备的额定电压

我国标准规定的三相交流电网和电力设备的额定电压

1.电网(电力线路)的额定电压

我国根据国民经济发展的需要及电力工业的水平,经全面的技术经济分析后确定

的。它是确定各类电力设备额定电压的其本依据。

2.用电设备的额定电压

由于电压损耗,线路上各点电压略有不同,用电设备,其额定电压只能按线路首

端与末端的平均电压即电网的额定电压Un来制造。所以,用电设备的额定电

压规定与供电电网的额定电压相同。

3.发电机的额定电压

发电机是接在线路首端的,所以,规定发电机额定电压

高于所供电网额定电压的5%。

三个电压的关系

4. 电力变压器一次绕组额定电压

如变压器直接与发电机相连,则其一次绕组额定电压应与电机额定电压相同,即高于供电电网额定电压的5%。

如变压器不与发电机相连,而是连接在线路上,其

一次绕组额定电压应与供电电网额定电压

相同。

5. 电力变压器二次绕组额定电压

电力变压器的二次绕组额定电压:变压器一次绕组加

上额定电压而二次绕组开路时的电压,即为空载电压。

如果变压器二次侧供电线路较长则变压器二次绕组额定电压要考虑补偿变压器

二次绕组本身5%的电压降和变压器满载时输出的二次电压仍高于电网额定电

压5%,所以这种情况的变压器二次绕组额定电压要高于二次侧电网额定电压

10%,

如果变压器二次侧供电线路不长则变压器二次绕组额定电压,只需高于二次侧电网额定电压5 %,仅考虑补偿变压器内部的5%。

(二)电压偏差及其允许值

1.电压偏差

电压偏差:(U-Un)/Un %=ΔU

电压偏差是由于供配电系统运行方式改变以及负荷缓慢变化而引起的,它的变动

是相当缓慢的。

2.电压偏差允许值

用电设备端子处电压偏差允许值为

电动机+5%、-5%;

照明灯一般为+5%、-5%,对于远离变电所的工作场所,难以满足上述要求

时,可为+5%、-10%。应急照明、道路照明的警卫照明+5%、-10%。

其他用电设备当无特殊规定时为+5%、-5%。

(三)电压偏差的影响及其调整措施

为了减小电压偏差,供电系统采取相应的电压调整措施:

(1) 合理选择变压器的电压分接头或采用有载调压型变压器

无载调压型变压器,换接电压分接头,必须停电进行,

因此是不能频繁操作的。

有载调压型变压器,在正常运行过程中自动地调整电压,保证设备端电压

的稳定。

(2)降低供配电系统的阻抗

(3)尽量使系统的三相负荷均衡

(4)合理地改变系统的运行方式

(5)采用无功功率的补偿装置

四、电压波动、闪变及其抑制措施

(一)电压波动和闪变的有关概念

1、电压波动的含义及其危害

电压波动:是电网电压的短时快速变动或电压包络线的周期性快速变动。

电压波动是由于负荷急剧变动引起的。

电压波动会影响电动机的正常起动,可使某些电子设备特别是电子计算机无法正常工作;可使照明灯发生明显的闪烁现象,等等。

2、闪变的含义及其危害

(二)电压变动和闪变的允许值

(三)电压波动和闪变的抑制措施

(1) 采用专用线或专用变压器单独供电

(2)减小系统阻抗。

(3)选用短路容量较大或电压等级较高的电网供电

减小或切除引起电压波动的负荷。

(4)装设静止型无功补偿装置(SVC)

五、电网谐波及其抑制措施

(一)、电网谐波的有关概念

1、谐波的含义

谐波:按傅里叶级数分解的一系列频率为基波频率整数倍的高次谐正弦电流

高次谐波的干扰成了当前系统中影响电能质量的一大“公害”,亟待采取对策。高次谐波的产生

由于系统中有非线性元件存在,有高次谐波电流或电压产生。

2、谐波的的危害

(二)谐波电压限值和谐波电流允许值

(三)谐波的抑制措施

(1) 大容量的非线性负荷由短路容量较大的电网供电

(2)三相整流变压器采用Y、d或D、y联结

(3)增加整流变压器二次侧的相数

(4)装设分流滤波器

(5)装设静止无功补偿装置(SVC)

六、三相电压不平衡及其补偿

七、电力用户供配电电压的选择

(一)电力用户供电电压的选择

(二)电力用户高压配电电压的选择

工厂供电系统的高压配电压,主要取决于当地供电电源电压及工厂高压设备的电压和容量、数量等因素。通常有10KV ;6KV;35KV等。

(三) 电力用户低压配电电压的选择

工厂供电系统的低压配电电压,主要取决于低压用电设备的电压,一般采用220/380V,或380/660V。

低压供电系统的接地方式分类

有关低压供电系统的接地方式的分析 XXXXXXXXXXXXXXXXXXX 一、工程施工供电系统 工程施工用电的基本供电系统有(380V)三相三线制和(380/220V)三相四线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC )对此作了统一规定,称为TT 系统、TN 系统、IT 系统。其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统。下面就以上所指各种供电系统做一个扼要的分析。 (一)工程供电的基本方式 根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。 ( 1 )TT 方式供电系统 TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备金属外壳和正常不带电的金属部分与大地直接联接,而与系统如何接地无关。在TT 系统中负载的所有接地均称为保护接地,如图1-1 所示。这种供电系统的 设备的外壳对地电压高于安全电压,属于危险电压。 2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT 系统不宜在380/220V供电系统中应用。

3 )TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的施工单位是采用TT 系统,施工单位专门安装一组接地装置,引出一条专用 统适用于用电设备容量小且很分散的场合。 ( 2 ) TN 方式供电系统这种供电系统是将电气设备的金属外壳和正常不带电的金属部分与工作零线相接的保护系统,称作接零保护系统,用TN 表示。它的特点如下。 1 )一旦设备出现外壳带电,接零保护系统能将漏电电流上升为(220V)短路电流,这个电流很大,是TT 系统的很多倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2 )TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT 系统优点多。TN 方式供电系统中,根据其保护零线是否与工作零线分开而划分为TN-C 和TN-S 等两种。 ( 3 ) TN-C 方式供电系统它是用工作零线兼作接零保护线,可以称作保护中性线,

低压配电系统的接地方式(最新版)

低压配电系统的接地方式(最 新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0375

低压配电系统的接地方式(最新版) 低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。 国际电工委员会(IEC)对系统接地的文字符号的意义规定如下:第一个字母表示电力系统的对地关系: T一点直接接地; I-所有带电部分与地绝缘,或一点经阻抗接地。 第二个字母表示装置的外露可导电部分的对地关系: T-外露可导电部分对地直接电气连接,与电力系统的任何接地

点无关; N-外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。 后面还有字母时,这些字母表示中性线与保护线的组合: S-中性线和保护线是分开的; C-中性线和保护线是合一的。 XXX图文设计 本文档文字均可以自由修改

低压配电系统中常用的型式有:IT系统、TT系统、TN系统,下面我们做分别介绍。

低压配电系统中常用的型式有:IT系统、TT 系统、TN系统,下面我们做分别介绍。 一、IT型 必须说明:(略) 二、TT型

必须说明: 《农村低压电力技术规程》DL/T499-2001中规范: 3.4.5 采用TT系统时应满足的要求: 1、采用TT系统,除变压器低压侧中性点直接接地外,中性线不得再行接地,且应保持与相线(火线)同等的绝缘水平。 2、为了防止中性线的机械断线,其截面积应满足以下要求: 相线的截面积S:S≤16平方毫米中性线截面积S0:S0=S(与相线一样) 相线的截面积S:16<S≤35平方毫米中性线截面积S0:S0=16 相线的截面积S:S>35平方毫米中性线截面积S0:S0=S/2(相线的一半) 3、电源进线开关应隔离(能断开)中性线,漏电保护器必须隔离(能断开)中性线。 4、必须实施剩余电流保护(即必须安装漏电保护开关),包括: (1)剩余电流总保护、剩余电流中级保护(必要时),其动作电流应满足: 剩余电流总保护和是及时切除低压电网主干线和分支线路上断线接地等产生较大剩余电流的故障。 剩余电流总保护器的动作电流整定: 总保护整定 剩余电流较小的电网非阴雨季节为50mA 阴雨季节为200mA 剩余电流较大的电网非阴雨季节为100mA 阴雨季节为300mA (2)剩余电流末级保护 剩余电流中末级保护装于用户受电端(即终端用户,例如家庭用电,或某台用电设备),其保护范围是防止用户内部绝缘破坏,发生人身间接接触触电等而产生的剩余电流所造成的事

故。对直接接触触电,仅作为基本保护措施的附加保护。 剩余电流中末级保护应满足以下条件: Re×Iop≤Ulim 式中: Re—受电设备外露可导电部分的接地电阻(Ω) Ulim—安全电压极限(正常情况下可按50V交流有效值考虑) Iop—剩余电流保护器的动作电流(A) Iop整定值:≤30mA 5、配电变压器低压侧及出线回路,均应装设过电流保护,包括:短路保护和过负荷保护。 6、PEE线的作用:当设备发生漏电时,漏电电流可以通过大地回流到变压器的中性点,可以降低带点的设备外壳电压,降低人触及设备外壳被电击的危险程度。 7、当发生单相接地故障时,接地电流通过大地流回变压器中性点,使得接地电流很大,促使线路保护器可靠动作(特别是整定值符合规范的漏电保护器)可靠动作,切断电源。 三、TN型 TN系统:包括TN—C、TN—C—S、TN—S三种系统 1、TN—C系统 必须说明: 《供配电系统设计规范》GB50052-2009对低压配电系的统规范:为了保护民用建筑的用电

低压配电系统的接地方式及特点

编号:SM-ZD-97536 低压配电系统的接地方式 及特点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

低压配电系统的接地方式及特点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1 低压配电系统中的接地类型 (1)工作接地:为保证电力设备达到正常工作要求的接地,称为工作接地。中性点直接接地的电力系统中,变压器中性点接地,或发电机中性点接地。 (2)保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。保护接地的形式有两种:一种是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。 (3)重复接地:在中性线直接接地系统中,为确保保护安全可靠,除在变压器或发电机中性点处进行工作接地外,还在保护线其他地方进行必要的接地,称为重复接地。 (4)保护接中性线:在380/220V低压系统中,由于中性点是直接接地的,通常又将电气设备的外壳与中性线相连,称为低压保护接中性线。此种方式也叫保护接零。

低压配电接地系统种类

低压配电系统接地方式及特点 接地制式按照配电系统和电气设备的不同接地组合分类。按照行业相关规定,接地系统一般由两个字母组成,必要时可加后续字母。 第一字母表示电力系统的对地关系 T-----一点接地 I-----所有带电部分与地绝缘,或一点经阻抗接地 第二字母表示装饰的外露可导电部分对地关系 T-----外露可导电部分对地直接电气连接,与电力系统的任何接地点无关 N-----外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)如果后面还有字母,这个字母表示中性线和保护线的组合 S-----中性线和保护线是分开的 C-----中性线和保护线是合一的(PEN线) 我们国家110KV及以上系统普遍采用中性点直接接地系统(即大电流接地系统)。 35KV、10KV系统普遍采用中性点不接地系统或经大阻抗接地系统(即小电流接地系统) 380V/220V低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。 IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。即:过去称三相三线制供电系统的保护接地。

TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。即过去的三相四线制供电系统中的保护接地。 TN系统,在变压器或发电机中性点直接接地的380/220V三相四线低压电网中,将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接。即过去的三相四线制供电系统中的保护接零。 TN系统的电源中性点直接接地,中性线引出。按其保护线形式,TN系统又分为:TN-C系统、TN-S系统和TN-C-S系统等三种。 (1)TN-C系统(三相四线制),该系统的中性线(N)和保护线(PE)是合一的,该线又称为保护中性线(PEN)线。它的优点是节省了一条导线,缺点是三相负载不平衡或保护中性线断开时会使所有用电设备的金属外壳都带上危险电压。 (2)TN-S系统就是三相五线制,该系统的N线和PE线是分开的,从变压器起就用五线供电。它的优点是PE线在正常情况下没有电流通过,因此不会对接在PE线上的其他设备产生电磁干扰。此外,由于N线与PE线分开,N线断开也不会影响PE线的保护作用。 ③TN-C-S系统(三相四线与三相五线混合系统),该系统从变压器到用户配电箱式四线制,中性线和保护地线是合一的;从配电箱到用户中性线和保护地线是分开的,所以它兼有TN-C系统和TN-S系统的特点,常用于配电系统末端环境较差或有对电磁抗干扰要求较严的场所。

低压配电系统的供电方式

低压配电系统的供电方式 低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。 国际电工委员会(IEC)对系统接地的文字符号的意义规定如下: 第一个字母表示电力系统的对地关系: T--一点直接接地; I--所有带电部分与地绝缘,或一点经阻抗接地。 第二个字母表示装置的外露可导电部分的对地关系: T--外露可导电部分对地直接电气连接,与电力系统的任何接地点无关; N--外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。 后面还有字母时,这些字母表示中性线与保护线的组合: S--中性线和保护线是分开的; O--中性线和保护线是合一的。 1低压配电系统中的接地类型 (1)工作接地:为保证电力设备达到正常工作要求的接地,称为工作接地。中性点直接接地的电力系统中,变压器中性点接地,或发电机中性点接地。 (2)保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。保护接地的形式有两种:一种

是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。 (3)重复接地:在中性线直接接地系统中,为确保保护安全可靠,除在变压器或发电机中性点处进行工作接地外,还在保护线其他地方进行必要的接地,称为重复接地。 (4)保护接中性线:在380/220V低压系统中,由于中性点是直接接地的,通常又将电气设备的外壳与中性线相连,称为低压保护接中性线。TT系统在确保安全用电方面还存在有不足之处,主要表现在: ①当设备发生单相碰壳故障时,接地电流并不很大,往往不能使保护装置动作,这将导致线路长期带故障运行。 ②当TT系统中的用电设备只是由于绝缘不良引起漏电时,因漏电电流往往不大(仅为毫安级),不可能使线路的保护装置动作,这也导致漏电设备的外壳长期带电,增加了人身触电的危险。 因此,TT系统必须加装剩余电流动作保护器,方能成为较完善的保护系统。目前,TT系统广泛应用于城镇、农村居民区、工业企业和由公用变压器供电的民用建筑中。 (3)TN系统: 在变压器或发电机中性点直接接地的380/220V三相四线低压电网中,将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接。即:过去称三相四线制供电系统中的保护接零。 当电气设备发生单相碰壳时,故障电流经设备的金属外壳形成相线对保护线的单相短路。这将产生较大的短路电流,令线路上的保护装置立即动作,将故障部分迅速切除,从而保证人身安全和其他设备或线路的正常运行。 1)IT系统:

电力系统接地讲解知识

电力系统的中性点接地有三种方式: 有效接地系统(又称大电流接地系统) 小电流接地系统(包含不接地和经消弧线圈接地) 经电阻接地系统(含小电阻、中电阻和高电阻) 大电流接地系统 用于110kV及以上系统及。该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。 作为220kV枢纽变电站的主变必须并列运行。其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV系统零序保护的方向性和稳定性。主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。 作为220kV负荷变电站的主变必须分列运行。此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。所有主变不能相220kV系统提供零序电流,110kV 侧零序阻抗稳定。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV侧中性点通过间隙接地。110kV侧中性点必须全部直接接地。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。所以主变110kV 侧中性点通过间隙接地,并且不再加装间隙保护。 0.4kV系统均采用大电流接地运行。对于Y/Y0接线的变压器,零序阻抗很大。虽然接入的负荷多为单相负荷,由于每个负荷较小,并不一定会造成三相负荷电流严重不一致(中性点电流小于额定电流的25%),不会造成三相电压严重不平衡。但当线路出现对地短路时,短路电流较小,往往不能使断路器(空气开关)跳开或熔断器熔断,致使事故扩大,许多情况下形成火灾。此时应在变压器中性点引线处加装过流保护,跳开高压侧断路器。显然这是比较复杂的。 使用△/Y0接线的变压器,可以克服这一缺点。但充油变压器的分接开关制作比较困难,尤

中性点接地方式

1 中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2 中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。 中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。 此外,由于电网存在电容和电感元件,在一定条件下,因倒闸操作或故障,容易引发线性谐振或铁磁谐振,这时馈线较短的电网会激发高频谐振,产生较高谐振过电压,导致电压互感器击穿。对馈线较长的电网却易激发起分频铁磁谐振,在分频谐振时,电压互感器呈较小阻抗,其通过电流将成倍增加,引起熔丝熔断或电压互感器过

低压配电系统的接地型式有IT、TT、TN-C、 TN-S、TN—C—S五种

低压配电系统的接地型式有IT、TT、TN-C、TN-S、TN—C—S五种 一、各种接地型式的优缺点及适应性 1、IT系统的优缺点及适应性 结线方式如图1。 IT系统的主要优点是:一、单线触电电流小,易于脱离,因而不易造成人身触电重伤、死亡事故;二、保护接地的保护效果很好,能切实起到接地保护作用;三、能抑制低压线路或高压线路落雷在配变上形成的正变换或逆变换电压; 四、对于高压两线一地运行电网,能避免(低压中性点不接地时)或抑制(低压中性点通过阻抗接地时)配变高压侧及台架绝缘击穿通过接地线入地而形成的反击(对低压电网)过电压。 IT系统的缺点主要是:(1)某相线接地后,其它相线对地电压升高3倍,中性线的对地电压升高到220V,此时将增加触电的可能性和危害程度;(2)低压电网雷击时,因雷电流难以泄漏而出现雷击过电压,造成低压电网的绝缘击穿;(3)高压线与低压线搭连或配变高低压绕组间绝缘击穿,会使低压电网出现危险的过电压造成绝缘击穿或伤亡事故. 为扬其长而避其短,IT系统适应于没有中性线输出的纯动力用电处所或中性线输出很短的混合用电的小自然村. 2、TT值统的优缺点及其适应性 TT系统的结线方式如图2所示. TT系统的主要优点是:(1)能拟制高压线与低压线搭连或配变高低压绕组间绝缘击穿时低压电网出现的过电压;(2)对低压电网的雷击过电压有一定的泄漏能力;(3)与低压电器外壳不接地相比,在电器发生碰壳事故时,可降低

外壳的对地电压,因而可减轻人身触电危害程度;(4)由于单相接地时接地电流比较大,可使保护装置(漏电保护器)可靠动作,及时切除故障。 TT系统的主要缺点是:一、低、高压线路雷击时,配变可能发生正、逆变换过电压;二、低压电器外壳接地的保护效果不及IT系统. TT系统适应于有中性线输出的单、三相没合用电的较大的村庄.加装上漏电保护装置,可收到较好的安全效果. 3、TN-C系统的优缺点及其适应住 TNC系统除具有TT系统中中性线直接接地的优点外,还因低压电器设备的外壳与中性线相接,当发生碰壳故障时,单相短路电流可使该电器的短路保护装置动作,及时切除故障设备而避免触电事故的发生.所以比 TT系统中电器外壳的接地保护的效果要好一些。其缺点是当发生中性线路时,可能使断路点下侧的所有接中性线的电器的外壳带电,因而增加人身触电的可能性。 TN-C系统的结线方式如图 3所示 TN-C系统的适用场所与TT系统基本相同。 4.TN-S系统的优缺点及适应性。 TN-S系统的结线方式如图4所示.

电力系统的中性点运行方式及低压配电系统的接地型式

电力系统的中性点运行方式及低压配电系统的接地型式 一、电力系统的中性点运行方式 电力系统中的电源(含发电机和电力变压器)中性点有下三种运行方式:一种是中性点不接地;一种是中性点经阻抗接地;再一种是中性点直接接地。前两种一般合称为小电流接地;后一种称为电流接地。 (一)、中性点不接地的电力系统 分布电容及相间电容 发生单相接地故障时的中性点不接地系统 分析见教材原件 (二)、中性点经消弧线圈接地的电力系统 对消弧线圈“消除弧光接地过电压”的异议

(三)、中性点直接接地或经低阻接地的电力系统 二、低压配电系统接地型式 按保护接地的型式,分为 (一)TN系统、中性点直接接地系统,且都引出有中性线(N 线),因此都称为三相四线制系统。

1、TN-C 2、TN-S 3、TN-C-S (二) TT系统 (三) IT系统中性点不接地或经阻抗(约1000欧)接地,且 通常不引出中性线,因此它一般为三相三线制系统。 第四节供电质量要求及用电企业供配电电压的选择 一、供电质量 电压对电器设备运行的影响: 电压和频率被认为是衡量电力系统电能质量的两个基本参 数。 二、供电频率、频率偏差及其改善措施 三、供电电压、电压偏差及其调整措施电力系统的电压 1.三相交流电网和电力设备的额定电压 我国标准规定的三相交流电网和电力设备的额定电压 1.电网(电力线路)的额定电压 我国根据国民经济发展的需要及电力工业的水平,经全面的技术经济分析后确定 的。它是确定各类电力设备额定电压的其本依据。

2.用电设备的额定电压 由于电压损耗,线路上各点电压略有不同,用电设备,其额定电压只能按线路首 端与末端的平均电压即电网的额定电压Un来制造。所以,用电设备的额定电 压规定与供电电网的额定电压相同。 3.发电机的额定电压 发电机是接在线路首端的,所以,规定发电机额定电压 高于所供电网额定电压的5%。 三个电压的关系 4. 电力变压器一次绕组额定电压 如变压器直接与发电机相连,则其一次绕组额定电压应与电机额定电压相同,即高于供电电网额定电压的5%。 如变压器不与发电机相连,而是连接在线路上,其 一次绕组额定电压应与供电电网额定电压 相同。 5. 电力变压器二次绕组额定电压 电力变压器的二次绕组额定电压:变压器一次绕组加 上额定电压而二次绕组开路时的电压,即为空载电压。

低压配电系统精彩试题(理论部分)解析汇报

低压配电系统试题 (一填空题: 1.操作电器用于接通或断开回路,常用电器是、组合电器或自动空气断路器。 答案:交流接触器 2.电气设备一般采 用、、过电流继电器等作为短路保护措施。 答案:熔断器;自动空气断路器3.断路器既能切断负载电流,又可切断。 答案:短路电流 4.对于供电需求较大,且受高压供电线路容量或市电变电站容量的限制的通信局(站,如具有两路高压市电,一般采用的运行方式。 答案:分段供电 5.对于双向闸刀开关,其倒换前先负荷电流,才能进行倒换,因为闸刀开关通常不具有功能。 答案:切断;灭弧 6.隔离开关无特殊的装置,因此它的接通或切断不允许在有的情况下进行。 答案:灭弧、负荷电流 7.根据低压电器的组合原则,在供电回路中,应装有 和,对于装有交流接触器的回路还应有操作电器。 答案:隔离电器;保护电器

8.功率因数的定义为与的比值。答案:有功功率;视在功率 9.交流接触器的常闭触点是指。答案:不加电时触点闭合 10.熔断器的核心部分 是,它既是敏感元件又是元件。 答案:熔体、执行 11.熔断器是用来保护和的。答案:过载、短路 12.熔断器中的熔体是核心部 分,使用时把它在被保护 电路中,在发生过载或短路时, 电流过大,熔体受过热而熔化将 电路切断。 答案:串接 13.三相交流电A、B、C相分别 用、、 3 种颜色表示相序,中性线一般用 黑色做标记。答案:黄、绿、红 14.交流配电系统熔断器的温升 应低于。答案:80℃ 15.低压开关柜又叫低压配电

屏,是按一定的线路方案将有关低压设备组装在一起的成套配电装置,其结构形式主要 有、两大类。 答案:固定式、抽屉式 16.低压熔断器种类很多,按结构形式分有:系列封闭插 入式;系列有填料封闭螺 旋式;系列有填料管式。 答案:RC、RL、RT、 17.《全国供用电规则》规定: 无功电力应就地平衡,用户应在提高用电自然功率因数的基础上,设计和装置,并做到 随其负荷和电压变动时及时投入或切除。供电部门还要求通信企业的功率因数要达到 以上。答案:无功补偿设备;0.9 18.为了保证供配电系统一次设

电力系统中性点接地方式浅析

电力系统中性点接地方式浅析 【摘要】电力系统中性点接地方式是指电力系统中发电机和变压器中性点与地的连接方式,中性点不同接地方式各具优点与不足,涉及电网安全运行、供电可靠性、过电压与绝缘的配合、断路器选用、继电保护方式、接地设计等多种因素。 【关键词】中性点;接地;方式 0 引言 电力系统中性点接地方式分为大接地电流系统和小接地电流系统。前者分为中性点直接接地电流系统、中性点经低值阻抗接地系统,后者可分为中性点不接地系统、中性点经消弧线圈接地系统、中性点经高值阻抗接地系统。本文将对各类中性点接地方式的优点与不足进行分析探讨。 1 大接地电流系统 1.1 中性点直接接地系统 1.1.1 中性点直接接地系统原理 1)单相接地故障时,电压情况 (1)接地故障相电压降低为零; (2)非接地故障相电压不变,依然为相电压; (3)中性点对地电压不变,依然为零。 2)单相接地故障时,电流情况 形成短路?流经很大短路电流?装设继电保护?跳闸切除故障,避免扩大成相间短路。 1.1.2 中性点直接接地系统优点 1)降低设备绝缘水平(约20%),节省造价。

在单相接地故障时,中性点电位仍为零,非故障相对地电压仍为相电压,设备绝缘水平只需按相电压考虑。 2)不另设消弧装置,即可自行消弧。 在单相接地故障时,不会产生间歇性电弧过电压,不会因此导致设备损毁,不需另设消弧装置。 1.1.3 中性点直接接地系统的不足及改进措施 1)不允许故障设备继续运行,可靠性不如小接地电流系统。 发生单相接地故障时,短路电流触发保护装置动作,断路器跳闸切断故障部分,降低了供电可靠性。 2)短路电流很大,单相磁场对弱电干扰,特别是电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 3)接地点还会产生较大跨步电压与接触电压,容易发生触电伤害事故。 1.2 中性点经低值阻抗接地系统(见3) 2 小接地电流系统 2.1 中性点不接地系统 2.1.1 中性点不接地系统原理 1)接地故障相对地电压降低为零; 2)非接地故障相对地电压升高为线电压,且相位改变; 3)中性点对地电压升高为相电压,且方向与故障相电压相反; 4)相对中性点电压和线电压仍不变,认为三相系统对称,可继续运行2h; 5)接地点流过的电容电流是正常每相对地电容电流的3倍,故在接地点产生电弧。 2.1.2 中性点不接地系统优点

低压配电系统的几种接地形式TT

低压配电系统的几种接地形式TT、TN、IT 什么是 TT 、 IN 、 IT 系统? 一、建筑工程供电系统 建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。国际电工委员会( IEC )对此作了统一规定,称为 TT 系统、 TN 系统、 IT 系统。其中 TN 系统又分为 TN-C 、 TN-S 、 TN-C-S 系统。下面内容就是对各种供电系统做一个扼要的介绍。 TT 系统 TN-C 供电系统→ TN 系统→ TN-S IT 系统 TN-C-S (一)工程供电的基本方式 根据 IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即 TT 、 TN 和 IT 系统,分述如下。 ( 1 ) TT 方式供电系统 TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称 TT 系统。第一个符号 T表示电力系统中性点直接接地;第二个符号 T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在 TT 系统中负载的所有接地均称为保护接地,如图 1-1 所示。这种供电系统的特点如下。 1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需

要漏电保护器作保护,困此 TT 系统难以推广。 3 ) TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。现在有的建筑单位是采用 TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量,如图 1-2 所示。 图中点画线框内是施工用电总配电箱,把新增加的专用保护线 PE 线和工作零线 N 分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③ TT 系统适用于接地保护占很分散的地方。 ( 2 ) TN 方式供电系统 这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用 TN 表示。它的特点如下。 1 )一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是 TT 系统的 5.3倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2 ) TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比 TT 系统优点多。 TN 方式供电系统中,根据其保护零线是否与工作零线分开而划分为 TN-C 和 TN-S 等两种。 ( 3 ) TN-C 方式供电系统它是用工作零线兼作接零保护线,可以称作保护中性线,可用 NPE 表示,如图 1-3 所示。这种供电系统的特点如下。 1)由于三相负载不平衡,工作零线上有不平衡电流,对地有电压,所以与保护线所联接的电气设备金属外壳有一定的电压。 2 )如果工作零线断线,则保护接零的漏电设备外壳带电。 3 )如果电源的相线碰地,则设备的外壳电位升高,使中性线上的危

低压配电系统中配电级数的选择

【摘要】配电系统是否安全可靠、经济实用并便于管理,其配电级数的设计是至关重要的。相关规范规定,在低压配电设计中,从变压器低压侧用电设备的配电级数一般不超过三级,对于重要的负荷,上下级保护电器的动作应具有选择性。在实际工程的设计中,由于对配电级数的理解不到位,导致了配电系统经济技术上部合理的情况时有发生。本文首先区分了配电级数和保护级数的不同概念,对保护级之间选择性的问题做了理解,最后重点探讨了低压系统中各级配电保护的选择性配合。 【关键词】低压配电系统;配电级数;保护级数;断路器;故障线路 一、对配电级数和保护级数的理解 配电级数是一个供电回路经配电装置分配成几个供电回路过程的次数,通过几次分配就称作几级配电。对于一个配电装置而言,总进线开关与分支配出开关合起来算做一级配电,这与其总进线开关是否具有保护功能无关。 保护级数则是按保护开关的上下级个数来确定的,它既与配电级数有联系又不同于配电级数。同一电压等级的配电级数,高压不宜多于两级,低压不宜多于三级;而保护级数则可能达到四级甚至五级,一般情况下各级保护之间需要进行保护配合,即动作应具有选择性。 二、保护级之间选择性的问题 保护的选择性是指协调具有保护功能的电源,当系统任意点故障后可以被位于仅靠故障点的上一级保护电源消除,而且只能由其单独类消除,从而保证其他回路的工作连续性。选择性保护对于所有故障电源(即无论是过负荷、接地故障还是短路等任何一种故障)都能实现选择性保护时未完全选择性。当仅在一定故障电流范围内实现选择性保护时为部分选择性。对于重要负荷,其供电线路上、下级保护电气的选择性,可保证故障时不致越级切断线路而引起非故障线路的设备终端供电,这对设备的供电可靠性是很重要的。 如果当过载或短路故障发生时,d1和d2断路器均跳闸,那么此保护就无选择性,如图1所示。 对保护分级有充分的理解,有助于合理设置上下级保护电气的选择性。规范只规定了对于重要负荷需要有选择性,但对重要负荷没有说明和列举,对于是完全选择还是部分选择也无具体要求。根据笔者对相关规范的理解,重要负荷为一级负荷、二级负荷及消防负荷;对于一级负荷及消防负荷,须做到完全选择,对于二级负荷,部分选择即可。 三、低压系统中各级配电保护的选择性配合 低压配电系统一般分二到三级,不宜超过三级。第一级为变电所低压柜,第二级为中间(楼层)配电箱,第三级为终端配电箱。应尽量减少配电级数,级数少有利于保护的选择性配合。对于各级配电保护的选择性配合探讨如下: (一)变电所低压柜 1、断路器的形式 一般总开关及联络开关采用框架断路器,出线开关采用塑壳断路器。 2、总开关与联络开关的选择方法 总开关与联络开关应有选择性,方法一是按选择性表格选型,框架电流一般相差二级时可以保证选择性要求;方法二是联络开关取消瞬时保护,总开关于分开关的长延时保护整定值的比值不小于1:6,方法三是联络开关改为框架式负荷开关。 3、总开关与分开关的选择方法 总开关与分开关应有选择性,以施耐德mt型框架开关与nsx型塑壳开关为例,经查表比对,基本上实现了全系列的全选择性保护。《工业于民用配电设计手册》建议为保证选择性低压总开关取消瞬时保护,仅设短延时保护,这是没有必要的。变压器低压出线总开关不宜取消瞬时保护,一方面难以复核系统设备及排线的动热稳定性,大短路电流时应该采用能量保

电力系统中性点接地方式

电力系统中性点接地方式简述 电力系统中性点是指星形连接的变压器或发电机的中性点。 电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系。 电力系统中性点接地方式是人们防止系统事故的一项重要应用技术,具有理论研究与实践经验密切结合的特点,因而是电力系统实现安全与经济运行的技术基础。 电力系统中性点接地方式主要是技术问题,但也是经济问题。在选定方案的决策过程中,应结合系统的现状与发展规划进行技术经济比较,全面考虑,使系统具有更优的技术经济指标,避免因决策失误而造成不良后果。 简言之,电力系统的中性点接地方式是一个系统工程问题。 接地,出于不同的目的,将电气装置中某一部位经接地线和接地体与大地作良好的电气连接称为接地。 根据接地的目的不同,分为工作接地和保护接地。 工作接地是指为运行需要而将电力系统或设备的某一点接地。如变压器中性点直接接地或经消弧线圈接地、避雷器接地等都属于工作接地。 保护接地是指为防止人身触电事故而将电气设备的某一点接地。如将电气设备的金属外壳接地、互感器二次线圈接地等。 接地方式主要有2种,即直接接地系统和不接地系统。 1.中性点直接接地系统

中性点直接接地系统——又称大电流系统;适于110kV以上的供电系统,380V以下低压系统。直接接地系统发生单相接地是会使保护马上动作切除电源与故障点。 随着电力系统电压等级的增高和系统容量增大,设备绝缘费用所占比重也越来越大。中性点不接地方式的优点已居于次要地位,主要考虑降低绝缘投资。所以,110kV及以上系统均采用中性点直接接地方式。对于380V以下的低压系统,由于中性点接地可使相电压固定不变,并可方便地获得相电压供单相设备用电,所以除了特定的场合以外(如矿井),亦多采用中性点接地方式。 对于高压系统,如110kV以上的供电系统,电压高,设备绝缘会高,如果中性点不接地,当单相接地时,未接地的二相就要能够承受√ 3倍的过电压,瓷绝缘子体积就要增大近一倍,原来1米长的绝缘子就要增加到1.732米以上,不但制造起来不容易,安装也是问题,会使设备投资大大增加;另外110kV以上系统由于电压高,杆塔的高度也高,不容易出现单相接地的情况,因而就是出现了接地就跳闸也不会影响多少供电可靠性,因而从投资的经济性考虑,在110kV以上供电系统,多采用中性点直接接地系统。 在低压380/220V系统中,有许多单相用电设备,如果中性点不接地运行,则发生单相接地后,有可能未接地的相电压会升高,因过电压烧毁家用电器,从安全性考虑,必须采用中性点直接接地系统,将中性点牢牢接地。 1kV以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 中性点直接接地系统的优点:发生单相接地时,其它两完好相对地电压不会升高,因此可降低绝缘费用,保证安全。

低压配电系统IT、TT和TN接地方式的详细图文详解分析

低压配电系统IT、TT和TN接地方式的详细图文详解分析 仪表人对仪表接地并不陌生,在本文讲讲低压配电IT系统、TT系统、TN系统的接地方式。这三种接地方式容易混淆,它们的原理、特点和适用范围各有不同,希望能对广大的仪表人有所帮助。 定义根据现行的国家标准《低压配电设计规范》(GB 50054-2011),低压配电系统有IT系统、TT系统、TN系统三种接地形式。①IT、TT、TN的第一个字母表示电源端与地的关系T表示电源变压器中性点直接接地;I标志电源变压器中性点不接地,或通过高阻抗接地。②IT、TT、TN的第二个字母表示电气装置的外露可导电部分与地的关系T标志电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点;N表示电气装置的外露可导电部分与电源端接地点有直接电气连接。低压配电系统IT、TT和TN全面剖析1、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。IT系统可以有中性线,但IEC强烈建议不设置中性线。因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。 IT系统特点①IT系统发生第一次接地故障时,仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;②发生接地故障时,对地电压升高1.73倍;③220V负载需配降压变压器,或由系统外电源专供;④安装绝缘监察器。使用场所:供电连续性要求较高,如应急电源、医院手术室等。 ⑤IT方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。地下矿井内供电条件比较差,电缆易受潮。⑥运用IT方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。但是,如果用在供电距离很长的情况下,供电线路对大地的分布电容就不能忽视了。⑦在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。只有在供电距离不太长时才比较安

低压配电系统设计

第四章低压配电系统设计 低压配电系统概述 配电系统设计的一般规定供配电系统设计应根据工程特点、规模和发展规划,做到远近期结合,以近期为主。供配电系统设计应采用符合国家现行有关标准的效率高、能耗低、性能先进的电气产品。供配电系统设计应根据工程特点、规模和发展规划,做到远近期结合,以近期为主。供配电系统设计应采用符合国家现行有关标准的效率高、能耗低、性能先进的电气产品. 设计原则 (1)配电系统应做到供电可靠,电能质量好,满足生产要求。对一级负荷应由两个独立电源;对二级负荷一般要有两个电源,可以手动切换,在条件很困难的情况下,允许只有一个电源。 (2)配电系统的接线力求简单灵活,便于操作维护,并能适应负荷的变化和系统的发展。同一电压的配电级数不宜多于两级。 (3)制定配电系统方案时,一般不考虑当一电源系统发生故障或检修停电时,另一电源进线也同时发生故障。 (4)制定配电系统方案时要充分考虑节约基建投资,降低运行费用,减少有色金属的消耗量。 (5)配电系统应考虑负荷的增长,预留必要的发展余地作出分期建设的规划。配、变电所的电源进线要有适当的富裕的供电能力。 设计的一般规定和要求 负荷分级 按对供电可靠性要求的负荷分类 我国将电力负荷按其对供电可靠性的要求及中断供电在政治上、经济上造成的损失或影响的程度划分为三级,分别为一级、二级、三级负荷。 ⑴符合下列情况之一时,应为一级负荷 ①中断供电将造成人身伤亡时。 ②中断供电将在政治、经济上造成重大损失时。例如:重大设备损坏、重大产品报废、用重要原料生产的产品大量报废、国民经济中重点企业的连续生产过程被打乱需要长时间才能恢复等。 ③中断供电将影响有重大政治、经济意义的用电单位的正常工作。例如:重要交通枢纽、重要通信枢纽、重要宾馆、大型体育场馆、经常用于国际活动的大量人员集中的公共场所等用电单位中的重要电力负荷。 在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应视为特别重要的负荷。 ⑵符合下列情况之一时,应为二级负荷 ①中断供电将在政治、经济上造成较大损失时。例如:主要设备损坏、大量产品报废、连续生产过程被打乱需较长时间才能恢复、重点企业大量减产等。

低压配电系统三种形式

根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。 TN系统: 电源变压器中性点接地,设备外露部分与中性线相连。 TT系统: 电源变压器中性点接地,电气设备外壳采用保护接地。 IT系统: 电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳采用保护接地。 1、TN系统 电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类: 即TN—C系统、TN—S系统、TN—C—S系统。下面分别进行介绍。 1.1、TN—C系统 其特点是: 电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。 (1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。TN—C系统一般采用零序电流保护;

(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位; (3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。 由上可知,TN-C系统存在以下缺陷: (1)、当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。当三相负载严重不平衡时,触及零线可能导致触电事故。 (2)、通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。 (3)、对接有二极漏电保护开关的单相用电设备,如用于TN-C系统中其金属外壳的保护零线,严禁与该电路的工作零线相连接,也不允许接在漏电保护开关前面的PEN线上,但在使用中极易发生误接。 (4)、重复接地装置的连接线,严禁与通过漏电开关的工作零线相连接。 TN-S供电系统,将工作零线与保护零线完全分开,从而克服了TN-C供电系统的缺陷,所以现在施工现场已经不再使用TN-C系统。 1.2、TN—S系统 整个系统的中性线(N)与保护线(PE)是分开的。 (1)当电气设备相线碰壳,直接短路,可采用过电流保护器切断电源; (2)当N线断开,如三相负荷不平衡,中性点电位升高,但外壳无电位,PE线也无电位; (3)TN—S系统PE线首末端应做重复接地,以减少PE线断线造成的危险。 (4)TN—S系统适用于工业企业、大型民用建筑。

相关主题