搜档网
当前位置:搜档网 › 图像数字水印+matlab程序

图像数字水印+matlab程序

图像数字水印+matlab程序
图像数字水印+matlab程序

第三章图像数字水印的方案

3.1 图像数字水印的技术方案

在数据库中存储在国际互联网上传输的水印图像一般会被压缩,有时达到很高的压缩比。因此,数字水印算法所面临的第一个考验就是压缩。JPEG和EZW(Embedded Zero-Tree Wavelet)压缩是最常见的两种压缩方法。JPEG是基于离散余弦变换域的压缩方法,而EZW是基于小波变换域的压缩方法。前人的研究证明采用与压缩算法相同的变换域水印方法,对于压缩的稳健性较强。因此,我研究图像文件水印算法主要集中在变换域算法及利用人眼视觉特性上。

数字水印的嵌入要求即要考虑视觉透明性,又要保证嵌入水印后图像的稳健性,这两个方面存在着矛盾。保证视觉透明性,就要将水印嵌入到人眼不敏感区,也就是嵌入到图像的高频分量中。而多数图像处理方法对于图像高频部分的损坏程度较高,如有损压缩、高频滤波等。水印很容易在经历图像处理的过程中丢失。这样,则无法保证图像数字水印的稳健性。如果要获得很好的稳健性,数字水印应加在人眼敏感的低频部分,图像的大部分能量集中在低频部分,如果对于低频部分进行处理,水印固然会失去,而图像也没有了利用价值,然而,水印的嵌入会对图像的质量有非常大的影响,这又无法保证视觉透明性。

数字水印算法的实现基本分为三个部分:宿主图像的变换,水印的嵌入和水印的检测,分别描述如下。

3.2 基于DCT域的图像数字水印技术

离散余弦变换(Discrete Cosine Transform)属于正交变换图像编码方法中的一种。正交变换图像编码始于1968年。当时安德鲁斯(Andrews)等人发现大多数自然图像的高频分量相对幅度较低,可完全舍弃或者只用少数码字编码,提出不对图像本身编码,只对其二维傅立叶(DFT)系数进行编码和传输。但DFT是一种正交变换,运算量很大,常常使实时处理发生困难,第二年他们就用Walsh-Hadamard变换(WHT)取代DFT可以使运算量明显减少,这是因为WHT变换只有加减法而无需乘法。但是更有意义的是离散余弦变换和离散正旋变换的出现,它们具有快速算法,精确度高。其中最重要的是1974年提出的DCT,因为其变换矩阵的基向量很近似于托伯利兹矩阵的特征向量,而托伯利兹矩阵又体现了人类语言及图像信号的相关性。因此,DCT常常被认为是语音与图像信号变换的准最佳变换。

图像是二维的,所以在研究时主要用到二维DCT,以及二维IDCT来对图像进行处理。

3.2.1 离散余弦变换(DCT )的定义

数字图像X (m,n )是具有M 行N 列的一个矩阵。为了同时减弱或去除图像数据相关性,可以运用二维DCT ,将图像从空间域转换到DCT 变换域。 根据定义,二维离散余弦变换(DCT )定义如下:

N

l n M k m n m X l c k c MN

l k Y M m N n 2)12(cos

2)12(cos

),()()(2),(101

π

π++=

∑∑-=-=

式中:m ,k=0,1,…,M -1; n ,l =0,1,…,N -1。

??

?-===1,,2,11

21)(M k k k c 其中函数?

??-===1,,2,11021)(N k k l c

二维逆离散余弦变换(IDCT )的定义如下:

∑∑-=-=++=

1010

2)12(cos

2)12(cos

),()()(2),(M K N L N

l n M k m l k Y l c k c MN

n m X π

π 式中:m ,k=0,1,…,M -1; n ,l =0,1,…N -1。

3.2.2 离散余弦变换的特点

在基于DCT 的变换编码中,图像是先经分块(8×8或16×16)后再经DCT ,这种变换是局部的,只反映了图像某一部分的信息。当然也可以对整幅图像的特点,但是运算速度比分块DCT 要慢。图像经DCT 后,得到的DCT 图像有三个特点:

一是系数值全部集中到0值附近(从直方图统计的意义上),动态范围很小,这说明用较小的量化比特数即可表示DCT 系数;

二是DCT 变换后图像能量集中在图像的低频部分,即DCT 图像中不为零的系数大部分集中在一起(左上角),因此编码效率很高。

三是没有保留原图像块的精细结构,从中反映不了原图像块的边缘、轮廓等信息,这一特点是由DCT 缺乏时局域性造成的。

如下左图3—1是原始图像经过DCT 变换后的系数图像为图3—2。两条线划分出图像的低频、中频和高频分别所在的矩形区域。可以看出,图像DCT 变换后大部分参数接近于零,只有左上角的低频部分有较大的数值,中频部分参数值相对较小,而大部分

高频参数值非常小,接近于零。

图 3—1:原图像 图 3—2:变换后的系数图像

3.2.3 离散余弦变换的数字水印算法

根据离散余弦变换后的参数性质,本文采用了以ZigZag 方式重排变换域系数的方法,选出中频分量,用数字水印序列对其进行非线性调制。水印检测时,待检测图像仍按比方式选择变换域系数,与待水印进行相关运算,与阈值比较来判断是否所含水印。

离散余弦域的数字水印算法的具体实现分为三步:宿主图像的变换,数字水印的嵌入,数字水印的检测。

3.2.3.1 宿主图像的DCT 变换

对于N ×N 大小的256灰度级的宿主图像I 进行N ×N 二维离散余弦变换(DCT )。以ZigZag 方式对于DCT 变换后的图像频率系数重新排列成一维向量Y={y 1, y 2,…y N×N }.

并取出序列中第L+1到L+M 的中频系数部分,得到Y L ={ Y L+1, Y L+2,…, Y L+M }

3.2.3.2 数字水印的嵌入

假设数字水印W 为一服从标准正态分布的随机实数序列,用数字序列表示为W={W 1,W 2,…W M }。用W 对Y 序列中第L+1到L+M 的中频系数部分的值进行修改,按以下公式进行:

经过修改的系数序列Y ′ ={ Y 1′, Y 2′,... Y ′N×N }以ZigZag 逆变换形式重组,再进行N ×N DCT 逆变换,得到嵌有数字水印的图像I ′。

3.2.3.3 数字水印的检测

待检测的可能含有水印的图像I "。假设I "未损失大量信息,可以近似认为I "= I ′。在此假设下可以运用统计的方法来检测水印。 (1)待检水印域待检图像中频系数相关性的测定

同样对I ′进行DCT 变换,以ZigZag 方式将DCT 系数排成一维向量Y "= { Y 1", Y 2",... Y N×N "}。由于假设I "=I ′,则Y "= Y ′。

取出Y "(等于Y ′)中第L+1到L+M 的中频系数部分Y L "={ Y L+1", Y L+2"’

,... Y L+M "}。假设待检测的数字水印X={X 1,X 2,... X M }为一符合标准正态分布的实数伪随机序列。则可以通过待检水印与图像中频系数作相关运算来判断是否所加入了水印。只有在待检水印为所加入的水印时,才能得到较大的相关值。否则相关值很小,接近于零。

∑∑++=++=

=

=))()((1)(1),'cov(21

Xi W Y X Y

M

X Y M

X Y Z i i L i i

L M

i i i L L α

用符号E 表示数学期望,得到:

''2,0

i i i i i i

y y i L i L m y y y w L i L M αα?=≤≥+?=+<≤+>?或

(2)阈值的确定

根据中心极限定理,参照水印匹配与不匹配两种情况得到阈值为2/)(2L z Y E T α=。由于原始图像难以得到,因此从实用性出发,阈值定义为:

∑=+==M

i i

L L

Z Y

M

Y E T 1

2

2/)(α

α

综上所述,满足5.022

???Z

Z T T Z 或时,则表明检测到匹配水印。否则,未检测到匹配的水印。

3.3 MATLAB 工具简介 3.3.1. 简介

Matlab 是当前在国内外十分流行的工程设计和系统仿真软件包。它是MathWorks 公司于1982年推出的一套高性能的数值计算和可视化软件,它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一人方便的、界面友好的用户环境。

Matlab 的推出得到了各个领域专家、学者的广泛关注,其强大的扩展功能为各个领域的应用提供了基础。由各个专家学者相继推出了MATLAB 工具箱,其中的信号处理(signal processing)、控制系统(control system)、神经网络(neural network)、图像处理(image processing)、鲁棒控制(robust control)、非线性系统控制设计(nonlinear system control design)、系统辨识(system identification)、最优化(optimization)、模糊逻辑(fuzzy logic)、小波(wavelet)、通信(communication)、统计(statistics)等工具箱,这些工具箱给各个领域的研究和工程应用提供了有力的工具,借助于这些“巨人肩上的工具”,各个层次的研究人员可直观、方便地进行分析、计算及设计工作,从而大大地节省了时间。

3.3.2. MATLAB 研究数字水印的优点

① 集成了DCT 、DWT 等函数有丰富的小波函数和处理函数,这不仅方便了研究人员,

而且使源程序简洁明了、易实现。

② 强大的数学运算功能。能够方便、高效地实现音频、视频中的大量矩阵运算。 ③ 提供了图像处理工具箱、小波分析工具箱、数字信号处理工具箱。用来编制跨数字

图像处理技术、数字信号处理等多学科的数字水印技术是非常好的选择。 ④ MATLAB 与目前最强大的编程工具——Visual C++具有良好的接口。

2()()()0

()0E z E Y X W E z X W E z α?==?

=≠??=?

没有水印存在

3.3.3. MATLAB函数介绍

在介绍函数之前,我们必须明确一点:作水印程序时,处理的图像数据是二维信号,而声音信号是一维信号。这里,我们仅仅简单介绍与水印有关的函数。

①数据输入输出函数

imread()和imwrite():可以读写bmp,jpg/jpeg, tif/tiff, png, hdf, pcx, wxd格式文件。读索引文件时,还可以得到相应的调色板数据。

auread()、auwrite()、wavread()和wavwrite():可以方便地读写au和wav文件,并可控制其中的位及频率。

②图像显示

imshow():显示一幅图像;imfinfo():可以得到读入图像的信息。如文件的大小、格式、格式版本号、图像的高度、宽度、颜色类型(真彩色,灰度图还是索引图)等。

③变换频函数

对信号采用不同的变换,是实现频域法水印的至关重要的一步,MATLAB中对一维信号和二维信号分别提供了各种变换和逆变换函数。

◆离散余弦变换(DCT)

dct(),dct2():分别实现一维信号和二维信号的DCT(离散余弦变换);

idct(),idct2():分别实现一维信号和二维信号的IDCT(逆向离散余弦变换);

◆离散小波变换(DWT)

dwt(),dwt2():分别实现一维信号和二维信号的DWT(离散小波变换)

idwt(),idwt2():分别实现一维信号和二维信号的IDWT(离散小波变换);

Wavedec2():多级二维小波分解函数;

Waveinfo():提供小波包中所有的小波信息;

④攻击函数

对算法进行攻击测试是对水印鲁棒性检测的一种重要手段,一个好的水印算法必须经过各种攻击测试才能对之做出客观的评价。MATLAB中的许多函数可以直接用来做攻击测试。

旋转:rotate()可以对图像进行任意角度的旋转;

剪裁:imcrop()可以按精确定位的各点坐标进行剪裁;

滤波:filter()和filter2()可实现对一维信号和二维信号的滤波;

抖动:dither()对图像进行抖动;抖动攻击考验水印鲁棒性的一个很好的攻击;

jpeg压缩:imwrite()中jpg和quality参数能对图像进行可控jpg压缩;

加各种噪声:imnoise()可以对图像加入各种噪声,如白噪声、椒盐噪声等,加入噪声是对水印鲁棒性考验的一种常见的攻击;

放大/缩小:imresize()可以以指定的插值方法来对图像进行放大和缩小。

第四章:图像数字水印技术的实现

4.1 基于离散余弦变法(DCT)实现数字水印技术

①打开原始及水印图像:

subplot(2,2,1)

I=uigetfile('*.bmp','打开原始彩色图像文件');

RGB=imread(I);

image(RGB);

title('原始彩色图像');

subplot(2,2,2)

I=uigetfile('*.bmp','打开水印灰度图像文件');

imshow(I);

title('灰度水印图像');

subplot(2,2,3)

H=imread(I);

J=dct2(H);

imshow(log(abs(J)),[]),colorbar;

title('水印图像经DCT变换后能量分布情况')

运行结果:

②水印全过程:

0%水印加入程序

Q=input('请输入放缩因子的值(建议小于1):Q=')

subplot(2,3,1)

RGB=imread('浙江台州学院','jpg');

imshow(RGB);

title('原始图像');

subplot(2,3,2)

N=dct2(RGB(:,:,3));

imshow(log(abs(N)),[]),colorbar; title('Y分量能量分布');

subplot(2,3,4)

I=imread('lena1','bmp');

imshow(I);

title('灰度水印图像');

subplot(2,3,5)

M=dct2(I);

imshow(log(abs(M)),[]),colorbar; title('水印能量分布');

subplot(2,3,6)

J=M(1:128,1:128);

J(128:364,128:400)=0;

J=rot90(J);

J=rot90(J);

J(365:600,401:750)=0;

J=rot90(J);

J=rot90(J);

N=N+Q*J;

K=idct2(N);

RGB(:,:,3)=K;

imshow(RGB);

title('加入水印后图像');

%水印提取程序

subplot(2,3,3)

RGB1=imread('浙江台州学院','jpg'); N=dct2(RGB(:,:,3));

M=dct2(RGB1(:,:,3));

M=(N-M)/Q;

B=idct2(M(236:365,350:401));

Y=mat2gray(B);

imshow(Y);

title('提取的水印图像')

运行结果:

③水印全过程(经剪切检测水印)

%水印加入程序

Q=input('请输入放缩因子的值(建议小于1):Q=') subplot(3,3,1)

RGB=imread('MM','jpg');

imshow(RGB);

title('原始图像');

subplot(3,3,2)

imshow(RGB(:,:,3));

title('B分量');

subplot(3,3,3)

N=dct2(RGB(:,:,3));

imshow(log(abs(N)),[]),colorbar;

title('B分量能量分布');

subplot(3,3,4)

I=imread('lena1','bmp');

imshow(I);

title('灰度水印图像');

subplot(3,3,5)

M=dct2(I);

imshow(log(abs(M)),[]),colorbar;

title('水印能量分布');

subplot(3,3,7)

J=M(1:128,1:128);

J(128:464,128:364)=0;

J=rot90(J);

J=rot90(J);

J(465:800,365:600)=0;

J=rot90(J);

J=rot90(J);

N=N+Q*J;

K=idct2(N);

RGB(:,:,3)=K;

imshow(RGB);

title('加入水印后图像'); subplot(3,3,8)

I=imcrop(RGB,[1 1 598 798]); imshow(I);

subplot(3,3,9)

%水印提取程序

subplot(3,3,6)

RGB1=imread('MM','jpg');

J=RGB1(:,:,3);

X=J(1:799,1:599);

N=dct2(I(:,:,3));

M=dct2(X);

M=(N-M)/Q;

B=idct2(M(337:464,237:364));

Y=mat2gray(B);

imshow(Y);

title('经放缩后提取的水印图像') 运行结果:

④水印全过程(经空域压缩检测水印)

程序源代码

%水印加入程序

Q=input('请输入放缩因子的值(建议小于1):Q=')

P=input('请输入您所希望的图像放缩系数值(建议取值不要小于0.5):P=') subplot(3,3,1)

RGB=imread('浙江台州学院','jpg');

imshow(RGB);

title('原始图像');

subplot(3,3,2)

imshow(RGB(:,:,3));

title('B分量');

subplot(3,3,3)

N=dct2(RGB(:,:,3));

imshow(log(abs(N)),[]),colorbar;

title('B分量能量分布');

subplot(3,3,4)

I=imread('lena1','bmp');

title('灰度水印图像');

subplot(3,3,5)

M=dct2(I);

imshow(log(abs(M)),[]),colorbar; title('水印能量分布');

subplot(3,3,7)

J=M(1:128,1:128);

J(128:364,128:400)=0;

J=rot90(J);

J=rot90(J);

J(365:600,401:750)=0;

J=rot90(J);

J=rot90(J);

N=N+Q*J;

K=idct2(N);

RGB(:,:,3)=K;

imshow(RGB);

title('加入水印后图像');

subplot(3,3,8)

I=imresize(RGB,P,'nearest'); imshow(I);

title('压缩P倍图像');

subplot(3,3,9)

J=imresize(I,1/P,'nearest'); imshow(J);

title('再放大P倍还原图像')

%水印提取程序

subplot(3,3,6)

RGB1=imread('浙江台州学院','jpg'); N=dct2(J(:,:,3));

M=dct2(RGB1(:,:,3));

M=(N-M)/Q;

B=idct2(M(236:365,350:401));

Y=mat2gray(B);

title('经放缩后提取的水印图像'):

运行结果:

4.2 图像水印的dwt算法

%以下是水印提取算法

clear all;

clc;

%保存时间

start_time=cputime;

figure(1);

%读出原始图像

subplot(1,2,1);

input=imread('2.jpg');

imshow(input);

title('原始图像');

%读出水印图像

subplot(1,2,2);

watermarked_image=imread('watermarked.bmp'); imshow(watermarked_image,[]);

title('水印图像');

%三色分离

input=double(input);

watermarked_image=double(watermarked_image); inputr=input(:,:,1);

watermarked_imager=watermarked_image(:,:,1); inputg=input(:,:,2);

watermarked_imageg=watermarked_image(:,:,2); inputb=input(:,:,3);

watermarked_imageb=watermarked_image(:,:,3);

%水印图像R的分解

[Cwr,Swr]=WAVEDEC2(watermarked_imager,2,'haar');

%图像R的分解

[Cr,Sr]=WAVEDEC2(inputr,2,'haar');

%水印图像G的分解

[Cwg,Swg]=WAVEDEC2(watermarked_imageg,2,'haar');

%图像R的分解

[Cg,Sg]=WAVEDEC2(inputg,2,'haar');

%水印图像B的分解

[Cwb,Swb]=WAVEDEC2(watermarked_imageb,2,'haar');

%图像B的分解

[Cb,Sb]=WAVEDEC2(inputb,2,'haar');

%提取水印小波系数

%提取水印R的小波系数

r=0.06;

for k=0:3

whr(k+1,:)=Cwr(1+size(Cwr,2)/4+k*size(Cwr,2)/16:... size(Cwr,2)/4+(k+1)*size(Cwr,2)/16)-...

Cr(1+size(Cr,2)/4+k*size(Cr,2)/16:...

size(Cr,2)/4+(k+1)*size(Cr,2)/16);

wvr(k+1,:)=Cwr(1+size(Cwr,2)/2+k*size(Cwr,2)/16:... size(Cwr,2)/2+(k+1)*size(Cwr,2)/16)-...

Cr(1+size(Cr,2)/2+k*size(Cr,2)/16:...

size(Cr,2)/2+(k+1)*size(Cr,2)/16);

wdr(k+1,:)=Cwr(1+3*size(Cwr,2)/4+k*size(Cwr,2)/16:... 3*size(Cwr,2)/4+(k+1)*size(Cwr,2)/16)-...

Cr(1+3*size(Cr,2)/4+k*size(Cr,2)/16:...

3*size(Cr,2)/4+(k+1)*size(Cr,2)/16);

end

whr=(whr(1,:)+whr(2,:)+whr(3,:)+whr(4,:))/(4*r);

wvr=(wvr(1,:)+wvr(2,:)+wvr(3,:)+wvr(4,:))/(4*r);

wdr=(wdr(1,:)+wdr(2,:)+wdr(3,:)+wdr(4,:))/(4*r);

war=(Cwr(1:size(Cwr,2)/16)-Cr(1:size(Cr,2)/16))/r;

%提取水印小波系数

%提取水印G的小波系数

g=0.03;

for k=0:3

whg(k+1,:)=Cwg(1+size(Cwg,2)/4+k*size(Cwg,2)/16:... size(Cwg,2)/4+(k+1)*size(Cwg,2)/16)-...

Cg(1+size(Cg,2)/4+k*size(Cg,2)/16:...

size(Cg,2)/4+(k+1)*size(Cg,2)/16);

wvg(k+1,:)=Cwg(1+size(Cwg,2)/2+k*size(Cwg,2)/16:... size(Cwg,2)/2+(k+1)*size(Cwg,2)/16)-...

Cg(1+size(Cg,2)/2+k*size(Cg,2)/16:...

size(Cg,2)/2+(k+1)*size(Cg,2)/16);

wdg(k+1,:)=Cwg(1+3*size(Cwg,2)/4+k*size(Cwg,2)/16:... 3*size(Cwg,2)/4+(k+1)*size(Cwg,2)/16)-...

Cg(1+3*size(Cg,2)/4+k*size(Cg,2)/16:...

3*size(Cg,2)/4+(k+1)*size(Cg,2)/16);

end

whg=(whg(1,:)+whg(2,:)+whg(3,:)+whg(4,:))/(4*g);

wvg=(wvg(1,:)+wvg(2,:)+wvg(3,:)+wvg(4,:))/(4*g);

wdg=(wdg(1,:)+wdg(2,:)+wdg(3,:)+wdg(4))/(4*g);

wag=(Cwg(1:size(Cwg,2)/16)-Cg(1:size(Cg,2)/16))/g;

%提取水印小波系数

%提取水印B的小波系数

b=0.12;

for k=0:3

whb(k+1,:)=Cwb(1+size(Cwb,2)/4+k*size(Cwb,2)/16:...

size(Cwb,2)/4+(k+1)*size(Cwb,2)/16)-...

Cb(1+size(Cb,2)/4+k*size(Cb,2)/16:...

size(Cb,2)/4+(k+1)*size(Cb,2)/16);

wvb(k+1,:)=Cwb(1+size(Cwb,2)/2+k*size(Cwb,2)/16:...

size(Cwb,2)/2+(k+1)*size(Cwb,2)/16)-...

Cb(1+size(Cb,2)/2+k*size(Cb,2)/16:...

size(Cb,2)/2+(k+1)*size(Cb,2)/16);

wdb(k+1,:)=Cwb(1+3*size(Cwb,2)/4+k*size(Cwb,2)/16:... 3*size(Cwb,2)/4+(k+1)*size(Cwb,2)/16)-...

Cb(1+3*size(Cb,2)/4+k*size(Cb,2)/16:...

3*size(Cb,2)/4+(k+1)*size(Cb,2)/16);

end

whb=(whb(1,:)+whb(2,:)+whb(3,:)+whb(4,:))/(4*b);

wvb=(wvb(1,:)+wvb(2,:)+wvb(3,:)+wvb(4,:))/(4*b);

wdb=(wdb(1,:)+wdb(2,:)+wdb(3,:)+wdb(4,:))/(4*b);

wab=(Cwb(1:size(Cwb,2)/16)-Cb(1:size(Cb,2)/16))/b;

%重构水印图像

cwr=[war,whr,wvr,wdr];

swr(:,1)=[sqrt(size(war,2)),sqrt(size(war,2)),2*sqrt(size(war,2))]; swr(:,2)=[sqrt(size(war,2)),sqrt(size(war,2)),2*sqrt(size(war,2))]; wr = waverec2(cwr,swr,'haar');

cwg=[wag,whg,wvg,wdg];

swg(:,1)=[sqrt(size(wag,2)),sqrt(size(wag,2)),2*sqrt(size(wag,2))]; swg(:,2)=[sqrt(size(wag,2)),sqrt(size(wag,2)),2*sqrt(size(wag,2))]; wg=waverec2(cwg,swg,'haar');

cwb=[wab,whb,wvb,wdb];

swb(:,1)=[sqrt(size(wab,2)),sqrt(size(wab,2)),2*sqrt(size(wab,2))]; swb(:,2)=[sqrt(size(wab,2)),sqrt(size(wab,2)),2*sqrt(size(wab,2))]; wb=waverec2(cwb,swb,'haar');

%将R,G,B叠加

temp=size(wr);

pic=zeros(temp(1),temp(2),3);

for i=1:temp(1);

for j=1:temp(2);

pic(i,j,1)=wr(i,j);

pic(i,j,2)=wg(i,j);

pic(i,j,3)=wb(i,j);

end

end

output=uint8(round(pic));

%转化为uint8

watermark_image_uint8=uint8(output);

imwrite(watermark_image_uint8,'watermark.bmp','bmp');

figure(2);

imshow(watermark_image_uint8);

title('提取出的水印');

原始图像

加入小波的图像

小波提取的小波

基于matlab的图像识别与匹配

基于matlab的图像识别与匹配 摘要 图像的识别与匹配是立体视觉的一个重要分支,该项技术被广泛应用在航空测绘,星球探测机器人导航以及三维重建等领域。 本文意在熟练运用图像的识别与匹配的方法,为此本文使用一个包装袋并对上面的数字进行识别与匹配。首先在包装袋上提取出来要用的数字,然后提取出该数字与包装袋上的特征点,用SIFT方法对两幅图进行识别与匹配,最终得到对应匹配数字的匹配点。仿真结果表明,该方法能够把给定数字与包装袋上的相同数字进行识别与匹配,得到了良好的实验结果,基本完成了识别与匹配的任务。

1 研究内容 图像识别中的模式识别是一种从大量信息和数据出发,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别、评价的过程。 图形辨别是图像识别技术的一个重要分支,图形辨别指通过对图形的图像采用特定算法,从而辨别图形或者数字,通过特征点检测,精确定位特征点,通过将模板与图形或数字匹配,根据匹配结果进行辨别。 2 研究意义 数字图像处理在各个领域都有着非常重要的应用,随着数字时代的到来,视频领域的数字化也必将到来,视频图像处理技术也将会发生日新月异的变化。在多媒体技术的各个领域中,视频处理技术占有非常重要的地位,被广泛的使用于农业,智能交通,汽车电子,网络多媒体通信,实时监控系统等诸多方面。因此,现今对技术领域的研究已日趋活跃和繁荣。而图像识别也同样有着更重要的作用。 3 设计原理 3.1 算法选择 Harris 角点检测器对于图像尺度变化非常敏感,这在很大程度上限制了它的应用范围。对于仅存在平移、旋转以及很小尺度变换的图像,基于Harris 特征点的方法都可以得到准确的配准结果,但是对于存在大尺度变换的图像,这一类方法将无法保证正确的配准和拼接。后来,研究人员相继提出了具有尺度不变性的特征点检测方法,具有仿射不变性的特征点检测方法,局部不变性的特征检测方法等大量的基于不变量技术的特征检测方法。 David.Lowe 于2004年在上述算法的基础上,总结了现有的基于不变量技术的特征检测方法,正式提出了一种基于尺度空间的,对图像平移、旋转、缩放、甚至仿射变换保持不变性的图像局部特征,以及基于该特征的描述符。并将这种方法命名为尺度不变特征变换(Scale Invariant Feature Transform),以下简称SIFT 算法。SIFT 算法首先在尺度空间进行特征检测,并确定特征点的位置和特征点所处的尺度,然后使用特征点邻域梯度的主方向作为该特征点的方向特征,以实现算子对尺度和方向的无关性。利用SIFT 算法从图像中提取出的特征可用于同一个物体或场景的可靠匹配,对图像尺度和旋转具有不变性,对光照变化、

基于MATLAB的图像处理的基本运算

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 基于MATLAB的图像处理的基本运算 初始条件: 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)能够对图像亮度和对比度变化调整,并比较结果 (2)编写程序通过最近邻插值和双线性插值等算法将用户所选取的图像区域进行放大和缩小整数倍的和旋转操作,并保存,比较几 种插值的效果 (3)图像直方图统计和直方图均衡,要求显示直方图统计,比较直方图均衡后的效果。 (4)对图像加入各种噪声,比较效果。 时间安排: 指导教师签名:年月日 系主任(或责任教师)签名:年月日 目录 摘要.......................................................................................................................... 错误!未定义书签。 1 MATLAB简介 ........................................................................................................ 错误!未定义书签。2图像选择及变换................................................................................................... 错误!未定义书签。 2.1 原始图像选择读取....................................................................................... 错误!未定义书签。 2.1.1 原理图的读入与基本变换 .................................................................... 错误!未定义书签。

基于Matlab的数字水印设计——基于DCT域的水印实现

摘要 数字水印(Digital Watermark)技术是指用信号处理的方法在数字化的多媒体数据中嵌入隐蔽的标记,这种标记通常是不可见的,只有通过专用的检测器或阅读器才能提取。数字水印是信息隐藏技术的一个重要研究方向。随着数字水印技术的发展,数字水印的应用领域也得到了扩展,数字水印的基本应用领域是版权保护、隐藏标识、认证和安全不可见通信。 当数字水印应用于版权保护时,潜在的应用市场在于电子商务、在线或离线地分发多媒体内容以及大规模的广播服务。数字水印用于隐藏标识时,可在医学、制图、数字成像、数字图像监控、多媒体索引和基于内容的检索等领域得到应用。数字水印的认证方面主要ID卡、信用卡、ATM卡等上面数字水印的安全不可见通信将在国防和情报部门得到广泛的应用。 本文主要是根据所学的数字图象处理知识,在MATLAB环境下,通过系统编程的方式,建立并实现基于DCT域的数字水印加密系统。该系统主要包含数字水印的嵌入与提取,仿真结果表明,数字水印算法具有有效性、可靠性、抗攻击性、鲁棒性和不可见性,能够为数字媒体信息在防伪、防篡改、认证、保障数据安全和完整性等方面提供有效的技术保障。 关键词:数字水印;MATLAB;DCT

目录 1 课程设计目的 (1) 2 课程设计要求 (2) 3 数字水印技术基本原理 (3) 3.1 数字水印基本框架 (3) 3.2 算法分类 (3) 3.2.1 DCT法 (4) 3.2.2 其他方法 (4) 3.3 实际需要考虑的问题 (4) 3.3.1 不可见性 (4) 3.3.2 鲁棒性 (5) 3.3.3 水印容量 (5) 3.3.4 安全性 (5) 4 基于DCT变换仿真 (6) 4.1 算法原理 (6) 4.1.1 准备工作 (6) 4.1.2 选取8*8变换块 (7) 4.1.3 边界自适应 (7) 4.1.4 DCT变换与嵌入 (7) 4.1.5 恢复空域 (8) 4.2 嵌入算法扩展 (8) 4.2.1 RGB彩色图像三个矩阵的划分 (8) 4.2.2 八色彩色水印 (8) 4.3 水印的提取 (9) 4.4 仿真程序 (9) 5 结果分析 (14) 结束语 (16) 参考文献 (17)

基于MATLAB图像处理报告

基于M A T L A B图像处理报告一、设计题目 图片叠加。 二、设计要求 将一幅礼花图片和一幅夜景图片做叠加运算,使达到烟花夜景的美图效果。 三、设计方案 、设计思路 利用matlab强大的图像处理功能,通过编写程序,实现对两幅图片的像素进行线性运算,利用灰度变换的算法使图片达到预期的效果。 、软件介绍 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB 也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户直接进行下载就可以用。

主成分分析报告matlab程序

Matlab编程实现主成分分析 .程序结构及函数作用 在软件Matlab中实现主成分分析可以采取两种方式实现:一是通过编程来实现;二是直接调用Matlab种自带程序实现。下面主要主要介绍利用Matlab的矩阵计算功能编程实现主成分分析。 1程序结构 2函数作用 Cwstd.m——用总和标准化法标准化矩阵 Cwfac.m——计算相关系数矩阵;计算特征值和特征向量;对主成分进行排序;计算各特征值贡献率;挑选主成分(累计贡献率大于85%),输出主成分个数;计算主成分载荷 Cwscore.m——计算各主成分得分、综合得分并排序 Cwprint.m——读入数据文件;调用以上三个函数并输出结果

3.源程序 3.1 cwstd.m总和标准化法标准化矩阵 %cwstd.m,用总和标准化法标准化矩阵 function std=cwstd(vector) cwsum=sum(vector,1); %对列求和 [a,b]=size(vector); %矩阵大小,a为行数,b为列数 for i=1:a for j=1:b std(i,j)= vector(i,j)/cwsum(j); end end 3.2 cwfac.m计算相关系数矩阵 %cwfac.m function result=cwfac(vector); fprintf('相关系数矩阵:\n') std=CORRCOEF(vector) %计算相关系数矩阵 fprintf('特征向量(vec)及特征值(val):\n') [vec,val]=eig(std) %求特征值(val)及特征向量(vec) newval=diag(val) ; [y,i]=sort(newval) ; %对特征根进行排序,y为排序结果,i为索引fprintf('特征根排序:\n') for z=1:length(y) newy(z)=y(length(y)+1-z); end fprintf('%g\n',newy) rate=y/sum(y); fprintf('\n贡献率:\n') newrate=newy/sum(newy) sumrate=0; newi=[]; for k=length(y):-1:1 sumrate=sumrate+rate(k); newi(length(y)+1-k)=i(k); if sumrate>0.85 break; end end %记下累积贡献率大85%的特征值的序号放入newi中fprintf('主成分数:%g\n\n',length(newi)); fprintf('主成分载荷:\n') for p=1:length(newi)

数字水印技术及基于MATLAB的快速实现

2011年3月刊计算机工程应用技术信息与电脑 China Computer&Communication 1. 引言 多媒体及网络的迅速发展使得多媒体信息的交流和传输变得更 加简单和快捷,然而,这也使盗版者能以低廉的成本复制及传播未经 授权的数字产品,这种对数字产品保护和信息安全的迫切需求,导致 了数字水印技术成为多媒体信息安全领域的一个热点问题。数字水印 技术是在不影响宿主媒体主观质量的情况下,在宿主媒体(文本、图 像、视频、音频)中嵌入不易被人察觉的标识信息,用以证明原创作 者对其作品的所有权,并作为鉴定、起诉非法侵权的证据。 2. 数字水印的特征 一般认为数字水印应具有以下特征: (1) 安全性。数字水印应该是安全、难以被篡改的。当数字作品 发生变化时,数字水印应当也相应发生变化;同时,未经授权的个人 不得修改水印,理论上是未经授权的用户不能检测到产品中是否含有 水印。 (2) 鲁棒性。当被保护的数据在经过攻击后,嵌入的水印信息仍 能保持好的完整性并能以一定的正确概率被检测到。这些可能的攻击 包括噪声、滤波、剪切、旋转和编码等。 (3) 不可感知性。数字水印的嵌入不应使得原始作品发生可以感 知的变化,也不能使得被保护数据在质量上发生可以感觉到的失真。 (4) 可证明性。在多媒体作品的实际应用过程中可能需要多次加 入水印,这时水印系统必须能够允许水印被多次嵌入到被保护的数 据,而且每个水印均能独立地被证明。 (5) 无歧义性。恢复出的水印或对水印判决结果能够表明版权的 惟一,不会发生多重版权纠纷问题。 3. 数字水印的基本原理 通用的水印技术包含两个方面:水印的嵌入和水印的提取或检 测,如图1和图2所示。 图1 水印信号嵌入 图2 水印信号提取或检测 4. 数字水印的研究现状 4.1 文本水印 文本水印就是将代表著作人身份的信息(水印)嵌入到电子出版物 中,在产生版权纠纷时来验证版权的归属。其主要分为三大类:基于 文档结构的水印方法、基于自然语言处理技术的水印方法、基于传统 图像的水印方法。 基于文档结构的各种水印方法都只是提留在文本的表层,无法抵 抗对于文本结构和格式的攻击,简单的重新录入攻击就能使之失效, 因此这些水印方法普遍存在鲁棒性差的缺点。自然语言文本水印方法 相对提高了抗攻击的能力,但普遍存在容量不足的问题。基于传统图 像的文本水印普遍存在鲁棒性不高、操作复杂的缺点。 4.2 图像水印 根据水印的实现过程,图像水印算法可分为空域算法和变换域算 法。空域算法是通过直接改变原始图像的像素值来嵌入水印,通常具 有较快的速度,但鲁棒性差,且水印容量也会受到限制;变换域算法 是通过改变某些变换系数来嵌入水印,通常具有很好的鲁棒性和不可 见性。其实现一般是基于图像变换,如DCT、DFT、DWT等。重点介 绍一下变换域算法。 4.2.1 离散傅里叶变换 (DFT) 该方法是利用图像的DFT来嵌入信息。通信理论中调相信号的抗 干扰能力比调幅信号的抗干扰能力强,同样在图像中利用相位信息嵌 入的水印也比用幅值信息嵌入的水印更稳健。实验表明该方法的抗压 缩能力比较弱。 4.2.2 离散余弦变换 (DCT) DCT能把空间域的图像转换到变换域上进行研究,从而能很容易 了解到图像的各空间频域成分,进行相应处理。基于DCT的水印方法 与基于DFT的水印方法相比有较好的鲁棒性,但是无法做到对图像信 号内容的自适应,因此往往会造成对图像特征的明显损害,不可感知 性不是最佳。 4.2.3 离散小波变换 (DWT) DWT是一种时间---频率信号的多分辨率分析方法,在时频两域 都具有表征信号局部特征的能力。实验表明,与DCT、DFT变换相比 较,基于DWT的水印算法的鲁棒性最优,且与JPEG2000、MPEG4压 缩标准兼容,利用DWT产生的水印具有良好的视觉效果和抵抗多种 攻击的能力,且不可感知性最好。 4.3 音频水印 音频水印利用音频文件的冗余信息和人耳听觉系统的特点来嵌入 水印,其可以保护声音数字产品不被随意复制和篡改,如CD唱片, 广播电台的节目内容等。音频水印的三种基本方法:扩频嵌入方 法、回声隐藏方法和相位编码方法。 4.4 视频水印 视频水印是通过对视频载体的时间和空间冗余来嵌入水印,其既 不影响视频质量,又能达到保护节目制作者的合法权益和控制数字产 品的复制。视频水印从算法要求上同图像水印有许多相似之处,但视 频水印也有一些独特之处,如能够在压缩和未压缩的格式下实时完成 水印的检测,对MPEG压缩、A/D和D/A转换等都有较好的稳健性。 数字水印技术涉及到通信理论、编码理论、噪声理论、视听觉 感知理论、扩频技术、信号处理技术、数字图像处理技术、多媒体技 术、模式识别技术、算法设计等理论,用到经典的DFT离散傅立叶变数字水印技术及基于MATLAB的快速实现 张 巍1 时宏伟2 (1.78179部队,四川成都 610011;2. 川大智胜,四川成都 610045) 摘要:数字水印是近几年来出现的数字产品版权保护技术,是当前国际学术界的研究热点.该文论述了数字水印的提出及研究现状、水印的基本原理和算法、水印的分类等情况,并介绍了一种可以快速上手的高效的实用语言——MATLAB,同时给出了一个用MATLAB工具在静止图像上嵌入水印的实例。 关键词:数字水印;MATLAB;DCT 中图分类号:TP39 文献标识码:A 文章编号:1003-9767(2011)03-0130-02

基于MATLAB的图像处理字母识别

数字图像处理 报告名称:字母识别 学院:信息工程与自动化学院专业:物联网工程 学号:201310410149 学生姓名:廖成武 指导教师:王剑 日期:2015年12月28日 教务处制

目录 字母识别 1.---------------------测试图像预处理及连通区域提取 2.---------------------样本库的建立采集feature 3.---------------------选择算法输入测试图像进行测试 4.---------------------总结

字母识别 1.imgPreProcess(联通区域提取)目录下 conn.m:连通区域提取分割(在原图的基础上进行了膨胀、腐蚀、膨胀的操作使截取的图像更加接近字母) %%提取数字的边界,生成新的图 clear; clc; f=imread('5.jpg'); f=imadjust(f,[0 1],[1 0]); SE=strel('square',5); %%膨胀、腐蚀、膨胀 A2=imdilate(f,SE); SE=strel('disk',3) f=imerode(A2,SE) SE=strel('square',3); f=imdilate(f,SE); gray_level=graythresh(f); f=im2bw(f,gray_level); [l,n]=bwlabel(f,8) %%8连接的连接分量标注 imshow(f) hold on for k=1:n %%分割字符子句 [r,c]=find(l==k); rbar=mean(r); cbar=mean(c); plot(cbar,rbar,'Marker','o','MarkerEdgeColor','g','MarkerFaceColor',' y','MarkerSize',10); % plot(cbar,rbar,'Marker','*','MarkerEdgecolor','w'); row=max(r)-min(r) col=max(c)-min(c) for i=1:row for j=1:col seg(i,j)=1; end

层次分析报告法及matlab程序

层次分析法建模 层次分析法(AHP-Analytic Hierachy process)---- 多目标决策方法 70 年代由美国运筹学家T·L·Satty提出的,是一种定性与定量分析相结合的多目标决策分析方法论。吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标(因素)结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。 传统的常用的研究自然科学和社会科学的方法有: 机理分析方法:利用经典的数学工具分析观察的因果关系; 统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述(自然现象、 社会现象)现象的规律。 基本内容:(1)多目标决策问题举例AHP建模方法 (2)AHP建模方法基本步骤 (3)AHP建模方法基本算法 (3)AHP建模方法理论算法应用的若干问题。 参考书:1、姜启源,数学模型(第二版,第9章;第三版,第8章),高等教育出版社 2、程理民等,运筹学模型与方法教程,(第10章),清华大学出版社 3、《运筹学》编写组,运筹学(修订版),第11章,第7节,清华大学出版社 一、问题举例: A.大学毕业生就业选择问题 获得大学毕业学位的毕业生,“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。就毕业生来说选择单位的标准和要求是多方面的,例如: ①能发挥自己的才干为国家作出较好贡献(即工作岗位适合发挥专长); ②工作收入较好(待遇好); ③生活环境好(大城市、气候等工作条件等); ④单位名声好(声誉-Reputation); ⑤工作环境好(人际关系和谐等) ⑥发展晋升(promote, promotion)机会多(如新单位或单位发展有后劲)等。 问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?

基于MATLAB的数字水印算法实现

数字水印作为一门新的学科, 自 1993 年 Tirkel 等人正式提出到现在十几年里, 国内外对数字水印的研究都引起了极大的关注, 从最初的版权保护, 已扩展到多媒体技术, 广播监听, in-ternet 等多个领域。数字水印是永久镶嵌在其他数据( 主要指宿主数据) 中具有可鉴别性的数字信号或数字模式, 其存在不能影响宿主数据的正常使用。为了使数字水印技术达到一定的设计要求, 当前水印数据一般应具备不可感知性(imperceptible) 、鲁棒性(Robust) 、可证明性、自恢复性和安全保密性等特点。在数字水印技术中, 水印的数据量和鲁棒性构成了一对基本矛盾。理想的水印算法应该既能隐藏大量数据, 又可以抗各种信道噪声和信号变形。然而在实际中, 这两个指标往往不能同时实现, 实际应用往往只偏重其中的一个方面。如果是为了隐蔽通信, 数据量显然是最重要的, 由于通信方式极为隐蔽, 遭遇敌方篡改攻击的可能性很小, 因而对鲁棒性要求较为不高。但对保证数据安全来说, 情况恰恰相反, 各种保密的数据随时面临着被盗取和篡改的危险, 对鲁棒性的要求很高, 而对隐藏数据量的要求则居于次要地位。典型的数字水印系统至少包含两个组成部分- - 水印嵌入单元和水印检测与提取单元。将水印信息进行预处理后加入到载体中, 称为嵌入。从水印化数据中提取出水印信息或者检测水印信息的存在性称为水印的提取和检测。数字水印算法主要

是指水印的嵌入算法, 而提取算法往往被看成是嵌入算法的逆变换。 当前典型的嵌入算法主要被分为空间域水印算法和变换域水印算法。DCT 变换域算法是数字水印算法的典型代表, 也是数字水印中较为常用的一种稳健的算法。其算法思想是选择二值化灰度图像作为水印信息, 根据水印图像的二值性来选择不同的嵌入系数, 并将载体图像 ( 原始图像) 进行 8×8 的分块, 再将灰度载体图像( 原始图像) 进行 DCT变换。然后, 将数字水印信息的灰度值直接植入到载体灰度图像的 DCT 变换域中, 实现水印的嵌入。而后, 将嵌入了水印信息灰度图像进行 IDCT( 逆离散的余弦变换) 变换, 得到含有了嵌入水印信息的图像, 嵌入过程完毕。水印的提取、检测过程为嵌入过程的逆过程, 其方法和嵌入方法有所雷同不再进行介绍。 下面以 MATLAB 为工具, 给出一个在频域嵌入和提取黑白二值水印图像的实现过程。(1) 水印图像的预处理: 将水印信息图像进行灰度处理, 然后再将转换后的图像进行二值转换。而这些都是为了提高水印信息的安全性对图像所做的处理。(2) 读取原始公开图像(大小为 256×256) 和黑白水印图像(大小为 32×32, 模式为灰度) 到二维数组 I 和 J。(3) 将原始公开图像I 分割为互不覆盖的图像块, 每块大小为 8×8, 共分为 32×32 块。然后对分割后的每个小块Block- dct(x,y) 进行 DCT 变换, 得到变换后的小块 Block-dct(x, y)。(4) 取黑白水印图像中的一个元素 J(p, q) , 通过嵌入算法嵌入到原始公开图像块的中频系数中。(5) 对嵌入水印信息后的图像块Block- dct (x, y) 进行逆DCT 变换, 得到图像块 Block(x′, y′)。

基于MATLAB的运动模糊图像处理

基于MATLAB的运动模糊图像处理 提醒: 我参考了文献里的书目和网上的一些代码而完成的,所以误差会比较大,目前对于从网上下载的模糊图片的处理效果很不好,这是我第一次上传自己完成的实验的文档,希望能帮到一些人吧。 研究目的 在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦察和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。但是相对于散焦模糊,运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊图像复原技术来尽可能地去除失真,恢复图像的原来面目。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 图像复原原理 本文探讨了在无噪声的情况下任意方向的匀速直线运动模糊图像的复原问题,并在此基础上讨论了复原过程中对点扩散函数(PSF)的参数估计从而依据自动鉴别出的模糊方向和长度构造出最为近似的点扩散函数,构造相应的复原模型,实现运动模糊图像的复原;在模糊图像自动复原的基础上,根据恢复效果图的纹理特征和自动鉴别出的模糊长度和角度,人工调整模糊方向和长度参数,使得复原效果达到最佳。 实验过程 模糊方向的估计: 对图1(a)所示的原始图像‘车牌’图像做方向θ=30?,长度L=20像素的匀速直线运动模糊,得到退化图像如图1(b)

1(a) 1(b) j=imread('车牌1.jpg'); figure(1),imshow(j); title('原图像'); len=20; theta=30; psf=fspecial('motion',len,theta); j1=imfilter(j,psf,'circular','conv'); figure,imshow(j1); title('PSF 模糊图像'); 图1(c)和1(d)分别为原图像和模糊图像的二次傅里叶变化

数字水印技术DCT算法MATLAB源代码

%Name: Chris Shoemaker %Course: E ER-280 - Digital Watermarking %Project: Block DCT Based method, using comparision between mid-band coeffcients % Watermark Embeding clear all; % save start time start_time=cputime; k=50; % set minimum coeff difference blocksize=8; % set the size of the block in cover to be used for each bit in watermark % read in the cover object file_name='_lena_std_bw.bmp'; cover_object=double(imread(file_name)); % determine size of cover image Mc=size(cover_object,1); %Height Nc=size(cover_object,2); %Width % determine maximum message size based on cover object, and blocksize max_message=Mc*Nc/(blocksize^2); % read in the message image file_name='_copyright.bmp'; message=double(imread(file_name)); Mm=size(message,1); %Height Nm=size(message,2); %Width % reshape the message to a vector message=round(reshape(message,Mm*Nm,1)./256); % check that the message isn't too large for cover if (length(message) > max_message) error('Message too large to fit in Cover Object') end % pad the message out to the maximum message size with ones message_pad=ones(1,max_message); message_pad(1:length(message))=message; % generate shell of watermarked image watermarked_image=cover_object;

基于matlab的人脸识别算法(PCA)

3.基于matlab的人脸识别算法 3.1 问题描述 对于一幅图像可以看作一个由像素值组成的矩阵,也可以扩展开,看成一个矢量,如一幅 N*N 象素的图像可以视为长度为N2 的矢量,这样就认为这幅图像是位于N2 维空间中的一个点,这种图像的矢量表示就是原始的图像空间,但是这个空间仅是可以表示或者检测图像的许多个空间中的一个。不管子空间的具体形式如何,这种方法用于图像识别的基本思想都是一样的,首先选择一个合适的子空间,图像将被投影到这个子空间上,然后利用对图像的这种投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。因此,本次试题采用PCA算法并利用GUI实现。 对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp,它们都是的相关性, 一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。 任何一个度量指标的好坏除了可靠、真实之外,还必须能充分反映个体间的变异。如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体。由这一点来看,一项指标在个体间的变异越大越好。因此我们把“变异大”作为“好”的标准来寻求综合指标。3.1.1 主成分的一般定义 设有随机变量X1,X2,…,Xp,其样本均数记为,,…,,样本标准差记为S1,S2,…,Sp。首先作标准化变换,我们有如下的定义: (1) 若C1=a11x1+a12x2+ … +a1pxp,…,且使 Var(C1)最大,则称C1为第一主成分; (2) 若C2=a21x1+a22x2+…+a2pxp,…,(a21,a22,…,a2p)垂直于(a11,a12,…,a1p),且使Var(C2)最大,则称C2为第二主成分; (3) 类似地,可有第三、四、五…主成分,至多有p个。 3.1.2 主成分的性质 主成分C1,C2,…,Cp具有如下几个性质: (1) 主成分间互不相关,即对任意i和j,Ci 和Cj的相关系数 Corr(Ci,Cj)=0 i j (2) 组合系数(ai1,ai2,…,aip)构成的向量为单位向量, (3) 各主成分的方差是依次递减的,即 Var(C1)≥Var(C2)≥…≥Var(Cp)

基于matlab数字图像处理与识别系统含程序

目录 第一章绪论 (2) 1.1 研究背景 (2) 1.2 人脸图像识别的应用前景 (3) 1.3 本文研究的问题 (4) 1.4 识别系统构成 (4) 1.5 论文的内容及组织 (5) 第二章图像处理的Matlab实现 (6) 2.1 Matlab简介 (6) 2.2 数字图像处理及过程 (6) 2.2.1图像处理的基本操作 (6) 2.2.2图像类型的转换 (7) 2.2.3图像增强 (7) 2.2.4边缘检测 (8) 2.3图像处理功能的Matlab实现实例 (8) 2.4 本章小结 (11) 第三章人脸图像识别计算机系统 (11) 3.1 引言 (11) 3.2系统基本机构 (12) 3.3 人脸检测定位算法 (13) 3.4 人脸图像的预处理 (18) 3.4.1 仿真系统中实现的人脸图像预处理方法 (19) 第四章基于直方图的人脸识别实现 (21) 4.1识别理论 (21) 4.2 人脸识别的matlab实现 (21) 4.3 本章小结 (22) 第五章总结 (22) 致谢 (23) 参考文献 (24) 附录 (25)

第一章绪论 本章提出了本文的研究背景及应用前景。首先阐述了人脸图像识别意义;然后介绍了人脸图像识别研究中存在的问题;接着介绍了自动人脸识别系统的一般框架构成;最后简要地介绍了本文的主要工作和章节结构。 1.1 研究背景 自70年代以来.随着人工智能技术的兴起.以及人类视觉研究的进展.人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域,.这一领域除了它的重大理论价值外,也极具实用价值。 在进行人工智能的研究中,人们一直想做的事情就是让机器具有像人类一样的思考能力,以及识别事物、处理事物的能力,因此从解剖学、心理学、行为感知学等各个角度来探求人类的思维机制、以及感知事物、处理事物的机制,并努力将这些机制用于实践,如各种智能机器人的研制。人脸图像的机器识别研究就是在这种背景下兴起的,因为人们发现许多对于人类而言可以轻易做到的事情,而让机器来实现却很难,如人脸图像的识别,语音识别,自然语言理解等。如果能够开发出具有像人类一样的机器识别机制,就能够逐步地了解人类是如何存储信息,并进行处理的,从而最终了解人类的思维机制。 同时,进行人脸图像识别研究也具有很大的使用价依。如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。现在己有实用的计算机自动指纹识别系统面世,并在安检等部门得到应用,但还没有通用成熟的人脸自动识别系统出现。人脸图像的自动识别系统较之指纹识别系统、DNA鉴定等更具方便性,因为它取样方便,可以不接触目标就进行识别,从而开发研究的实际意义更大。并且与指纹图像不同的是,人脸图像受很多因素的干扰:人脸表情的多样性;以及外在的成像过程中的光照,图像尺寸,旋转,姿势变化等。使得同一个人,

matlab动力学分析程序详解

1 1.微分方程的定义 对于duffing 方程03 2 =++x x x ω ,先将方程写作??? --==3 1122 21x x x x x ω function dy=duffing(t,x) omega=1;%定义参数 f1=x(2); f2=-omega^2*x(1)-x(1)^3; dy=[f1;f2]; 2.微分方程的求解 function solve (tstop) tstop=500;%定义时间长度 y0=[0.01;0];%定义初始条件 [t,y]=ode45('duffing',tstop,y0,[]); function solve (tstop) step=0.01;%定义步长 y0=rand(1,2);%随机初始条件 tspan=[0:step:500];%定义时间范围 [t,y]=ode45('duffing',tspan,y0); 3.时间历程的绘制 时间历程横轴为t ,纵轴为y ,绘制时只取稳态部分。 plot(t,y(:,1));%绘制y 的时间历程 xlabel('t')%横轴为t ylabel('y')%纵轴为y grid;%显示网格线

2 axis([460 500 -Inf Inf])%图形显示范围设置 4.相图的绘制 相图的横轴为y ,纵轴为dy/dt ,绘制时也只取稳态部分。红色部分表示只取最后1000个点。 plot(y(end-1000:end ,1),y(end-1000:end ,2));%绘制y 的时间历程 xlabel('y')%横轴为y ylabel('dy/dt')%纵轴为dy/dt grid;%显示网格线 5.Poincare 映射的绘制 对于不同的系统,Poincare 截面的选取方法也不同 对于自治系统一般每过其对应线性系统的固有周期,截取一次 对于非自治系统,一般每过其激励的周期,截取一次 例程:duffing 方程03 2=++x x x ω 的poincare 映射 function poincare(tstop) global omega; omega=1; T=2*pi/omega;%线性系统的周期或激励的周期 step=T/100;%定义步长为T/100 y0=[0.01;0];%初始条件 tspan=[0:step:100*T];%定义时间范围 [t,y]=ode45('duffing',tspan,y0); for i=5000:100:10000%稳态过程每个周期取一个点 plot(y(i,1),y(i,2),'b.'); hold on;% 保留上一次的图形 end xlabel('y');ylabel('dy/dt');

基于MATLAB的人脸识别

基于MATLAB的人脸识别

————————————————————————————————作者: ————————————————————————————————日期:

图像识别 题目:基于MATLAB的人脸识别 院系:计算机科学与应用系 班级: 姓名: 学号: 日期:

设计题目基于MATLAB的人脸识别设 计技术参数 测试数据库图片10张训练数据库图片20张图片大小1024×768 特征向量提取阈值 1 设计要求综合运用本课程的理论知识,并利用MATLAB作为工具实现对人脸图片的预处理,运用PCA算法进行人脸特征提取,进而进行人脸匹配识别。 工作量 两周的课程设计时间,完成一份课程设计报告书,包括设计的任务书、基本原理、设计思路与设计的基本思想、设计体会以及相关的程序代码; 熟练掌握Matlab的使用。 工作计划第1-2天按要求查阅相关资料文献,确定人脸识别的总体设计思路; 第3-4天分析设计题目,理解人脸识别的原理同时寻求相关的实现算法;第5-8天编写程序代码,创建图片数据库,运用PCA算法进行特征提取并编写特征脸,上机进行调试; 第9-12天编写人脸识别程序,实现总体功能; 第13-14天整理思路,书写课程设计报告书。 参考资料1 黄文梅,熊佳林,杨勇编著.信号分析与处理——MATALB语言及应用.国防科技大学出版社,2000 2 钱同惠编著.数字信号处理.北京:机械工业出版社,2004 3 姚天任,江太辉编著.数字信号处理.第2版.武汉:武汉理工大学出版社,2000 4 谢平,林洪彬,王娜.信号处理原理及应用.机械工业出版社,2004 5刘敏,魏玲.Matlab.通信仿真与应用.国防工业出版社,2005 6 楼顺天.基于Matlab7.x 的系统分析与设计.西安电子科技大学,2002 7孙洪.数字信号处理.电子工业出版社,2001 目录 引言?错误!未定义书签。 1 人脸识别技术?错误!未定义书签。 1.1人脸识别的研究内容?错误!未定义书签。 1.1.1人脸检测(Face Detection)........... 错误!未定义书签。

基于Matlab的遥感图像处理

基于Matlab的遥感图像处理 测绘工程1161641014 鲍家顺 摘要文章运用Matlab软件对遥感影像的不足之处进行处理改善,详细介绍了处理方法和处理的原理,对处理结果进行了比对分析,并进行了边缘检测与特征提取,论证了处理方法的可行性。 关键词图像处理;matlab ;均衡化;规定化;色彩平衡;边缘检测;特征提取 在获取遥感图像过程中,由于多种因素的影响,会导致图像质量的退化,为了改善图像质量,突出遥感图像中的某些信息,提高图像的视觉效果,需要对图像进行各方面的处理,如分段线形拉伸,对数变换,直方图规定化、正态化,图像滤波,纹理分析及目标检测等。通过图像处理可以去除图像中的噪声,增强感兴趣的目标和周围背景图像间的反差,有选择地突出便于人或电脑分析的信息,抑制一些无用的信息,强调出图像的边缘,增强图像的识别方便性,从而进行边缘检测和特征提取。图像写出函数,显示图像函数有image ( ) 、inshow ( ) 等。[2 ]Matlab 图像处理工具箱处理工具提供了imhist () 函数来计算和显示图像的直方图, 提供了直方图均衡化的函数histeq() 、边缘检测函数edge ( ) 、腐蚀函数imerode () 、膨胀函数imdilate () 及二值图像转换函数im2bw () 等。文中实验数据采用的是桂林市区灰度遥感图像,宽度为1024 像素,高度为713 像素。 文件读入: 讲workspace切入到图片所在图层: Cd d:\ 读入图片: [x,cmap]=imread('m.PNG'); %将图片读入转换为矩阵 clf;imshow(x); %显示图片 原始图片

基于MATLAB的图像处理的基本运算

基于MATLAB的图像处理的基本运算

————————————————————————————————作者:————————————————————————————————日期:

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 基于MATLAB的图像处理的基本运算 初始条件: 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)能够对图像亮度和对比度变化调整,并比较结果 (2)编写程序通过最近邻插值和双线性插值等算法将用户所选取的图像区域进行放大和缩小整数倍的和旋转操作,并保存, 比较几种插值的效果 (3)图像直方图统计和直方图均衡,要求显示直方图统计,比较直方图均衡后的效果。 (4)对图像加入各种噪声,比较效果。 时间安排: 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要..................................................................................................................................................... - 2 -1 MATLAB简介 ................................................................................................................................... - 2 -2图像选择及变换.............................................................................................................................. - 3 -2.1 原始图像选择读取.................................................................................................................. - 3 - 2.1.1 原理图的读入与基本变换 ............................................................................................... - 3 - 2.1.2 程序源代码及调试结果 ................................................................................................... - 4 - 2.2 转换图像为灰阶图像.............................................................................................................. - 5 - 3 图像处理及代码程序 ..................................................................................................................... - 6 -3.1 图像亮度对比度调整.............................................................................................................. - 6 - 3.1.1 函数说明及参数选择....................................................................................................... - 6 - 3.1.2 源程序及运行结果........................................................................................................... - 6 -3.2 图像放大和缩小...................................................................................................................... - 7 - 3.2.1 函数说明及参数选择....................................................................................................... - 7 - 3.2.2 源程序及运行结果........................................................................................................... - 7 -3.3 图像任意角度的旋转.............................................................................................................. - 8 - 3.3.1 函数说明及参数旋转....................................................................................................... - 8 - 3.3.2 源程序及运行结果........................................................................................................... - 9 -3.4图像直方图统计和均衡........................................................................................................... - 9 - 3.4.1 函数说明及参数选择....................................................................................................... - 9 - 3.4.2 源程序及运行结果......................................................................................................... - 10 -3.5 图像加入噪声........................................................................................................................ - 11 - 3.5.1 函数说明及参数选择..................................................................................................... - 11 - 3.5.2 源程序及运行结果......................................................................................................... - 12 - 4 图像处理结果比较分析 ............................................................................................................... - 14 -4.1 调整对比度和亮度后图像比较 ............................................................................................ - 14 -4.2 图像放大缩小及旋转后比较 ................................................................................................ - 14 -4.3 进行直方图均衡后图像比较 ................................................................................................ - 1 5 -4.4加入各种噪声后图像比较 ..................................................................................................... - 1 6 -5感悟体会小结................................................................................................................................ - 16 -参考文献........................................................................................................................................... - 1 7 -

相关主题