搜档网
当前位置:搜档网 › 吉林大学有限元分析课实验报告

吉林大学有限元分析课实验报告

吉林大学有限元分析课实验报告
吉林大学有限元分析课实验报告

有限元方法B 实验报告与作业

班级:411210班

姓名:林亮基

学号:41121010

学院:机械学院

目录

实验1:杆系结构有限元静力学分析 (1)

实验2:基于APDL命令流方式的杆系结构有限元静力学分析 (4)

实验3:实体建模 (6)

实验4:平面结构有限元静力学分析 (9)

实验5:平面结构有限元静力学分析 (14)

实验6:空间结构有限元静力学分析 (18)

作业1杆系结构有限元分析 (20)

作业2平面问题有限元分析 (22)

作业3空间问题有限元分析 (24)

实验1:杆系结构有限元静力学分析

一、实验目的:

通过本实验掌握杆系结构有限元静力学分析GUI操作,并熟悉相应的APDL命令流。

二、问题描述:

上图所示为订书钉,尺寸见图中标注。材料弹性模量为E=2.1×105MPa,泊

松比为0.3,横截面积尺寸为宽B=0.64mm,高H=0.402mm。当订书钉被压入纸

张时,约需要120N的载荷,载荷均匀分布在订书钉上部。就以下两种情况进行有限元分析:

1)钉入时A、B为铰支;

2)钉入时A、B为固支。

三、实验思路:

1)由于结构和谁都处于平面内,且结构和受力相对于订书钉中心轴对称,所以可采用对称的平面梁模型,即选取1/2模型进行分析,在此考虑了在梁模型中的倒角对结构变形和受力的情况影响;

2)单元类型选择BEAM188;(在ANSYS14.0里只能选这个了)

3)根据坐标生成关键点,由关键点连成线,生成直线倒角,再对几何模型(线)进行(一维)网格划分。

四、实验步骤:

1、选择单元类型

在ANSYS界面内,执行Main Menu>Preprocessor>Element Type> Add/Edit/Delete,添加一个element;

选择Structural>Beam>2node188,点击OK确定。

2、定义截面属性

Sections>Beam>Common Sections在弹出的对话框中输入截面尺寸(B=0.402,H=0.64)此处一度遇到困难,因为14.0版本中的Beam188无需定义实常数。

3、定义材料参数

在ANSYS界面中执行Main Menu>Preprocessor>Material Props>Material Models>Structural>Linear>Elastic>Isotropic在这里必须指出的是,指导书上全都说明要双击打开,实际上是单击即可。

4、生成几何模型

Step1生成三个关键点

Main Menu>Preprocessor>Modeling>Create>Keypoints>In Active CS

依次输入三个点的坐标:(6.32,0,0)、(6.32,6.1,0)、(0,6.1,0),每输入一个点的坐标后点Apply,输入最后一个坐标点Apply后点Cancel。

Step2生成两条线段

Main Menu>Preprocessor>Modeling>Create>lines>lines>In Active Coord

分别用Pick选择点1和2,再选择点2和点3,点击OK

Step3建立线1和线2之间的倒角

Main Menu>Preprocessor>Modeling>Create>lines>line Fillet>Pick分别单击线1和线2>OK Fillet radius中输入0.5,在Number to assign中输入6,点击OK

5、划分单元

Step1设置所有的线上划分单元的个数

Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>lines>All lines

在No.of element divisions中输入4,点击OK。

Step2划分单元

Main Menu>Preprocessor>Meshing>Mesh>lines

点击Pick all,点击OK

6、施加约束和均布力

Step1施加均布力

Utility Menu>Select>Entities>lines>By Location>Y coordinates输入6.1,点击OK

Utility Menu>Select>Entities>Elements>Attached to>lines点击OK

Main menu>Solution>Define Loads>Apply>Structural>Pressure>On Beams

点击Pick all,输入-120/(6.32-0.5)/2,点击OK

Step2对关键点3施加X方向约束和相对于Z方向的旋转约束

Utility Menu>Select>Everything

Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>On Keypoints

选择关键点3,选择UX和ROTZ,点击OK

Step3对关键点1施加固定边界条件

Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>On Keypoints

选择关键点1,选择All DOF,点击OK

7、分析计算

Main menu>Solution>Solve>Current LS点击OK

8、结果的一般显示

1)对线单元按实体效果进行显示Utility Menu>PlotCtrls>Style>Size and Shape>ESHAPE

ON>在SCALE输入0.5,点击OK

2)显示完整的有限元模型,Utility Menu>PlotCtrls>Style>Symmetry

Expansion>Periodic/Cycle Symmetry Expansion选择Reflect about YZ点击OK效果如图所示:

3)

4)对计算结果进行云图显示,这里用的是X-Component of Displacement,如下图所示:

轴力图和剪力图如下:

实验2:基于APDL命令流方式的杆系结构有限元静力学分析一、问题描述

一座小型铁路桥由横截面积均为3250mm2的钢制杆件组成。一辆货车停在桥上,其载荷施加在桥梁两侧的桁架上,单侧桁架如上图所示,等效载荷为F1和F2,材料弹性模量为E=2.1×105MPa,泊松比为0.3,密度为7.8×105kg/m3。使计算位置R处由载荷作用而沿着水平方向移动的距离以及支反力。同时,分析各节点的位移和单元应力

二、实验思路

由于并不熟悉命令流操作,所以我先按照实验指导上的操作步骤完成了有限元分析,再查看命令流文件,并且把命令流复制移植了一次,试验其是否能达到效果。

三、实验步骤

由于GUI操作的步骤在其他实验中已经尝试,故在此不再重复赘述,直接展示分析结果图:

变形图如下:

位移云图如下:

轴力图如下:

实验3:实体建模

一、实验目的:

通过本实验熟悉ANSYS界面、空间、基本建模操作、布尔运算。

二、实验模型图

三、实验思路

按照实验指导书的指导,先建立长方体、圆柱等基本图形,再进行布尔运算减去多余部分,而且考虑到模型是对称结构,所以先建一半的模型,然后通过镜像获得整个模型。

四、实验步骤

1、创建模型

Step1生成长方体

Main Menu:Preprocessor>Create>Block>By Dimensions

在对话框中输入X1=0,X2=3,Y1=1,Y2=1,Z1=0,Z2=3

Step2平移并旋转工作平面

Utility Menu>WorkPlane>Offset WP by Increments

把工作平面的坐标原点移动到(2.25,1.25,0.75),并旋转90°

Step3创建圆柱体

Main Menu:Preprocessor>Create>Cylinder>Solid Cylinder

创建一个半径为0.375,、高度为-1.5的圆柱体

再通过Copy菜单复制一个圆柱体

Step4利用布尔操作减去圆柱体

Main Menu:Preprocessor>Modeling>Operate>Boolean>Subtract>Volume

操作完成后将工作坐标移动到原始坐标

Step5创建支撑部分(长方体)

Main Menu:Preprocessor>Create>Block>By2corners&Z

长方体的尺寸为1.5*1.75*0.75

完成操作后将工作坐标原点偏移到刚创建的长方体的左上角。在平面视图拾取点可能会拾取不正确,转换为立体视图拾取就一目了然了。

Step6创建轴瓦支架的上部

Main Menu:Preprocessor>Modeling>Create>Cylinder>Partial Cylinder

Step7在轴承孔的位置创建圆柱体为布尔操作做准备

Main Menu:Preprocessor>Modeling>Create>Cylinder>Solid Cylinder

Step8用布尔操作减去两个圆柱体,生成轴承孔

执行Main Menu:Preprocessor>Modeling>Operate>Boolean>Subtract>Volume

Step9合并重合的关键点

Step10创建一个关键点,并利用该点与另外两点生成一个三角形平面

这一步需要用到Create Keypoints、Create Area等操作

Step11将三角形平面拉伸成实体

Main Menu:Preprocessor>Modeling>Operate>Extrude

Step12通过镜像操作生成完整模型

Main Menu:Preprocessor>Modeling>Reflect

效果如图所示(通过Numbering开启了体的标号,颜色效果比较好看)

2、定义单元类型和材料属性

Step1定义单元类型

执行Main Menu>Preprocessor>Element Type>Add/Edit/Delete

在14.0版本中,选择的是Solid>Tet>10node187单元。熟悉了14.0的单元种类之后,要找到合适的类型替代指导书给出的单元也没以前那么难了。

Step2定义材料属性

为了定义材料的属性,在ANSYS界面中执行

Main Menu>Preprocessor>Material Props>Material Models>Structural>Linear>Elastic>Isotropic 弹性模量输入30e6,泊松比输入0.3。指导书没有给出泊松比,在老师的指导下选用了0.3

3、划分网格

打开meshing tool,将智能网格划分器设置为on,将滑动条滑到“6”,指导书给出的是“8”,但为了获得更好的效果,以及出于对电脑运算速度的信心,我设置为6,后来发现网格其实还是比较大的。

确认各项为Volume、Free、Tet,单击Mesh>pick all划分网格,效果如图:

4、保存文件(为实验6做准备)

实验4:平面结构有限元静力学分析

一、问题描述

如图所示,这是一个简单的,单一载荷的角支架结构静力分析。在左上的销孔的圆周施加约束(通过焊接),施加一个均布载荷作用于右下销孔的底部。这个问题的目的是展示典型的ANSYS有限元分析方法。采用的是美国常用单位制。

二、已知条件

角支架的尺寸如上图所示。支架采用A36钢,杨氏弹性模量是30*106,泊松比是0.27

三、实验思路

该分析将问题假设为平面应力。由于与它的x和y维度相比,支架在z方向上薄(0.5英寸厚),并且由于压力载荷作用在X-Y平面,所以这个假设可行。

根据实验指导,我的方法是使用实体建模生成二维模型,再使用单元和节点自动划分网格。(ANSYS中的另一个选择是直接创建节点和单元。)

四、实验步骤总结

实验过程可以概括为以下7个步骤:

1.建立几何体

2.定义材料属性

3.定义单元类型

4.划分网格

5.施加约束和载荷

6.获得求解结果

7.显示结果

五、实验步骤

1、建立几何体

Step1:生成矩形

Main Menu>Preprocessor>Modeling>Create>Areas>Rectangle>By Dimensions 输入X1=0,X2=6,Y1=-1,Y2=1

点击Apply完成第一个矩形的创建。

继续输入X1=4,X2=6,Y1=-1,Y2=-3

点击OK完成第二个矩形的创建。

Step2:移动工作平面并建立第一个圆

Utility Menu>WorkPlane>WP Settings,点击Polar,点击Grid and Triad,在snap increment输入0.1.点击OK并且关闭对话框。

Main Menu>Preprocessor>Modeling>Create>Areas>Circle>Solid Circle拾取中心点:WP X=0,WP Y=0,设置半径为1

Step3:移动工作平面并且创建第二个圆

Utility Menu>Work Plane>Offset WP to>Keypoints拾取矩形左下角的关键点和右下角关键点,点击OK关闭拾取菜单。

Main Menu>Preprocessor>Modeling>Create>Areas>Circle>Solid Circle

在此拾取中心点:WP X=0,WP Y=0,设置半径为1

Step4:用布尔操作合并面积

Main Menu>Preprocessor>Modeling>Operate>Booleans>Add>Areas

点击Pick All

Step5:创建圆角

Utility Menu>PlotCtrls>Numbering

勾选line numbering,点击OK确认改变控制,关闭对话框。

Utility Menu>WorkPlane>Display Working Plane(toggle off)

Main Menu>Preprocessor>Modeling>Create>Lines>Line Fillet

选取L17和L8,在选取菜单中点击OK完成选取,在radius(半径)中输入0.4,点击OK

Utility Menu>Plot>Lines显示线

Step6为圆角创建面积.

Main Menu>Preprocessor>Modeling>Create>Areas>Arbitrary>By Lines

选取线L4,L5,和L1,点击OK

Utility Menu>Plot>Areas显示面积

Step7:再次使用布尔操作合并面积

Main Menu>Preprocessor>Modeling>Operate>Booleans>Add>Areas

Step8:创建第一个销孔

Utility Menu>WorkPlane>Display Working Plane

Main Menu>Preprocessor>Modeling>Create>Areas>Circle>Solid Circle

输入圆心:WP X=0WP Y=0设置半径为0.4完成创建

Step9:移动工作平面并创建第二个销孔

先移动坐标平面,然后仿照第一个孔的步骤完成第二个销孔的创建

Step10:使用布尔操作减去销孔

Main Menu>Preprocessor>Modeling>Operate>Booleans>Subtract>Areas

选取大平面作为减去的母体,点击OK,选取两个销孔作为减去的部分点击OK

Step11:完成模型的创建并保存文件

如图所示:

2、定义材料属性

Main Menu>Preprocessor>Material Props>Material Models单击打开Structural, Linear,Elastic,Isotropic.在弹性模量EX输入30e6.在泊松比PRXY输入0.27

3、定义单元类型

Main Menu>Preprocessor>Element Type>Add/Edit/Delete

选择solid8-node quad183.

点击Options,在element behavior选择plane stress with thickness option

点击OK关闭对话框

定义实常数

Main Menu>Preprocessor>Real Constants>Add/Edit/Delete在PLANE183点击OK 输入.5到THK.点击OK关闭对话框

4、划分网格

Main Menu>Preprocessor>Meshing>Mesh Tool设置Global Size.输入0.5.选择Area Meshing.点击Mesh.Pick all完成网格的划分如图所示:

5、施加约束和载荷

Step1:施加约束

Utility Menu>Plot>Lines

Main Menu>Solution>Define Loads>Apply>Structural>Displacement>On Lines 依次选取左孔圆周的线L10,L9,L11,L12在选择菜单中点击OK选择All DOF.点击OK Step2:施加载荷

Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Lines 拾取L6,点击Apply.在VALUE输入50,在optional value输入500.点击Apply.

拾取L7,点击Apply.在VALUE输入500,在optional value输入50点击OK. Step3:保存文件

6、获得求解结果

Main Menu>Solution>Solve>Current LS

点击OK开始求解,求解结束后关闭对话框

7、显示结果

Step1:通过后处理查看结果.

Main Menu>General Postproc>Read Results>First Set

Step2:绘制变形形状

Main Menu>General Postproc>Plot Results>Deformed Shape

选择Def+undeformed.

如图所示:

Step3:绘制Von Mises等效应力

Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu

选择Stress,点击von Mises(SEQV).点击OK.

应力如图如图所示:

Step4:绘制位移云图

Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu 选择DOF Solution

选择Displacement vector sum点击OK

位移云图如图所示:

实验5:平面结构有限元静力学分析

一、问题描述:

如图所示,本实验需要完成的是一个简单的边角支架的建模和静力分析。该支架厚度为20mm,左边两孔受约束固定,右边大孔受力的作用。该支架所用的材料是E=200GPa,泊钢。

松比0.25的A36

二、实验步骤:

1、建立模型

Step1建立一个矩形

Main Menu->Preprocessor->Modeling->Create->Areas->Rectangle->By2Corners.输入如下数据:Array WP X=0,WP Y=0,Width=80,Height=100

Step2再建立一个圆形,选择Solid Circle并输入以下

数据

WP X=80,WP Y=50,Radius=50

用同样的方法建立左边两个小圆,具体数据输入如右

边表格所示:

Step3再建立一个矩形,输入如下参数:

WP X=-20,WP Y=20,Width=20,Height=60

Step4进行布尔操作

Preprocessor->Operate->Booleans->Add->Areas.

拾取所有已经建立的面积

点击OK完成布尔运算

Step5建圆孔

Preprocessor->Modeling->Create->Areas->Circle->Solid Circle.

三个圆孔的参数如下表所示:

parameter circle1circle2circle3

WP X8000

WP Y502080

radius301010

Step6进行布尔操作减去孔的面积

Preprocessor->Modeling->Operate->Booleans->Subtract->Areas.

拾取整个模型作为被减去的面积,点击OK确认

拾取三个需要减去的圆孔,点击OK确认

最终模型如图所示:

2、定义单元类型和材料属性

Main menu->Preprocessor->Element Type->Add/Edit/Delete...

选择solid quad8node183单元

然后点击Options按钮,在K3选择Plane strs w/thk.

点击OK确认

Main menu->Preprocessor->Real Constants->Add

在THK处输入20,即厚度为20

Main menu->Preprocessor->Material Props->Constant->Isotropic点击OK

定义弹性模量EX=200000(指导书上提示这个数值可能有问题,我试了之后发现是可以的)泊松比PRXY=0.3点击OK确认

新版的其他材料属性的输入位置和指导书上的旧版不同

Main menu->Preprocessor->Material Props->Constant->Density输入DENS=7.854e-6 Main menu->Preprocessor->Material Props->Constant->Emissivity输入EMIS=1

Main menu->Preprocessor->Material Props->Constant->ShearModulus输入GXY=80000 3、划分网格

Main menu->Preprocessor->Meshing->Size Control输入Size=5

Main menu->Preprocessor->Meshing->Mesh->Areas.Pick all

4、施加约束和载荷

Main Menu>Solution>Loads>Apply>Structural>Displacement.

Utility menu>Plot>Nodes.

把视图放大到能看清楚节点

Loads->Apply->Structural->Displacement->On nodes....

拾取时使用circle选框拾取小孔内第一圈所有节点

选取点后点击OK

在对话框中选择All DOF,在VALUE键入0

用同样的方法约束另一个孔

施加载荷

Loads->Apply->Force/Moment->On Nodes.

选择右边大孔底部中间的店

点击OK.

在Y方向输入-1000.

5、求解

Utility Menu->Plot->Element

Main menu->Solution->Solve->Current LS

点击OK进行求解

6、显示结果

变形图如图所示:

应力云图如图所示:

位移云图如图所示:

实验6:空间结构有限元静力学分析

一、问题描述:

在实验3建模基础上,对此空间结构进

行约束、加载、求解,实现静力学有限元分

析。

二、实验步骤(续实验三的步骤)

5、施加约束

Main Menu>Solution>Loads>Apply>Structural>Displacement>Symmetry B.C>On Areas 拾取四个孔的八个柱面,在这里学会了一个技巧,就是按住鼠标左键可以改变选择的对象施加ALL DOF约束

然后再约束底部Main Menu>Solution>Loads>Apply>Structural>Displacement>On lines 拾取底部矩形的边线,选择UY

6、施加载荷

Main Menu>Solution>Loads>Apply>Structural>Displacement>Pressure>On areas

拾取小圆环面,施加1000N的力

用同样方法对轴承孔下半部分施加5000N的压力

7、求解

Main menu->Solution->Solve->Current LS

8、显示结果

变形图如下:

吉林大学---有机化学作业题(含实验)

有机化学(含实验) 一、单选题 1. 下列物质有两性性质的是()。C. 氨基酸 2. 苯酚与甲醛反应时,当酚过量,酸性催化条件下的将得到()C. 热塑性酚醛树脂 3. Walden转化指的是反应中()D. 生成对映异构体 4. 下列化合物中的碳为SP2杂化的是:( )。B. 乙烯 5. 下列化合物能发生碘仿反应的是()。D. CH3COCH2CH3 6. 根据休克尔规则,判断下列化合物哪些具有芳香性()。B. 7. 下列自由基中最稳定的是()。B. 8. A. 环丙烷、B. 环丁烷、C. 环己烷、D. 环戊烷的稳定性顺序( ) A. C >D>B>A 9. ( ) A. 对映异构体 10. 有机化合物与无机化合物相比其结构上的特点是()A. 结构复杂,多为共价键连接 9. 卤烃的亲核取代反应中,氟、氯、溴、碘几种不同的卤素原子作为离去基团时,离去倾向最大的是( ) D. 碘 11. 下列化合物不能使酸性高锰酸钾褪色的是()C. 丙烷 12. 在下列化合物中,偶极矩最大的是( ) A. H3CCH2Cl 13. 下列各化合物中具有芳香性的是()。

A. 14. 下列化合物中酸性最强的是(). B. 对硝基苯酚 15. 下列化合物不能发生傅列德尔-克拉夫茨酰基化反应的有:( )。B. 硝基苯 16. 该化合物属于() B. 醌类 17. 下列化合物具有旋光性的是()。B. ; 18. 下列烯烃氢化热(KJ/mol)最低的是()。D. 19. 下列化合物与FeCl3溶液发生显色反应的有?()A. 对甲基苯酚 20. 比较下列醛(酮)与HCN 反应的活性()B. d>a>b>c 1. 物质具有芳香性不一定需要的条件是( ) C. 有苯环存在 2. 和互为互变异构体,在两者的平衡混 合物中,含量较大的是()B. 3. 苯酚可以用下列哪种方法来检验?( )B. 加Br2水溶液 8. 用异丙苯法来制备苯酚,每生产1吨苯酚可同时获得多少吨丙酮?()C. 0. 8 9. 与之间的相互关系是( ) D. 构象异构体 10. 下列化合物进行SN2反应的相对活性最大的是(). C. 3-甲基-1-氯丁烷 11. 下列化合物不存在共轭效应的是()B. 叔丁基乙烯

吉林大学大学物理(工科)期末试卷

吉林大学物理试题(2007~2008学年第二学期) 注意:第一大题和第二大题的答案填写在题后的表格内,否则按零分处理。 玻尔兹曼常数: 1231038.1--??=K J k 普适气体常数:1131.8--??=K mol J R 一、 单选题 1、汽车用不变力制动时,决定其停止下来所通过路程的量是 (A ) 速度 (B )质量 (C) 动量 (D) 动能 2、一均质细棒绕过其一端和绕过其中心并与棒垂直的轴转动时,角加速度β相等, 则二种情况下棒所受的外力矩之比21:M M 是 (A )1:1 (B )2:1 (C )4:1 (D )1:4 3、在由两个质点组成的系统中,若此系统所受的外力的矢量和为零,则此系统 (A )动量、机械能守恒,但角动量是否守恒不能确定 (B )动量守恒,但机械能和角动量是否守恒不能确定 (C ) 动量和角动量守恒,但机械能是否守恒不能确定 (D) 动量、机械能守恒、角动量均守恒 4、已知一定量的某种理想气体,在温度为T 1与T 2时,分子最可几速率分别为1p υ和 2p υ,分子速率分布函数的最大值分别为)(1p f υ和)(2p f υ。若21T T >,则 (A )21p p υυ>,)()(21p p f f υυ> (B) 21p p υυ>,)()(21p p f f υυ< (C )21p p υυ<,)()(21p p f f υυ> (C )21p p υυ<,)()(21p p f f υυ< 5、两容器内分别盛有氢气和氦气,若它们的温度和摩尔数分别相同,则 (A )两种气体分子的平均平动动能相同 ( B) 两种气体分子的平均动能相同 (C )两种气体分子的平均速率相同 (D )两种气体的内能相同 6、有人设计一台卡诺热机(可逆的),每循环一次可以从400k 的高温热源吸热1800J , 向300k 的低温热源放热800J 。同时对外作功1000J ,这样的设计是 (A) 可以的,符合热力学第一定律。 (B) 可以的,符合热力学第二定律。 (C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量。 (D) 不行的,这个热机的效率超过理论值。 7、在下述四种力中,做功与路径有关的力是 (A) 万有引力 (B) 弹性力 (C) 静电场力 (D) 涡旋电场力 8、当一个带电导体达到静电平衡时,则 (A )表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高 (C ) 导体内部的电势比导体表面的电势高 (D) 导体内任一点与其表面上任一点的电势差等于零 9、位移电流的大小取决于 (A ) 电场强度的大小 (B )电位移矢量的大小

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。 由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理, 并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

有限元分析实验报告

武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析 开课学院机电工程学院 指导老师姓名 学生姓名 学生专业班级机电研 1502班 2015—2016 学年第2学期

实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 1.1方形截面悬臂梁模型建立 建模环境:DesignModeler 15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图1.1所示。 图1.1 方形截面梁模型 1.2 定义单元类型: 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图1.2所示:

图1.2 网格划分 1.21 定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示: 图1.3 定义边界条件 1.23 应力分布如下图1.4所示: 定义完边界条件之后进行求解。

精讲solidworks有限元分析步骤

2013-08-29 17:31 by:有限元来源:广州有道有限元 1. 软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2. 使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。 ▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。

吉林大学 2019-2020学年第一学期期末考试《土木工程材料》大作业答案

吉林大学网络教育学院 2019-2020学年第一学期期末考试《土木工程材料》大作业答案 学生姓名专业 层次年级学号 学习中心成绩 年月日 作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word

文档内,最终wod文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word 文档格式),如有雷同、抄袭成绩按不及格处理。 一、名词解释(每小题2分,共10分) 1、烧结普通砖 2、石灰爆裂 3、泛霜 4、抗风化性能 5、烧结多孔砖 二、问答题(每小题8分,共64分) 1、什么是新拌砂浆的和易性?它包括哪两方面的含义?如何测定与表示?砂浆的和易性对工程质量有何影响?如何改善砂浆的和易性? 2、为什么大多数大理石不宜用于建筑物的室外装饰? 3、在土木工程设计和施工中选择天然石材时,应考虑哪些原则? 4、某城市拟修建一座大型纪念性建筑,室内墙面及地面、室外墙面与墙面浮雕以及广场地面的饰面均采用天然石材,请选用合适的石材品种,并加以分析。 5、建筑上对内墙涂料与外墙涂料的性能要求有何不同? 6、土木工程中常用的胶粘剂有哪些?其特性和用途如何? 7、土工合成材料主要有哪几类?它们在使用过程中发挥哪些功能? 8、建筑上常用的吸声材料及其吸声结构? 三、计算题(每小题13分,共26分) 1、采用32.5级普通硅酸盐水泥、碎石和天然砂配制混凝土,制作尺寸为100mm>100mm 100mm 试件3块,标准养护7d,测得破坏荷载分别为140KN、135KN、142KN。试求:(1)该混凝土7d标准立方体抗压强度;(2)估算该混凝土28d的标准立方体抗压强度;(3)估计该混凝土所用的水胶比。 2、某工程现场浇筑混凝土梁,梁断面为400m m×400mm,钢筋间最小净距为40mm,要求混凝土设计强度等级为C20,工地现存下列材料,试选用合适的水泥及石子。 水泥:32.5复合水泥;42.5复合水泥;52.5复合水泥。 石子:5~10mm;5~20mm;5~30mm;5~40mm。

机械零件有限元分析——实验报告

中南林业科技大学机械零件有限元分析 实验报告 专业:机械设计制造及其自动化 年级: 2013级 班级:机械一班 姓名:杨政 学号:20131461 I

一、实验目的 通过实验了解和掌握机械零件有限元分析的基本步骤;掌握在ANSYS 系统环境下,有限元模型的几何建模、单元属性的设置、有限元网格的划分、约束与载荷的施加、问题的求解、后处理及各种察看分析结果的方法。体会有限元分析方法的强大功能及其在机械设计领域中的作用。 二、实验内容 实验内容分为两个部分:一个是受内压作用的球体的有限元建模与分析,可从中学习如何处理轴对称问题的有限元求解;第二个是轴承座的实体建模、网格划分、加载、求解及后处理的综合练习,可以较全面地锻炼利用有限元分析软件对机械零件进行分析的能力。

实验一、受内压作用的球体的有限元建模与分析 对一承受均匀内压的空心球体进行线性静力学分析,球体承受的内压为 1.0×108Pa ,空 心球体的内径为 0.3m ,外径为 0.5m ,空心球体材料的属性:弹性模量 2.1×1011,泊松比 0.3。 承受内压:1.0×108 Pa 受均匀内压的球体计算分析模型(截面图) 1、进入 ANSYS →change the working directory into yours →input jobname: Sphere 2、选择单元类型 ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→ Options… →select K3: Axisymmetric →OK →Close (the Element Type window) 3、定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3→ OK 4、生成几何模型生成特征点 ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input :1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3)→OK 生成球体截面 ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In ActiveCoord → 依次连接 1,2,3,4 点生成 4 条线→OK Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条线→OK ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 5、网格划分 ANSYS Main Menu : Preprocessor →Meshing →Mesh Tool →(Size Controls) lines: Set

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

有限元实验报告模板

有限元实验报告 T1013-5 20100130508 蔡孟迪

ANSYS有限元上机报告(一) 班级:T1013-5 学号:20100130508 姓名:蔡孟迪 上机题目: 图示折板上端固定,右侧受力F=1000N,该力均匀分布在边缘各节点上;板厚t=2mm 材料选用低碳钢,弹性模量E=210Gpa,μ=0.33. 一、有限元分析的目的: 1.利用ANSYS构造实体模型; 2.根据结构的特点及所受载荷的情况,确定所用单元类型;正确剖分网格并施加外界条件;3.绘制结构的应力和变形图,给出最大应力和变形的位置及大小;并确定折板角点A处的应力和位移; 4.研究网格密度对A处角点应力的影响; 5.若在A处可用过渡圆角,研究A处圆角半径对A处角点应力的影响。 二、有限元模型的特点: 1.结构类型 本结构属于平面应力类型 2.单位制选择 本作业选择N(牛),mm(毫米),MPa(兆帕)。 3.建模方法 采用自左向右的实体建模方法。 4.定义单元属性及类型 1)材料属性:弹性模量:EX=2.10E5MPa, 泊松比:PRXY=0.33 2)单元类型:在Preferences选Structural,Preprocessor>ElemmentType>Add/Edit/Delete中定义单元类型为:Quad4 node 182,K3设置为:平面薄板问题(Plane strs w/thk) 3)实常数:薄板的厚度THK=2mm 5.划分网格 在MeshTool下选set,然后设置SIZE Element edge length的值,再用Mesh进行网格划分。6.加载和约束过程:在薄板的最上端施加X、Y方向的固定铰链,在薄板的最右端施加1000N 的均匀布置的载荷。

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

吉林大学化学院有机化学补考试题

吉林大学化学院2000—2001学年第二学期期末考试 有机化学补考试题 2001年 月 日 年级 专业 班 姓名 学号 说明:1 全部答案写在答题纸上,标明题号,不抄题。 2 考试时间为2.5小时。 3 考试结束时,试题、答题纸、草纸一律上交。 一、选择题(20分,每题2分) 1、鉴别环丙烷, 丙烯与丙炔需要的试剂是 A. Br 2的CCl 4溶液; KMnO 4溶液; B. HgSO 4 / H 2SO 4; KMnO 4溶液 C. AgNO 3的氨溶液; KMnO 4溶液; D. Br 2的CCl 4溶液; AgNO 3的氨溶液 2、下列四个氯代烃中, S N 1和S N 2取代反应均易发生的是 A. CH 3CH 2CH 2CH 2Cl B. (CH 3)2CHCH 2Cl C. CH 2=CHCH 2Cl D. (CH 3)3CCH 2Cl 3、sp 2杂化轨道的几何形状为: A. 四面体 B. 平面形 C. 直线形 D. 球形 4、下列表述中正确的是 A. 有手性碳的分子一定是手性分子 B. 没有对称中心的分子一定是手性分子 C. 有对称中心的分子一定不是手性分子 D. 没有手性碳的分子一定不是手性分子 5、下列表述中不正确的是 A. 某个分子的所有构象都是手性的该分子才是手性分子 B. 某个分子的一个构象不是手性的该分子就不是手性分子 C. 某个分子的一个构象是非手性的该分子就是非手性分子 D . 某个分子的一个构象是手性的该分子就是手性分子 6、S N 1反应的特征是: (I)生成正碳离子中间体; (II)立体化学发生构型翻转; (III)反应速率受反应 物浓度影响,与亲核试剂浓度无关; (IV)在亲核试剂的亲核性强时容易发生. A. I II B. III IV C. I III D. II IV 7、下列分子中两个手性碳的构型是 A. 2R, 3R B. 2S, 3R C. 2R, 3S D. 2S, 3S H C Br 2H 5Br CH 3 8、分子式为C 9H 12的芳香烃, 氧化时生成三元羧酸, 硝化时只有一种一元硝化物, 则该化合物的结构为 —1— CH 3CH 3CH 3 CH 3CH 3CH 3CH 2CH 3CH 3CH 3CH 3 CH 3 A. B. C. D.

ANSYS 有限元分析基本流程

第一章实体建模 第一节基本知识 建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。 一、实体造型简介 1.建立实体模型的两种途径 ①利用ANSYS自带的实体建模功能创建实体建模: ②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。 2.实体建模的三种方式 (1)自底向上的实体建模 由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。 (2)自顶向下的实体建模 直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。 (3)混合法自底向上和自顶向下的实体建模 可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。 二、ANSYS的坐标系 ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。 ①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。 ②显示坐标系:定义了列出或显示几何对象的系统。 ③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。 ④单元坐标系:确定材料特性主轴和单元结果数据的方向。 1.全局坐标系 全局坐标系和局部坐标系是用来定位几何体。在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。总体坐标系是一个绝对的参考系。ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系 (Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。

有限元实验报告

一、实验目的 通过上机对有限元法的基本原理和方法有一个更加直观、深入的理解;通过对本实验所用软件平台Ansys 的初步涉及,为将来在设计和研究中利用该类大型通用CAD/CAE 软件进行工程分析奠定初步基础。 二、实验设备 机械工程软件工具包Ansys 三、实验内容及要求 1) 简支梁如图3.1.1所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚 度t=10mm 。上边承受均布载荷,集度q=1N/mm2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: 图3.1.1 ①在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 ②计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 ③针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 2) 一个正方形板,边长L = 1000mm ,中心有一小孔,半径R = 100mm ,左右边 受均布拉伸载荷,面力集度q = 25MPa ,如图 3.2.1所示。材料是 206E GPa =,0.3μ=,为平面应力模型。当边长L 为无限大时,x = 0截面上理论解为: ) 534()4 (6222 23-+-=h y h y q y x L h q x σ

)32(2|44 220r R r R q x x ++==σ 其中R 为圆孔半径,r 为截面上一点距圆心的距离。x = 0截面上孔边(R r =)应力q x 3=σ。所以理论应力集中系数为3.0。 图3.2.1 用四边形单元分析x = 0截面上应力的分布规律和最大值,计算孔边应力集中系数,并与理论解对比。利用对称性条件,取板的四分之一进行有限元建模。 3) 如图3.3.1所示,一个外径为0.5m ,内径为0.2m ,高度为0.4m 的圆筒,圆 筒的外壁施加100MPa 的压强,圆筒的内部约束全部的自由度,材料参数是密度。 使用平面单元,依照轴对称的原理建模分析。 q

吉林大学物理化学期末试题及答案

物理化学期末试题 (共4页) 学院 姓名 班级与学号 卡号 得分 一、填空(每空1分,共10分) 1. 纯物质完美晶体在_0K ______ 时的熵值为零。 2. 在—10C 、101325Pa 下,纯水化学势u i 与冰的化学势U 2的大小关系为u i _______________ U 2 。 3. 温度T 时将纯NH 4HS (S )置于真空容器中,发生分解反应:NH 4HS (s )=NH 3(g )+H 2S (g ),测得平衡时系统的 总压力 为 P ,则 K _________________ 。 4. 某系统经历一不可逆循环后,则系统、环境及总的熵变 A S 系=0 , A S 环> ,△ S 总> 0 。 5. 完全互溶的双液系中,在冷=0.6处,平衡蒸气压有最高值,那么组成为X B =0.4的溶液在气液平衡时,X B (g )、冷 (1)、 X B (总)的大小顺序为 _X B ( g ) > X B ( ^) > X B ( l ) ___ 。 6. 某理想气体进行绝热恒外压膨胀,其热力学能变化 A U < 0与其焓变A H < 0〔填>,V 或==o 7. 右 Cu +2e T Cu 的 E =0.34V ,贝U 1/2Cu 1/2Cu +e 的 E = 0.34V o 1. 选择(1分x 15=15分) 1.实际气体的节流膨胀过程中,哪一组的描述是正确的? ( A ) A. Q=0 A H=0 A p<0 B. Q=0 A H<0 A p>0 C. Q<0 A H=0 A p<0 D. Q>0 A H=0 A p<0 2. 工作在100C 和30C 的两个大热源间的卡诺机,其效率是( A ) A. 19% B. 23% C. 70% D. 30% 3. 热力学基本公式dA= —SdT — pdV 可适用下述哪一个过程? ( B ) A. 293 K 、p ?的水蒸发过程 B.理想气体真空膨胀 7. p°下,C(石墨)+。2?) =CO 2(g)的反应热为A r H m°,下列说法中错误的是(D ) A . A r H m ?就是CO 2(g)的生成焓A f H m ? B. A r H m ?是C(石墨)的燃烧焓 ? ? ? ? C. A r H m = A r U m D. A r H m > A r U m ? ? 8. 已知反应H 2O(g)=H 2(g)+1/2 02(g)的平衡常数为K 1及反应CO 2(g)=CO(g)+1/2 C 2(g)的K 2 ,则同温度下反应CO(g)+ H 2O(g)= CO 2(g)+ H 2(g)的 K 3 为(D ) ? ? ? ? ? . . ■ ? ? ? ? ? ? ? ? A. K 3 = K 1 + K 2 B. K 3 = K 1 x K 2 C. K 3 = K 2 / K 1 D. K 3 = K 1 / K 2 C.电解水制取氢 D. N 2+3H 2 T 2NH 3未达平衡 4. 理想气体经绝热真空膨胀后,其温度怎样变化( C A.上升 B.下降 C.不变 5. 下列各式中不是化学势的是(C ) A. (:G/ :FB )T,p,n C B. (:A/:n B )) D.不能确定 C. C :U /::nB ) D. C :H / ::nB )s,p 』 C 6. 盐碱地的农作物长势不良,甚至枯萎,主要原因是(D ) A.天气太热 B. 很少下雨 C. 肥料不足 D. 水分倒流

ansys实验报告

有限元上机实验报告 姓名柏小娜 学号0901510401

实验一 一 已知条件 简支梁如图所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚度t=10mm 。上边承受均布载荷,集度q=1N/mm 2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: )534()4 (6222 23-+-=h y h y q y x L h q x σ 二 实验目的和要求 (1)在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 (2)计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 (3)针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 三 实验过程概述 (1) 定义文件名 (2) 根据要求建立模型:建立长度为1m ,外径为0.2m ,平行四边行区域 (3) 设置单元类型、属性及厚度,选择材料属性: (4) 离散几何模型,进行网格划分 (5) 施加位移约束 (6) 施加载荷 (7) 提交计算求解及后处理 (8) 分析结果 四 实验内容分析 (1)根据计算得到应力云图,分析本简支梁模型应力分布情况和规律。主要考察x σ和y σ,并分析有限元解与理论解的差异。 由图1看出沿X 方向的应力呈带状分布,大小由中间向上下底面递增,上下底面应力方向相反。由图2看出应力大小是由两侧向中间递增的,得到X 方向

上最大应力就在下部中点,为0.1868 MPa 。根据理论公式求的的最大应力值为0.1895MPa 。由结果可知,有限元解与理论值非常接近。由图3看出Y 的方向应力基本相等,应力主要分布在两侧节点处。 图 1 以矩形单元为有限元模型时计算得出的X 方向应力云图 图 2 以矩形单元为有限元模型时计算得出的底线上各点x 方向应力图 (2)对照理论解,对最大应力点的x σ应力收敛过程进行分析。列出各次计算 应力及其误差的表格,绘制误差-计算次数曲线,并进行分析说明。 答:在下边中点位置最大应力理论值为: MPa h y h y q y x L h q x 1895.0)5 34()4(622223=-+-=σ

Matlab有限元分析操作基础共11页

Matlab有限元分析20140226 为了用Matlab进行有限元分析,首先要学会Matlab基本操作,还要学会使用Matlab进行有限元分析的基本操作。 1. 复习:上节课分析了弹簧系统 x 推导了系统刚度矩阵

2. Matlab有限元分析的基本操作 (1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…) (3)组装系统刚度矩阵(集成整体刚度矩阵) (4)引入边界条件(消除冗余方程) (5)解方程 (6)后处理(扩展计算)

3. Matlab有限元分析实战【实例1】

分析: 步骤一:单元划分

>>k1=SpringElementStiffness(100)

a) 分析SpringAssemble库函数 function y = SpringAssemble(K,k,i,j) % This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % function returns the global stiffness matrix K % after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K; b) K是多大矩阵? 今天的系统刚度矩阵是什么? 因为 11 22 1212 k k k k k k k k - ?? ?? - ????--+ ?? 所以 1000100 0200200 100200300 - ?? ?? - ????-- ???

有限元上机实验报告

有限元法基础及应用 上机报告 南京理工大学 2015年12月 上机实验一

1 实验题目 设计一个采用减缩积分线性四边形等参元的有限元模型,通过数值试验来研究网格密度、位移约束条件与总刚度矩阵奇异性、沙漏扩展、求解精度的关系,并验证采用减缩积分时保证总刚度矩阵非奇异的必要条件。总结出你的研究结论,撰写实验报告。 2 实验目的 通过实验来研究减缩积分方案中网格密度和位移约束条件对总体刚度矩阵奇异性和求解精度的影响,以此加深对有限元减缩积分的理解,和对减缩积分中保证总体刚度矩阵非奇异性的认识。 3建模概述 先保持位移约束条件不变,研究网格密度对总体刚度矩阵奇异性和求解精度的影响,并验证采用减缩积分时保证总刚度矩阵非奇异的必要条件。如下图1所示,建立一个简支和链杆的约束条件,然后不断增加网格密度,通过ABAQUS 来计算位移和应力的变化规律。 个独立关系式)节点(两个自由度)

4 计算结果分析讨论与结论 1)1*1单元四边形减缩积分实验 载荷布种/单元 应力云图 2)2*1单元四边形减缩积分实验 载荷单元

应力云图3)4*4单元四边形减缩积分实验 载荷布种单元 应力云图

结果分析 5 实验体会与小结 单元刚度矩阵的特征: (1)对称性 (2)奇异性 (3)主元恒正 K相同 (4)平面图形相似、弹性矩阵D、厚度t相同的单元,e K的分块子矩阵按结点号排列,每一子矩阵代表一个结点,占两行两 (5)e 列,其位置与结点位置对应。 整体刚度矩阵的特征: (1)对称性 (2)奇异性 (3)主元恒正 (4)稀疏性 (5)非零元素呈带状分布。 [K]的物理意义是任意给定结构的结点位移所得到的结构结点力总体上满足力和力矩的平衡。为消除[K]的奇异性,需要引入边界条件,至少需给出能限制刚体位移的约束条件。 对于一个给定形式的单元,如果采用精确积分,则插值函数中所有项次在|J|=常数的条件下能被精确积分,并能保证刚度矩阵的非奇异性。如果采用减缩积分,因为插值函数中只有完全多项式的项次能被精确积分,因此需要进行刚度矩阵非奇异必要条件的检查。

吉林大学 有机化学

有机化学(含实验) 一、单选题 1、下列物质有两性性质的就是()。C、氨基酸 2、苯酚与甲醛反应时,当酚过量,酸性催化条件下的将得到()C、热塑性酚醛树脂 3、Walden转化指的就是反应中()D、生成对映异构体 4、下列化合物中的碳为SP2杂化的就是:( )。B、乙烯 5、下列化合物能发生碘仿反应的就是()。D、CH3COCH2CH3 6、根据休克尔规则,判断下列化合物哪些具有芳香性()。B、 7、下列自由基中最稳定的就是()。B、 8、A、环丙烷、B、环丁烷、C、环己烷、D、环戊烷的稳定性顺序( ) A、C>D>B>A 9、( ) A、对映异构体 10、有机化合物与无机化合物相比其结构上的特点就是()A、结构复杂,多为共价键连接 9、卤烃的亲核取代反应中,氟、氯、溴、碘几种不同的卤素原子作为离去基团时,离去倾向最大的就是( ) D、碘 11、下列化合物不能使酸性高锰酸钾褪色的就是()C、丙烷 12、在下列化合物中,偶极矩最大的就是( ) A、H3CCH2Cl 13、下列各化合物中具有芳香性的就是()。

A、 14、下列化合物中酸性最强的就是()、B、对硝基苯酚 15、下列化合物不能发生傅列德尔-克拉夫茨酰基化反应的有:( )。B、硝基苯 16、该化合物属于()B、醌类 17、下列化合物具有旋光性的就是()。B、; 18、下列烯烃氢化热(KJ/mol)最低的就是()。D、 19、下列化合物与FeCl3溶液发生显色反应的有?()A、对甲基苯酚 20、比较下列醛(酮)与HCN 反应的活性()B、d>a>b>c 1、物质具有芳香性不一定需要的条件就是( ) C、有苯环存在 2、与互为互变异构体,在两者的平衡混合物中,含量较大的就是()B、 3、苯酚可以用下列哪种方法来检验?( )B、加Br2水溶液 8、用异丙苯法来制备苯酚,每生产1吨苯酚可同时获得多少吨丙酮?()C、0、8 9、与之间的相互关系就是( ) D、构象异构体 10、下列化合物进行SN2反应的相对活性最大的就是()、C、3-甲基-1-氯丁烷 11、下列化合物不存在共轭效应的就是()B、叔丁基乙烯

相关主题