搜档网
当前位置:搜档网 › 锂离子电池负极材料介绍及合成方法

锂离子电池负极材料介绍及合成方法

锂离子电池负极材料介绍及合成方法
锂离子电池负极材料介绍及合成方法

锂离子电池负极材料介绍及合成方法

目前,锂离子电池所采用的负极材料一般都是碳素材料,如石墨、软碳(如焦炭等)、硬碳等。正在探索的负极材料有氮化物、PAS、锡基氧化物、锡基氧化物、锡合金,以及纳米负极材料等。作为锂离子电池负极材料要求具有以下性能:(1)锂离子在负极基体中的插入氧化还原电位尽可能低,接近金属锂的电位,从而使电池的输出电压高;

(2)在基体中大量的锂能够发生可逆插入和脱插以得到高容量密度,即可逆的x值尽可能大;

(3)在插入/脱插过程中,锂的插入和脱插应可逆且主体结构没有或很少发生变化,这样尽可能大;

(4)氧化还原电位随x的变化应该尽可能少,这样电池的电压不会发生显著变化,可保持较平稳的充电和放电;

(5)插入化合物应有较好的电导率和离子电导率,这样可减少极化并能进行大电流充放电;

(6)主体材料具有良好的表面结构,能够与液体电解质形成良好的SEI 膜;

(7)插入化合物在整个电压范围内具有良好的化学稳定性,在形成SEI 膜后不与电解质等发生反应;

(8)锂离子在主体材料中有较大的扩散系数,便于快速充放电;

(9)从实用角度而言,主体材料应该便宜,对环境无污染。

一、碳负极材料

碳负极锂离子电池在安全和循环寿命方面显示出较好的性能,并且碳材料价廉、无毒,目前商品锂离子电池广泛采用碳负极材料。近年来随着对碳材料研究工作的不断深入,已经发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,锂在其中的嵌入-脱嵌不但可以按化学计量LiC6进行,而且还可以有非化学计量嵌入-脱嵌,其比容量大大增加,由LiC6的理论值372mAh/g提高到700mAh/g~1000mAh/g,因此而使锂离子电池的比能量大大增加。

目前,已研究开发的锂离子电池负极材料主要有:石墨、石油焦、碳纤维、热解炭、中间相沥青基炭微球(MCMB)、炭黑、玻璃炭等,其中石墨和石油焦最有应用价值。

石墨类碳材料的插锂特性是:(1)插锂电位低且平坦,可为锂离子电池提供高的、平稳的工作电压。大部分插锂容量分布在0.00~0.20V之间(vs. Li+/Li);(2)插锂容量高,LiC

6

的理论容量为372mAh.g-1;(3)与有机溶剂相容能力差,易发生溶剂共插入,降低插锂性能。

石油焦类碳材料的插、脱锂的特性是:(1)起始插锂过程没有明显的电位平

台出现;(2)插层化合物Li

x C

6

的组成中,x=0.5左右,插锂容量与热处理温度

和表面状态有关;(3)与溶剂相容性、循环性能好。

根据石墨化程度,一般碳负极材料分成石墨、软碳、硬碳。

1、石墨

石墨材料导电性好,结晶度较高具有良好的层状结构,适合锂的嵌入-脱嵌,形成锂-石墨层间化合物,充放电容量可达300mAh.g-1以上,充放电效率在90%

以上,不可逆容量低于50mAh.g-1。锂在石墨中脱嵌反应在0~0.25V左右,具有良好的充放电平台,可与提供锂源的正极材料钴酸锂、锰酸锂、镍酸锂等匹配,组成的电池平均输出电压高,是目前锂离子电池应用最多的负极材料。

石墨包括人工石墨和天然石墨两大类。

(1)人工石墨

人工石墨是将易石墨化炭(如沥青焦炭)在N2气氛中于1900~2800℃经高温石墨化处理制得。常见人工石墨有中间相碳微球(MCMB)和石墨纤维。

MCMB是高度有序的层面堆积结构,可由煤焦油(沥青)或石油渣油制得。在700℃以下热解炭化处理时,锂的嵌入容量可达600mAh.g-1以上,但不可逆容量较高。在1000℃以上热处理时,MCMB石墨化程度提高,可逆容量增大。通常石墨化温度控制在2800℃以上,可逆容量可达300mAh.g-1,不可逆容量小于10%。

气相沉积石墨纤维是一种管状中空结构,具有320mAh.g-1以上的放电比容量和93%的首次充放电效率,可大电流放电,循环寿命长,但制备工艺复杂,成本较高。

(2)天然石墨

天然石墨是一种较好的负极材料,其理论容量为372Amh/g, 形成LiC6 的结构,可逆容量、充放电效率和工作电压都较高。石墨材料有明显的充、放电平台,且放电平台对锂电压很低,电池输出电压高。天然石墨有无定形石墨和磷片石墨两种。无定形石墨纯度低。可逆比容量仅260mAh.g-1,不可逆比容量在

100mAh.g-1以上。磷片石墨可逆比容量仅300~350mAh.g-1,不可逆比容量低于50mAh.g-1以上。天然石墨由于结构完整,嵌锂位置多,所以容量较高,是非常理想的锂离子电池负极材料。其主要的缺点是对电解质敏感、大电流充放电性能差。在放电的过程中,在负极表面由于电解质或有机溶剂化学反应会形成一层固体电解质界面(Solid Electrolyte Interface, SEI)膜, 另外锂离子插入和脱插的过程中,造成石墨片层体积膨胀和收缩,也容易造成石墨粉化,所以天然石墨的不可逆容量较高,循环寿命有待进一步提高。

(3)改性石墨

通过石墨改性,如在石墨表面氧化、包覆聚合物热解炭,形成具有核-壳结构的复合石墨,可以改善石墨的充放电性能和循环性能。

通过石墨表面氧化,可以降低Li/LiC6电池的不可逆容量,提高电池的循环寿命,可逆容量可以达到446mAh.g-1(Li1.2C6),石墨材料的氧化剂可选择

HNO

3,O

3

,H

2

O

2

,NO+,NO2+等。石墨氟化可在高温下用氟蒸气与石墨直接反应,得到

(CF)n和(C

2F)n,也可以在Lewis酸(如HF)存在时,于100℃进行氟化得到C

x

F

n

碳材料经氧化或氟化处理后的容量都会有所提高。

(4) 石墨化碳纤维

气相生长碳纤维VGCF是以碳氢化合物为原料制备的负极材料,在2800℃处理的VGCF容量高,结构稳定。

中间相沥青碳纤维(MCF)。3000℃处理的MCF,其中心肯有层状组织的辐射状晶体结构,与石焦油一样属乱层石墨结构,它具有高的比容量和库仑效率。

碳纤维的结构不同,嵌锂性能也不同,其中具有经向结构的碳纤维的充放电性能最好,同心结构的碳纤维易发生与溶剂分子共嵌入现象。因此,石墨化的沥青基碳纤维的性能优于天然鳞状石墨。

石墨在达到最大嵌锂限度(即LiC6)时的体积只增加10%左右。因此,石

墨在反复嵌入-脱出锂过程中能保持电极尺寸稳定,使碳电极有良好的循环性能。石墨也存在一些不足,如对电解液选择性强,只能在某些电解液中才有良好的电极性能;耐过充过放电性能差,Li+在石墨中扩散系数小,不利于快速充放电等。因此有必要对石墨改性,现已合成中间相碳微球(MCMB)、无定形碳(有机物热碳)、包覆石墨等,它们的充放电性能较石墨有显著的改善。

2、软碳

软碳即易石墨化碳,是指在2500℃以上的高温下能石墨化的无定形碳。软碳的结晶度(即石墨化度)低,晶粒尺寸小,晶面间距较大,与电解液的相容性好,但首次充放电的不可逆容量较高,输出电压较低,无明显的充放电平台电位。常见的软碳有石油焦、针状焦、碳纤维、碳微球等。

3、硬碳

硬碳是指难石墨化碳,是高分子聚合物的热解碳。这类碳在2500℃以上的高温也难以石墨化,常见的硬碳有树脂碳(酚醛树脂、环氧树脂、聚糠醇PFA-C 等)、有机聚合物热解碳(PVA、PVC、PVDF、PAN等)、碳黑(乙炔黑)。

硬碳的偖锂容量很大(500~1000mAh.g-1),但它们也有明显的缺点,如首次充、放电效率低,无明显的充放电平台以及因含杂质原子H而引起的很大的电位滞后等。

二、非碳负极材料

1、氮化物

锂过渡金属氮化物具有很好的离子导电性、电子导电性和化学稳定性,用作锂离子电池负极材料,其放电电压通常在1.0V以上。电极的放电比容量、循

环性能和充、放电曲线的平稳性因材料的种类不同而存在很大差异。如Li

3FeN

2

用作LIB负极时,放电容量为150mAh/g、放电电位在1.3V(vs Li/Li+)附近,充、

放电曲线非常平坦,无放电滞后,但容量有明显衰减。Li

3-x Co

x

N具有900mAh/g

的高放电容量,放电电位在1.0V左右,但充、放电曲线不太平稳,有明显的电位滞后和容量衰减。目前来看,这类材料要达到实际应用,还需要进一步深入研究。

氮化物体系属反萤石(CaF2)或Li3N结构的化合物,具有良好的离子导电性,电极电位接近金属锂,可用作锂离子电极的负极。

反萤石结构的Li-M-N(M为过渡金属)化合物如Li

7MnN

4

和Li

3

FeN

2

可用陶

瓷法合成。即将过渡金属氧化物和锂氮化物(M

x N

x

+Li

3

N)在1%H

2

+99%N

2

气氛中直

接反应,也可以通过Li

3N与金属粉末反应。Li

7

MnN

4

和Li

3

FeN

2

都有良好的可逆性

和高的比容量(分别为210和150mAh.g-1)。Li

7MnN

4

在充放电过程中,过渡金属

价态发生变化来保持电中性,该材料比容量比较低,约200mAh/g,但循环性能良好,充放电电压平坦,没有不可逆容量,特别是这种材料作为锂离子电池负极时,可以采用不能提供锂源的正极材料与其匹配用于电池。

Li

3-x Co

x

N属于Li3N结构锂过渡金属氮化物(其通式为Li

3-x

M

x

N,M为Co、Ni、

Cu),该材料比容量高,可达到900mAh/g,没有不可逆容量,充放电电压平均为0.6V左右,同时也能够与不能提供锂源的正极材料匹配组成电池,目前这种材料嵌锂、脱锂的机理及其充放电性能还有待进一步研究。

2、锡基负极材料

(1) 锡氧化物

锡的氧化物包括氧化亚锡、氧化锡和其混合物,都具有一定的可逆偖锂能力,偖锂能力比石墨材料高,可达500mAh/g以上,但首次不可逆容量也较大。

SnO/SnO2用作负极具有比容量高、放电电位比较低(在0.4~0.6V vs Li/Li+附近)的优点。但其首次不可逆容量损失大、容量衰减较快,放电电位曲线不太平稳。SnO/SnO2因制备方法不同电化学性能有很大不同。如低压化学气相沉积法制备的SnO2可逆容量为500mAh/g以上,而且循环寿命比较理想,100次循环以后也没有衰减。而SnO以及采用溶胶-凝胶法经简单加热制备的SnO2的循环性能都不理想。

在SnO(SnO2)中引入一些非金属、金属氧化物,如B、Al、Ge、Ti、Mn、Fe 等并进行热处理,可以得到无定型的复合氧化物称为非晶态锡基复合氧化物(Amorphous Tin-based Composite Oxide 简称为ATCO), 其可逆容量可达600mAh/g以上,体积比容量大于2200mAh/cm3,是目前碳材料负极

(500~1200mAh/cm3)的二倍以上,显示出应用前景。该材料目前的问题是首次不可逆容量较高,充放电循环性能也有待进一步改进。

(2) 锡复合氧化物

用于锂离子电池负极的锡基复合氧化物的制备方法是:将

SnO,B2O3,P2O5按一定化学计量比混合,于1000℃下通氧烧结,快速冷凝形成非晶态化合物,其化合物的组成可表示为SnBxPyOz

(x=0.4~0.6,y=0.6~0.4,z=(2+3x-5y)/2), 其中锡是Sn2+。与锡的氧化物(SnO/SnO2)相比锡基复合氧化物的循环寿命有了很大的提高,但仍然很难达到产业化标准。

(3) 锡合金

某些金属如Sn、Si、Al等金属嵌入锂时,将会形成含锂量很高的锂-金属合金。如Sn的理论容量为990mAh/cm3,接近石墨的理论体积比容量的10倍。为了降低电极的不可逆容量,又能保持负极结构的稳定,可以采用锡合金作

锂离子电极负极,其组成为:25%Sn

2Fe+75%SnFe

3

C。Sn

2

Fe为活性颗粒,它可以与

金属锂形成合金,SnFe

3

C为非活性颗粒,它可在电极循环过程中保持电极的基本骨架。这种锡合金的体积比容量是石墨材料的两倍。用25%Sn2Fe+75%SnFe3C构成的电极可以获得1600mAh.g-1的可逆容量,表现出良好的循环性能。

合金负极材料的主要问题首次效率较低及循环稳定性问题,必须解决负极材料在反复充放电过程中的体积效应造成电极结构破坏。单纯的金属材料负极循环性能很差,安全性也不好。采用合金负极与其他柔性材料复合有望解决这些问题。

3、锂钛复合氧化物

用来作锂离子电池负极的锂钛复合氧化物主要是Li4Ti5O12,其制备方法主要有:高温固相合成法、溶胶-凝胶法等。

(1)高温固相合成法

按一定计量的TiO2,LiCO3混匀研磨,在空气气氛下于1000℃保温26h 冷至室温即得Li4Ti5O12。

将TiO2, LiOH.H

2

O混匀研磨,在空气气氛下于700℃保温24h后冷却至室温得目标产品。

(2)溶胶-凝胶法

LiOH 钛酸四丁酯水冰醋

溶胶

烘干

凝胶

热处

理产物

4、纳米碳管

纳米碳管是近年来发现的一种新型碳晶体材料,它是一种直径几纳米至几十纳米,长度为几十纳米至几十微米的中空管,其性能如下:

催化热法是将20%H2+80%CH4混合气体在Ni+Al2O3的催化剂颗粒上于500℃热解,将热解的样品研磨后,加入热硝酸(80℃)浸泡48h以除去碳管中的催化剂,用水反复洗涤过滤,直至洗涤液的PH=6,过滤后的样品于160℃烘干。

直流电弧法是以高纯石墨棒为电极,在氩气保护下,在密闭电弧炉中,通过打电弧,所得产物为含有C60系列产品的纳米碳管。通过化学氧化法可分离出纳米碳管。

纳米负极材料主要是希望利用材料的纳米特性,减少充放电过程中体积膨胀和收缩对结构的影响,从而改进循环性能。实际应用表明:纳米特性的有效利用可改进这些负极材料的循环性能,然而离实际应用还有一段距离。关键原因是纳米粒子随循环的进行而逐渐发生结合,从而又失去了纳米粒子特有的性能,导致结构被破坏,可逆容量发生衰减。此外,纳米材料的高成本也成为限制其应用的一大障碍。

总之,在锂离子电池负极材料中,石墨类碳负极材料以其来源广泛,价格便宜,一直是负极材料的主要类型。除石墨化中间相碳微球(MCMB)、低端人造石墨占据小部分市场份额外,改性天然石墨正在取得越来越多的市场占有率。非碳负极材料具有很高的体积能量密度,越来越引起引起科研工作者兴趣,但是也存在着循环稳定性差,不可逆容量较大,以及材料制备成本较高等缺点,至今未能实现产业化。负极材料的发展趋势是以提高容量和循环稳定性为目标,通过各种方法将碳材料与各种高容量非碳负极材料复合以研究开发新型可适用的高容量、非碳复合负极材料。

硅负极材料在锂离子电池中的应用

新型硅负极材料在锂离子电池中的应用研究 吴孟涛 天津巴莫科技股份有限公司 当今社会便携式可移动电子设备的高速发展极大的刺激了市场对重量轻体积小容量和能量密度更高的锂离子电池的需求。目前商业化锂离子电池都是以碳基材料作为负极的,但由于石墨负极的可逆容量只有372mAh/g (LiC6),严重限制了未来锂离子电池的发展,所以研发下一代锂离子电池负极材料成为新的热点。人们发现在Li22Si5中硅的恒流理论容量达到了4200mAh/g,是极具开发潜力的锂离子负极材料。但这种材料的缺点也很突出:在嵌锂和脱锂过程中材料体积会发生膨胀,微观结构发生改变而导致在嵌锂脱嵌过程中电极的断裂和损耗[1]。虽然不少文献提出了很多改进方法但由于制备出的硅薄膜材料厚度较薄,不适宜商业化生产。为了使硅负极可以应用于实际生产,我公司以无定形硅薄膜溅射在铜箔上成功制备出了厚度大于1μ的硅薄膜负极材料并与市场上的LiCoO2制成电池进行了一系列循环和倍率性能测试。 1 实验: 硅薄膜是以物理溅射的方法在表面粗糙的铜箔上的[2]。表面形貌分析应用的是HRTEM(FEI Tecnai20).制备出的硅薄膜材料在80℃下真空干燥24h,与市场上销售的LiCoO2在手套箱中组成2025扣式全电池。电解液为1M LiPF6/EC+DMC(体积比1:1);隔膜使用的是Celgard-2300。所有倍率试验和循环性能试验都是在电脑控制的25±1℃恒温系统中进行的。 2结果与讨论: 图1是循环前硅薄膜材料的HRTEM图和SAED图,从图中可以清楚看出涂在铜箔上的硅薄膜是无定形状态的。 图1 硅薄膜材料的HRTEM图和SAED图

硅基锂离子电池负极材料

硅基锂离子电池负极材料 硅是目前已知比容量(4200mAh/g)最高的锂离子电池负极材料,但由于其巨大的体积效应(>300%),硅电极材料在充放电过程中会粉化而从集流体上剥落,使得活性物质与活性物质、活性物质与集流体之间失去电接触,同时不断形成新的固相电解质层SEI,最终导致电化学性能的恶化。近年来,研究者们做了大量的研究和探索,尝试解决这些问题并取得了一定的成效,下面就由小编带着大家看看这一领域的研究进展,并提出进一步的研究方向和应用前景。 硅的脱嵌锂机理和容量衰减机制 硅不具有石墨基材料的层状结构,其储锂机制和其他金属一样,是通过与锂离子的合金化和去合金化进行的,其充放电电极反应可以写作下式: Si+xLi++xe-LiXSi 图1硅基锂离子电池原理图:(a)充电;(b)放电

在与锂离子发生合金与去合金化过程中,硅的结构会经历一系列的变化,而硅锂合金的结构转变和稳定性直接关系到电子的输送。 根据硅的脱嵌锂机理,我们可以把硅的容量衰减机制归纳如下:(1)在首次放电过程中,随着电压的下降,首先形成嵌锂硅与未嵌锂晶态硅两相共存的核壳结构。随着嵌锂深度的增加,锂离子与内部晶体硅反应生成硅锂合金,最终以Li15Si4的合金形式存在。这一过程中相比于原始状态硅体积变大约3倍,巨大的体积效应导致硅电极的结构破坏,活性物质与集流体'活性物质与活性物质之间失去电接触,锂离子的脱嵌过程不能顺利进行,造成巨大的不可逆容量。(2)巨大的体积效应还会影响到SEI的形成,随着脱嵌锂过程的进行,硅表面的SEI会随着体积膨胀而破裂再形成,使得SEI越来越厚。由于SEI的形成会消耗锂离子,因而造成了较大的不可逆容量。同时SEI较差的导电性还会使得电极的阻抗随着充放电过程不断增大,阻碍集流体与活性物质的电接触,增加了锂离子的扩散距离,阻碍锂离子的顺利脱嵌,造成容量的快速衰减。同时较厚的SEI还会造成较大的机械应力,对电极结构造成进一步破坏。(3)不稳定的SEI层还会使得硅及硅锂合金与电解液直接接触而损耗,造成容量损失。 硅材料的选择与结构设计 1.无定型硅和硅的氧化物 (1)无定型硅 无定形硅在低电位下拥有较高的容量,作为锂离子电池负极材料"相比于石墨类电极材料安全性能更高。但无定形硅材料只能在有限程度上缓解颗粒的破碎和粉化,其循环稳定性仍不能满足作为高容量电池负极材料的要求。 (2)硅的氧化物 作为锂离子电池负极材料,SiO具有较高的理论比容量(1200mAh/g以上)、良好的循环性能以及较低的脱嵌锂电位,因此也是一种极具潜力的高容量锂离子电池负极材料。但氧化硅含氧量的不同也会影响其稳定性和可逆容量:随着氧化硅中氧的提高,循环性能提高,但可逆容量减小。 除此之外,硅氧化物作为锂离子电池负极材料还存在一些问题:由于首次嵌锂过程中Li2O和锂硅酸盐形成过程是不可逆的,使得首次库仑效率很低;同时Li2O和锂硅酸盐导电性差,使得电化学动力学性能较差,因而其倍率性能差;相比于单质硅,硅氧化物作为负极材料的循环稳定性更好,但是随着循环次数继续增加,其稳定性仍然很差。 2.低维硅材料

(完整word版)材料合成与制备_复习资料(有答案)

第一章溶胶-凝胶法 名词解释 1. 胶体(Colloid):胶体是一种分散相粒径很小的分散体系,分散相粒子的质量可以忽略不计,粒子之间的相互作用主要是短程作用力。 2. 溶胶:溶胶是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。分散粒子是固体或者大分子颗粒,分散粒子的尺寸为1nm-100nm,这些固体颗粒一般由10^3个-10^9个原子组成。 3. 凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般为1%-3%。 4. 多孔材料:是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。 一、填空题 1.溶胶通常分为亲液型和憎液型型两类。 2.材料制备方法主要有物理方法和化学方法。 3.化学方法制备材料的优点是可以从分子尺度控制材料的合成。 4.由于界面原子的自由能比内部原子高,因此溶胶是热力学不稳定 体系,若无其它条件限制,胶粒倾向于自发凝聚,达到低比表面状 态。 5.溶胶稳定机制中增加粒子间能垒通常用的三个基本途径是使胶粒带表面电荷、利用空间位阻效应、利用溶剂化效应。

6.溶胶的凝胶化过程包括脱水凝胶化和碱性凝胶化两类。 7.溶胶-凝胶制备材料工艺的机制大体可分为三种类型传统胶体型、无机聚合物型、络合物型。 8.搅拌器的种类有电力搅拌器和磁力搅拌器。 9.溶胶凝胶法中固化处理分为干燥和热处理。 10.对于金属无机盐的水溶液,前驱体的水解行为还会受到金属离子半径的大小、电负性和配位数等多种因素的影响。 二、简答题 溶胶-凝胶制备陶瓷粉体材料的优点? 制备工艺简单,无需昂贵的设备;对多元组分体系,溶胶-凝胶法可大大增加其化学均匀性;反应过程易控制,可以调控凝胶的微观结构;材料可掺杂的范围较宽(包括掺杂量及种类),化学计量准确,易于改性;产物纯度高,烧结温度低等。 第二章水热溶剂热法 名词解释 1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境而进行无机合成与材料制备的一种有效方法。 2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(如有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成、易氧化、易水解或对水敏感的材料。 3、超临界流体:是指温度及压力都处于临界温度或临界压力之上的流

锂电池负极材料大体分为以下几种

锂电池负极材料大体分为以下几种: 第一种是碳负极材料: 目前已经实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。 第二种是锡基负极材料: 锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。目前没有商业化产品。 第三种是含锂过渡金属氮化物负极材料,目前也没有商业化产品。 第四种是合金类负极材料: 包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金,目前也没有商业化产品。 第五种是纳米级负极材料:纳米碳管、纳米合金材料。 第六种纳米材料是纳米氧化物材料:目前合肥翔正化学科技有限公司根据2009年锂电池新能源行业的市场发展最新动向,诸多公司已经开始使用纳米氧化钛和纳米氧化硅添加在以前传统的石墨,锡氧化物,纳米碳管里面,极大的提高锂电池的冲放电量和充放电次数。 锂金属电池 锂-二氧化锰电池是一种以锂为阳极(负极)、以二氧化锰为阴极(正极),并采用有机电解液的一次性电池。该电池的主要特点是电池电压高,额定电压为3V(是一般碱性电池的2倍);终止放电电压为2V;比能量大(金属锂的理论克容量为3074mAh);放电电压稳定可靠;有较好的储存性能(储存时间3年以上)、自放电率低(年自放电率≤10%);工作温度范围-20℃~+60℃。 该电池可以做成不同的外形以满足不同要求,它有长方形、圆柱形及纽扣形(扣式)。 锂离子电池 可充电锂离子电池是目前手机、笔记本电脑等现代数码产品中应用最广泛的电池,但它较为“娇气”,在使用中不可过充、过放(会损坏电池或使之报废)。因此,在电池上有保护元器件或保护电路以防止昂贵的电池损坏。锂离子电池充电要求很高,要保证终止电压精度在±1%之内,目前各大半导体器件厂已开发出多种锂离子电池充电的IC,以保证安全、可靠、快速地充电。 现在手机已十分普遍,基本上都是使用锂离子电池。正确地使用锂离子电池对延长电池寿命是十分重要的。它根据不同的电子产品的要求可以做成扁平长方形、圆柱形、长方形及扣式,并且有由几个电池串联并联在一起组成的电池组。锂离子电池的额定电压,因为近年材料的变化,一般为3.7V,磷酸铁锂(以下称磷铁)正极的则为3.2V。充满电时的终止充电电压一般是4.2V,磷铁3.65V。锂离子电池的终止放电电压为2.75V~3.0V(电池厂给出工作电压范围或给出终止放电电压,各参数略有不同,一般为3.0V,磷铁为2.5V)。低于2.5V(磷铁2.0V)继续放电称为过放,过放对电池会有损害。

材料合成与制备方法教学大纲

《无机材料合成》实验教学大纲 课程名称:无机材料合成 课程编号:094300560 总学时:36 适用对象:材料化学本科专业 一、教学目的和任务: 《无机材料合成》是材料化学专业的一门必修课。本课程的任务是通过各种教学环节,使学生掌握单晶材料的制备、薄膜的制备、非晶态材料制备、复合材料的制备、功能陶瓷的合成与制备、结构陶瓷的制备、功能高分子的制备、催化材料制备、低维材料制备等,使学生获得先进材料合成与制备的基础知识,毕业后可适应化工材料的科学研究与技术开发工作。 二、教学基本要求: 在全部教学过程中,应始终坚持对学生进行实验室安全和爱护公物的教育;简单介绍有效数字和误差理论;介绍正确书写实验记录和实验报告的方法以及基本操作和常规仪器的使用方法。无机材料的制备方法、薄膜制备的溶胶-凝胶法、纳米晶的水热合成法、纳米管的气相沉积法的原理和基本操作方法,材料结构表征和性能测试的结果的正确分析,并在此基础上研究材料结构和性能的关系。培养学生的实际动手操作能力;深刻领会课本所学的理论知识,具有将理论知识应用于实践中的能力。 三、教学内容及要求 实验一无机材料合成(制备)方法与途径 实验仪器:计算机 实验内容:认识无机材料合成中的各种元素、化学反应;相关中外文摘、期刊的查阅方法。 实验要求:了解无机材料合成的基本方法、途径与制约条件 实验二晶体合成 实验仪器:磁力搅拌器、烧杯 实验内容:晶体的生长 实验要求:了解晶体的基本分类与应用;熟悉晶体生长的基本原理;重点掌握晶体合成的技术与方法。 实验三薄膜制备 实验仪器:压电驱动器、磁力搅拌器、烧杯 实验内容:薄膜材料的制备 实验要求:掌握薄膜材料的分类与应用;薄膜与基材的复合方法、途径以及制约条件; 实验四胶凝材料的制备

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展 摘要:随着时代的进步,能源与人类社会的生存和发展密切相关,持续发展是全人类的、共同愿望与奋斗目标。矿物能源会很快枯竭,解决日益短缺的能源问题和日益严重的环境污染是对国家经济和安全的挑战也是对科学技术界地挑战。电池行业作为新能源领域的重要组成部分,已经成为全球经济发展的一个新热点本文阐述了锂离子负极材料的基本特性,综述了碳类材料、硅类材料以及这两种材料形成的复合材料作为锂离子电池负极材料的研究及开发应用现状。 关键词:锂离子电池负极材料碳/硅复合材料 引言:电极是电池的核心,由活性物质和导电骨架组成正负极活性物质是产生电能的源泉,是决定电池基本特性的重要组成部分。本文就锂离子电池的负极材料进行研究。锂离子电池是目前世界上最为理想的可充电电池。它不仅具有能量密度大、无记忆效应、循环寿命长等特点,而且污染小,符合环保要求。随着技术的进步,锂离子电池将广泛应用于电动汽车、航空航天、生物医学工程等领域,因此,研究与开发动力用锂离子电池及其相关材料有重大意义。对于动力用锂离子电池而言,关键是提高功率密度和能量密度,而功率密度和能量密度提高的根本是电极材料,特别是负极材料的改善。 1、锂离子负极材料的基本特性 锂离子电池负极材料对锂离子电池性能的提高起着至关重要的作用。锂离子电池负极材料应具备以下几个条件: (1) 应为层状或隧道结构,以利于锂离子的脱嵌且在锂离子嵌入和脱出时无结构上的变化,以使电极具有良好的充放电可逆性和循环寿命; (2) 锂离子在其中应尽可能多的嵌入和脱出,以使电极具有较高的可逆容量。在锂离子的脱嵌过程中,电池有较平稳的充放电电压; (3) 首次不可逆放电比容量较小; (4) 安全性能好; (5) 与电解质溶剂相容性好; (6) 资源丰富、价格低廉; (7) 安全、不会污染环境。 现有的负极材料很难同时满足上述要求。因此,研究和开发新的电化学性能更好的负极材料成为锂离子电池研究领域的热门课题。 2、选材要求 一般来说,锂离子电池负极材料的选择主要要遵循以下原则:1、插锂时的氧化还原电位应尽可能低,接近金属锂的电位,从而使电池的输出电压高;2、锂能够尽可能多地在主体材料中可逆的脱嵌,比容量值大;3、在锂的脱嵌过程中,主体结构没有或很少发生变化,以确保好的循环性能;4、氧化还原电位随插锂数目的变化应尽可能的少,这样电池的电压不会发生显著变化,可以保持较平稳的充放电:5、插入化合物应有较好的电子电导率和离子电导率,这样可以减少极化并能进行大电池充放电;6、具有良好的表面结构,能够与液体电解质形成良好的固体电解质界面膜;7、锂离子在主体材料有较大的扩散系数,便于快速的充放电;8、价格便宜,资源丰富对环境无污染 3、负极材料的主要类型用作锂离子电池负极材料的种类繁多,根据主体相

锂离子电池硅_碳复合负极材料的研究进展_张瑛洁

第34卷第4期 硅酸盐通报Vol.34No.42015年4月BULLETIN OF THE CHINESE CERAMIC SOCIETY April ,2015 锂离子电池硅/碳复合负极材料的研究进展 张瑛洁,刘洪兵 (东北电力大学化学工程学院,吉林132012) 摘要:负极材料是制约锂离子电池发展的重要因素之一。硅/碳复合材料储锂容量高、循环稳定性好,是目前制备 新型锂离子电池负极材料的研究热点。介绍了硅/碳复合材料的不同制备方法和复合结构以及优良的电化学性 能,综述了硅/碳复合材料的研究进展,并对未来的发展方向进行了展望。 关键词:锂离子电池;硅/碳复合材料;制备方法;复合结构;电化学性能 中图分类号:TQ152文献标识码:A 文章编号:1001- 1625(2015)04-0989-06Research Progress on Si /C Composite Anode Materials for Lithium-ion Battery ZHANG Ying-jie ,LIU Hong-bing (School of Chemical Engineering ,Northeast Dianli University ,Jilin 132012,China ) Abstract :Anode materials is a major factor that restricts the development of lithium-ion batteries.Si /C composite materials ,which possesses high capacity and cycling stability ,becomes the hot spot to preparation of new type lithium-ion battery anode materials at present.Different preparation methods of Si /C composite materials ,composite structures ,and excellent electrochemical performance were introduced.And the research progress of Si /C composites was summarized.Subsequently ,the future development direction of Si /C composite materials was prospected as well. Key words :lithium ion battery ;Si /C composite materials ;preparation method ;complex structure ; electrochemical performance 基金项目:吉林省科技厅产业技术创新战略联盟项目(20130305017GX );吉林省教育厅吉教科合字[ 2014]第103号作者简介:张瑛洁(1969-),女,教授, 博士.主要从事水的深度处理方面的研究.1引言 负极材料储锂容量是制约锂离子电池应用范围的关键因素,硅/碳复合材料作为一类应用潜力巨大的负 极材料, 成为近年来研究的热点。碳与硅相近似的化学性质,为两者的紧密结合提供了理论依据,所以碳常用作与硅复合的首选基质。硅通常与石墨、石墨烯、无定型碳和碳纳米管等不同的碳基质制备复合材料,在硅碳复合的体系中硅主要作为活性物质,提供容量 [1-3];碳材料一般作为分散基质,限制硅颗粒的体积变化,并作为导电网络维持电极内部良好的电接触[4-6]。理论上,硅/碳复合材料储锂容量高,导电性能好,但要成为可商用的锂离子电池负极材料,面临着两个基本的挑战:循环稳定性差和可逆循环容量保持率低。不同的制备方法以及复合结构都会对复合材料的电化学性能产生影响,开发强附着性、紧密电接触、耐用的新型硅碳复合材料,对促进硅/碳复合材料实际应用的进程具有重大意义。本文着重从制备方法、复合结构及电化学性能等方面综述了硅/碳复合材料近年来的研究进展,以期对后续的研究人员的相关实验提供理论依据。DOI:10.16552/https://www.sodocs.net/doc/9e18920682.html,ki.issn1001-1625.2015.04.018

材料合成与制备方法(金属篇) 复习总结

材料合成与制备方法(金属篇) 第一章单晶材料的制备 1.单晶体经常表现出电、磁、光、热等方面的优异性能,广泛用于现在工业的诸多领域。 2.固—固生长法即是结晶生长法。其主要优点是,能在较低的温度下生长;生长晶体的形状是预先固定的。缺点是难以控制成核以形成大晶粒。 3.结晶通常是放热过程的证明:对任何过程有△G=△H-T△S,在平衡态时△G=0,即 △H=T△S。这里△H是热焓的变化,△S是熵变,T是绝对温度。由于在晶体生长过程中,产物的有序度要比反应物的有序度要高,所以△S<0,△H<0,故结晶通常是放热过程。 4.应变是自发过程,而退火是非自发过程的证明:对于未应变到应变过程,有△E1-2=W-q,这里W是应变给予材料的功,q是释放的热,且W>q。△H1-2=△E1-2+△(pv),由于△(pv)很小,近似得△H1-2=△E1-2。而△G1-2=△H1-2-T△S=W-q-T△S,在低温下T△S可忽略,故△G1-2=W-q>0。因此使结晶产生应变不是一个自发过程,而退火是自发过程。(在退火过程中提高温度只是为了提高速度) 5.再结晶驱动力:经过=塑性变形后,材料承受了大量的应变,因而储存大量的应变能。在产生应变时,发生的自由能变化近似等于做功减去释放的热量。该热量通常就是应变退火再结晶的主要推动力。应变退火再结晶推动力可以由下式给出:△=W-q+G S+△G0。这里W是产生应变或加工时所做的功,q是作为热而释放的能量,G S是晶粒的表面自由能,△G0是试样中不同晶粒取向之间的自由能差。 6.晶粒长大的过程是:形核—焊接—并吞。其推动力是储存在晶粒间界的过剩自由能的减少,因此晶界间的运动起着缩短晶界的作用,晶界能可以看做晶界之间的一种界面张力,而晶粒的并吞使这种张力减小。 7.若有一个晶粒很细微的强烈的织构包含着几个取向稍微不同的较大的晶体,则有利于二次再结晶。再结晶的驱动力是由应变消除的大小差异和欲生长晶体的取向差异共同提供的。 8.在应变退火中,通常在一系列试样上改变应变量,以便找到退火期间引起一个或多个晶粒生长所必须的最佳应变量或临界应变。一般而言,1%~10%的应变足够满足要求,相应的临界应变控制精度不高于0.25%. 9.均匀形核:形成临界晶核时,液、固相之间的自由能差能供给所需要的表面能的三分之二,另三分之一则需由液体中的能量起伏提供。△G*=1/3A**σ。

材料制备与合成

《材料制备与合成[料]》课程简介 课程编号:02034916 课程名称:材料制备与合成/Preparation and Synthesis of Materials 学分: 2.5 学时:40 (课内实验(践):0 上机:0 课外实践:0 ) 适用专业:材料科学与工程 建议修读学期:6 开课单位:材料科学与工程学院材料物理与化学系 课程负责人:方道来 先修课程:材料化学基础、物理化学、材料科学基础、金属材料学 考核方式与成绩评定标准:期末开卷考试成绩(占80%)与平时考核成绩(占20%)相结合。 教材与主要参考书目: 教材:《材料合成与制备》. 乔英杰主编.国防工业出版社,2010年. 主要参考书目:1. 《新型功能材料制备工艺》, 李垚主编. 化学工业出版社,2011年. 2. 《新型功能复合材料制备新技术》.童忠良主编. 化学工业出版社,2010年. 3. 《无机合成与制备化学》. 徐如人编著. 高等教育出版社, 2009年. 4. 《材料合成与制备方法》. 曹茂盛主编. 哈尔滨工业大学出版社,2008年. 内容概述: 本课程是材料科学与工程专业本科生最重要的专业选修课之一。其主要内容包括:溶胶-凝胶合成法、水热与溶剂热合成法、化学气相沉积法、定向凝固技术、低热固相合成法、热压烧结技术、自蔓延高温合成法和等离子体烧结技术等。其目的是使学生掌握材料制备与合成的基本原理与方法,熟悉材料制备的新技术、新工艺和新设备,理解材料的合成、结构与性能、材料应用之间的相互关系,为将来研发新材料以及材料制备新工艺奠定坚实的理论基础。 The course of preparation and synthesis of materials is one of the most important specialized elective courses for the undergraduate students majoring in materials science and engineering. It includes the following parts: sol-gel method, hydrothermal/solvothermal reaction method, CVD method, directional solidification technique, low-heating solid-state reaction method, hot-pressing sintering technique, self-propagating high-temperature synthesis, and SPS technique. Its purpose is to enable students to master the basic principles and methods of preparation and synthesis of materials, and grasp the new techniques, new processes and new equipments, and further understand the relationship among the synthesis, structure, properties and the applications of materials. The course can lay a firm theoretical foundation for the research and development of new materials and new processes in the future for students.

锂离子电池碳负极材料研究进展

锂离子电池碳负极材料的研究进展 赵永胜 (河北工业大学化工学院应用化学系,天津 300130) 摘要综述了锂离子电池碳负极材料中石墨化碳、无定形碳和碳纳米材料近几年的研究成果及发展方向,探讨了该类材料目前存在的问题及解决办法,对该类材料的发展趋势进行了展望。 关键词锂离子电池负极材料碳材料 Research progress of carbon anode materials for lithium ion batteries Zhao Yongsheng (Department of Applied Chemistry,School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130)Abstract:The research achievements on three main aspects in the field of lithium ion battery carbon anode materials in recent years. Graphitized carbon,amorphous carbon,carbon nano-materials are summarized. The problems in these materials and the feasible methods to solve the problems are discussed. Finally, the developing trend of lithium ion battery carbon anode materials is prospected. Keywords:Lithium ion batteries;anode materials;carbon materials 自1991年日本索尼公司开发成功以碳材料为负极的锂离子电池(LixC6/LiX In PC-EC(1:1)/Li1-x CoO2)以来(LiX为锂盐),锂离子电池已迅速向产业化发展,并在移动电话、摄像机、笔记本电脑、便携式电器上大量应用[1]。自锂离子电池的商品化以来,研究的负极材料有以下几种:石墨化碳材料、无定向碳材料、氮化物、硅基材料、锡基材料、新型合金[2]。本文着重对锂离子电池碳负极材料方面的研究进展进行评述。 1.碳基负极材料的分类 炭素材料的种类繁多,其结晶形式有金刚石、石墨、富勒烯、碳纳米管等,

锂离子电池硅碳负极材料研发现状与发展趋势

Material Sciences 材料科学, 2020, 10(4), 248-252 Published Online April 2020 in Hans. https://www.sodocs.net/doc/9e18920682.html,/journal/ms https://https://www.sodocs.net/doc/9e18920682.html,/10.12677/ms.2020.104030 Research and Development Status and Trend of Silicon Carbon Anode Materials for Lithium Ion Batteries Yimin Xie1*, Jin Guo2, Xianhua Dong1 1Shandong Tianli Energy Co., Ltd., Jinan Shandong 2Dalian Research Institute of Petroleum and Petrochemicals, Sinopec, Dalian Liaoning Received: Mar. 31st, 2020; accepted: Apr. 15th, 2020; published: Apr. 22nd, 2020 Abstract This paper introduces the development process, research and development status and develop-ment trend of silicon carbon anode materials for lithium-ion batteries. The electrochemical prop-erties of the silicon carbon anode materials with different materials and different methods are quite different. The specific capacity ranges from about 500 mAh/g to about 2000 mAh/g. After 40 cycles, the capacity retention rate ranges from 47% to more than 90%. The research and devel-opment trend of silicon carbon anode materials is put forward. In the research and development process, the raw materials and material composite methods should be determined according to the use goal of the battery. In addition, attention should be paid to the uniformity of the micro structure and the stability of the macro structure, so as to solve the problems of volume expansion and poor conductivity of silicon materials. Keywords Lithium Ion Battery, Silicon Carbon Anode, Composite Material, High Specific Capacity 锂离子电池硅碳负极材料研发现状与发展趋势 谢以民1*,郭金2,董宪华1 1山东天力能源股份有限公司,山东济南 2中国石油化工股份有限公司大连石油化工研究院,辽宁大连 收稿日期:2020年3月31日;录用日期:2020年4月15日;发布日期:2020年4月22日 *通讯作者。

锂离子电池的组成部分之负极(非常详细)

锂离子电池的组成部分之负极(非常详细) 2、负极(1) 此主题相关图片如下: 2、负极(2) 在负极材料部分,锂电池的负极材料主要是: A、石墨系碳(graphite) a、天然石墨 b、人工石墨 c、类石墨(如 MCMB , Meso Carbon Micro Beads) B、非石墨碳材(如焦碳系,coke) 由于石墨系的重量能量密度较高且材料本身的结构具有较高的规则性,所以第一次放电的不可逆电容量会较低,另外石墨系负极材料具有平稳工作电压作用,对电子产品的使用和充电器的设计较具优势。而另一种类的焦炭系与碳黑系﹝carbon black﹞的负极材料在第一次充放电反应的不可逆电容量很高,但是此材料可以在较高的C- rate下作充放电,另外此材料的放电曲线较斜,有利于使用电压来监控电池容量的消耗。 负极(3) 石墨为层状结构,由碳网平面沿C轴堆积而成,层间距为3.36A。平面碳层由碳原子呈六角形排列并向二维方向延伸,碳层间以弱的范德华力结合,锂嵌在碳层之间 石墨的实际比容量为320—340mAh/g。平均嵌锂电位约为0.1V(VS Li+/Li),第一周充放电效率约为8 2—84%,循环性能好,且价格低廉(<10元/Kg)。 A、石墨类的制备 ①中间相碳微球(Mesophase Carbon Micro Beads, MCMB)是用煤焦油沥青、石油重质油等在350—5

00℃温度下加热并经分离、洗涤、干燥和分级等过程制得的平均粒径6-10微米的碳微球,然后于28000C 下进行石墨化热处理制得的碳材料。其外形呈球形,晶体结构同石墨基本一致。 MCMB的实际比容量约为310—330mAh/g,平均嵌锂电位约为0.15V(VS Li+/Li),第一周充放电效率约为88%—90%,循环性及大电流性能好,是目前为止最为理想的负极材料,但价格昂贵(约300元/Kg) 负极(4) A、石墨类的制备 ②气相成长碳纤(Vapor-Grown Carbon Fiber, VGCF) 以碳氢化合物经化学蒸镀(CVD)反应,再用不同温度经热处理而成 负极(5) B、非石墨类的制备 ①可石墨化碳类 ---- 软碳主要为焦碳﹝Coke﹞类,可由沥青或煤渣而来 2、负极(6) B、非石墨类的制备 ②不可石墨化类 ---- 硬碳(最具发展潜力) 硬碳不易石墨化。是一种与石墨不同的近似非晶结构的碳材料,晶体尺寸较小,通常在几个纳米以下,呈无规则排列,有细微空隙存在,是利用高分子先驱物(polymer precursor),在不同温度下经热解所形成的无次序碳材而得到。其主要特点:嵌锂容量高,一般可达600mAh/g以上。问题: A、第一周充放电效率低,一般不超过60% B、循环性能差 此主题相关图片如下: 负极(7)-锡基金属间化合物及复合物、锡基复合氧化物 Sn与Li能可逆地形成组成为Li4.4Sn的合金,七十年代开始就引起了人们的广泛关注。由于Sn贮锂—脱锂过程体积膨胀超过200%,极易引起电极粉化,导致循环性能迅速衰减。如何稳定材料结构,防止电极 粉化是一直以来研究的重点。 近年来,人们发现将Sn均匀的分布在对锂惰性的金属或化合物、复合物中,可较好地缓冲电极的膨胀, 抑制电极粉化问题,从而获得比较好的循环性能。

锂离子电池硅基负极材料研究进展

万方数据

万方数据

万方数据

锂离子电池硅基负极材料研究进展 作者:崔清伟, 李建军, 戴仲葭, 连芳, 何向明, 田光宇, Cui Qingwei, Li Jianjun, Dai Zhongjia,Lian Fang, He Xiangming, Tian Guangyu 作者单位:崔清伟,Cui Qingwei(北京科技大学材料科学与工程学院,北京100083;清华大学核能与新能源技术研究院,北京100084), 李建军,戴仲葭,Li Jianjun,Dai Zhongjia(清华大学核能与新能源技术研究院,北京,100084) , 连芳,Lian Fang(北京科技大学材料科学与工程学院,北京,100083), 何向明,He Xiangming(清华大学核 能与新能源技术研究院,北京100084;清华大学汽车安全与节能国家重点实验室,北京100084), 田光宇,Tian Guangyu(清华大学汽车安全与节能国家重点实验室,北京,100084) 刊名: 化工新型材料 英文刊名:New Chemical Materials 年,卷(期):2013,41(6) 被引用次数:7次 参考文献(20条) 1.庄全超,武山,刘文元,陆兆达锂离子电池材料研究进展[期刊论文]-电池 2003(2) 2.周恒辉,慈云祥,刘昌炎锂离子电池电极材料研究进展[期刊论文]-化学进展 1998(1) https://www.sodocs.net/doc/9e18920682.html,z A;Huggins R A查看详情 2004 4.Huggins R A查看详情 1999 5.Lee K L;Jung J Y;Lee S W查看详情 2004 6.Cui L F;Ruffo R;Chan C K查看详情 2009(01) 7.Lv R;Yang J;Gao P查看详情 2009 8.Song, T.;Xia, J.;Lee, J.-H.;Lee, D.H.;Kwon, M.-S.;Choi, J.-M.;Wu, J.;Doo, S.K.;Chang, H.;Park, W.I.;Zang, D.S.;Kim, H.;Huang, Y.;Hwang, K.-C.;Rogers, J.A.;Paik, U.Arrays of sealed silicon nanotubes as anodes for lithium ion batteries[外文期刊] 2010(5) 9.Du C Y;Gao C H;Yin G P查看详情 2011 10.赵吉诗,何向明,万春荣,姜长印锂离子电池硅基负极材料研究进展[期刊论文]-稀有金属材料与工程 2007(8) 11.Wen Z S;Cheng M K;Sun J C查看详情 2010 12.Cui, L.-F.;Hu, L.;Choi, J.W.;Cui, Y.Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries[外文期刊] 2010(7) 13.杜萍,高俊奎锂离子电池Si基负极研究进展[期刊论文]-电源技术 2010(4) 14.Wang X Y;Wen Z Y;Liu Y查看详情 2011 15.Chen H X;Xiao Y;Wang L查看详情 2011(16) 16.Kasavajjula U;Wang C;Appleby A J查看详情 2007 17.黄可龙;王兆翔;刘素琴锂离子电池原理与关键技术 2007 18.See-How Ng;Jiazhao Wang查看详情 2006 19.Si Q;Hanai K;Ichikawa T查看详情 2010 20.Zhou Z B;Xu Y H;Hojamberdiev M查看详情 2010 引证文献(2条) 1.刘云海,吴智鑫,姬超,闫腊梅,高虹锂离子电池Si-Ni负极材料的制备研究[期刊论文]-节能 2014(04) 2.陈雪芳,黄英,黄海舰,王科锂离子电池用硅负极材料的研究进展[期刊论文]-中国科技论文 2014(9) 引用本文格式:崔清伟.李建军.戴仲葭.连芳.何向明.田光宇.Cui Qingwei.Li Jianjun.Dai Zhongjia.Lian Fang.He Xiangming. Tian Guangyu锂离子电池硅基负极材料研究进展[期刊论文]-化工新型材料 2013(6)

锂电池负极材料的研究进展

锂离子电池负极材料研究进展介绍 来源:中国燃料电池网时间:2015-09-08 09:11 编辑:周奕 我国能源生产量和消费量均已居世界前列,但在能源供给和利用形式上存在着一系列突出问题,如能源结构不合理、能源利用效率不高、可再生能源开发利用比例低、能源利用安全水平有待进一步提高。总体上讲,我国能源工业大而不强,与发达国家相比,在技术创新能力方面还存在较大差距。因此,提高能源利用效率,调整能源结构,开发和利用可再生能源将是我国能源发展的必然选择。为了解决我国能源工业所面临的难题,寻求替代传统化石燃料的可再生绿色能源显得尤为迫切。与此同时,随着人们环保意识的日益增强和对资源利用率的关注,可充电电池逐渐成为研究的焦点,而锂原电池的成功应用大大推动了锂离子电池的研究和发展,使锂离子电池成为关注的重点。 1锂离子电池发展状况 锂电池最早出现于1958年,20世纪70年代开始进入实用化[2]。由于具有重量轻、体积小、安全性好、工作电压高、能量密度高、使用寿命长等优点成为近年来最受关注的储能器件之一。随着世界全面步入信息时代,电子化和信息化己经成为各个领域的共同发展趋势,锂离子电池也被越来越多地应用于多个方面。医疗上,锂离子电池可以为心脏起搏器、助听器等设备供能,对于病人更安全、更便捷;交通上,锂离子电池己经被广泛应用于电动单车、电动汽车上;军事上,锂离子电池可为电磁武器充能,为小型定位系统供能,甚至作为潜艇等大型作战设备的备用动力源;航天上,锂离子电池可作为航天器及各种仪器设备的电力补充单元。 电池按工作性质可以分为一次电池和二次电池[3]。一次电池是指不可循环使用的电池,如碱锰电池、锌锰电池等。二次电池指可以多次充放电、循环使用的电池,如先

动力锂离子电池及其负极材料的现状和发展

动力锂离子电池及其负极材料的现状和发展 2010-11-10 14:45:06 中国石墨碳素网 文/苗艳丽杨红强岳敏 天津市贝特瑞新能源材料有限责任公司 随着汽车行业的发展,石油、天然气等不可再生石化燃料的耗竭日益受到关注,空气污染和室温效应也成为全球性的问题。为解决能源问题、实现低碳经济,基于目前能源技术的发展水平,电动汽车技术逐渐成为全球经济发展的重点方向,美国、日本、德国、中国等国家相继限制燃油车使用,大力发展电动车。作为电动汽车的核心部件——动力电池也迎来了大好的发展机遇。动力电池是指应用于电动车的电池,包括锂离子电池、铅酸电池、燃料电池等,其中,锂离子电池因具有比能量高、比功率大、自放电少、使用寿命长及安全性好等特性,成为目前各国发展的重点。 国外政府及企业在动力锂离子电池研发上均做出了很大的努力。我国的锂离子电池产业起步虽较晚,但发展速度非常快,同时,政府给予了大力的支持。“十一五”期间,“863”电动汽车重大专项对混合动力(HEV)、外接充电式混合动力(PHEV)用锂离子电池关键材料和电池进行了专门的研究。 与锂离子电池其他部件相比,锂离子电池负极材料的发展较为成熟。在商业应用中,石墨类碳材料技术较为成熟,市场价格也比较稳定,但随着锂离子动力电池对能量密度、功率密度、安全等性能的要求不断提升,硬碳、钛酸锂(Li4Ti5O12)、合金等其他材料也相继成为研究热门。 一、动力锂离子电池负极材料简介 1.动力锂离子电池负极材料特性 锂离子电池由正极、负极、电解液、隔膜和其他附属材料组成。锂离子电池负极材料要求具备以下的特点:①尽可能低的电极电位;②离子在负极固态结构中有较高的扩散率;③高度的脱嵌可逆性;④良好的电导率及热力学稳定性;⑤安全性能好;⑥与电解质溶剂相容性好;⑦资源丰富、价格低廉;⑧安全、无污染。 2.动力锂离子电池负极材料主要类型 早期人们曾用金属锂作为负极材料,但由于存在安全问题没有大规模商业应用。目前,对锂离子电池负极材料的研究较多有:碳材料、硅基材料、锡基材料、钛酸锂、过渡金属氧化物等。本文将主要介绍3类负极材料:碳材料、合金材料(锡(Sn)、硅(Si)等)和钛酸锂。 (1)碳材料 碳材料是人们最早开始研究并应用于锂离子电池生产的负极材料,至今仍然为大家关注和研究的重点。碳材料根据其结构特性可分成3类:石墨、易石墨化碳及难石墨化碳(也就是通常所说的软碳和硬碳)。软碳主要有中间相炭微球、石油焦、针状焦、碳纤维等;硬碳主要有树脂碳(如酚醛树脂、环氧树脂、聚糠醇PFA-C 等),有机聚合物热解碳(包括聚乙烯醇基、聚氯乙烯基、聚丙烯腈基等)以及碳黑等。由于软碳与石墨的结晶性比较类似,一般认为它比硬碳更容易插入锂,即更容易充电,安全性也更好些。 石墨类碳材料技术比较成熟,在安全和循环寿命方面性能突出,并且廉价、无毒,是较为常见的负极材料。常规锂离子电池负极材料包括天然石墨、天然石墨改性材料、中间相炭微球和石油焦类人造石墨。天然石墨和天然石墨改性材料价格比较低,但是在充放电效率和使用寿命方面有待进一步提高。中间相炭微球结构特殊,呈球形片层结构且表面光滑,直径在5~40μm之间,该材料独特的形貌使其在比容电量(可达到330mAh/g以上)、安全性、放电效率、循环寿命(循环次数达到2000次以上)等方面具有显著优势,但是成本有待降低。石油焦类的产品在放电效率和循环寿命方面比较突出,但存在着高成本和制备工艺复杂的问题。 近年来,随着研究工作的不断深入,研究者发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,有利于锂在其中的嵌入-脱

相关主题