搜档网
当前位置:搜档网 › 熵最大原理

熵最大原理

熵最大原理
熵最大原理

一、熵

物理学概念

宏观上:热力学定律——体系的熵变等于可逆过程吸收或耗散的热量除以它的绝对温度(克劳修斯,1865)

微观上:熵是大量微观粒子的位置和速度的分布概率的函数,是描述系统中大量微观粒子的无序性的宏观参数(波尔兹曼,1872)

结论:熵是描述事物无序性的参数,熵越大则无序。

二、熵在自然界的变化规律——熵增原理

一个孤立系统的熵,自发性地趋于极大,随着熵的增加,有序状态逐步变为混沌状态,不可能自发地产生新的有序结构。

当熵处于最小值, 即能量集中程度最高、有效能量处于最大值时, 那么整个系统也处于最有序的状态,相反为最无序状态。

熵增原理预示着自然界越变越无序

三、信息熵

(1)和熵的联系——熵是描述客观事物无序性的参数。香农认为信息是人们对事物了解的不确定性的消除或减少,他把不确定的程度称为信息熵(香农,1948 )。

随机事件的信息熵:设随机变量ξ,它有A1,A2,A3,A4,……,An共n种可能的结局,每个结局出现的概率分别为p1,p2,p3,p4,……,pn,则其不确定程度,即信息熵为

(2)信息熵是数学方法和语言文字学的结合。一个系统的熵就是它的无组织程度的度量。熵越大,事件越不确定。熵等于0,事件是确定的。

举例:抛硬币,

p(head)=0.5,p(tail)=0.5

H(p)=-0.5log2(0.5)+(-0.5l og2(0.5))=1

说明:熵值最大,正反面的概率相等,事件最不确定。

四、最大熵理论

在无外力作用下,事物总是朝着最混乱的方向发展。事物是约束和自由的统一体。事物总是在约束下争取最大的自由权,这其实也是自然界的根本原则。在已知条件下,熵最大的事物,最可能接近它的真实状态。

五、基于最大熵的统计建模:建模理论

以最大熵理论为基础的统计建模。

为什么可以基于最大熵建模?

Jaynes证明:对随机事件的所有相容的预测中,熵最大的预测出现的概率占绝对优势。Tribus证明,正态分布、伽马分布、指数分布等,都是最大熵原理的特殊情况。

结论:最大熵统计建模是以最大熵理论为基础的方法,即从符合条件的分布中选择熵最大的分布作为最优秀的分布。

最大熵统计模型需要解决的问题:

(1)特征空间的确定——问题域

(2)特征选择——寻找约束条件

(3)建立统计模型——基于最大熵理论建立熵最大的模型

六、基于最大熵的统计模型:数学描述

(1)问题描述:设最终输出值构成的语言学类别有限集为Y,对于每个y∈Y,其生成均受上下文信息x的影响和约束。已知与y有关的所有上下文信息组成的集合为X,则模型的目标是:给定上下文x∈X,计算输出为y∈Y的条件概率p(y|x)。

(2)训练样例

例子:我们的任务是为词“打”的词性标注过程建立模型,标注模型为p,每个可能的词性为p(t)。

“打”的可能词性:{动词,量词,介词}。

由此,模型p的第一个约束:p(动词)+p(量词)+(介词)=1

在训练最大熵模型时,任务选连系统通过数据转换程序或者模式识别中通常所说的特征抽取器,把真实世界的,原始训练数据通过特定的方法或者算法转化为多特征或属性表示的训练样例。

条件最大熵方法是一种有监督的机器学习方法,所以每个训练样例由一个实例x以及他的目标概念类y组成。

七、基于最大熵的统计建模:数学推导

(1)模型输入:从人工标注的训练数据中抽取的训练样本集T={(x1,y1),(x2,y2),...,(xn,yn)},(xi,yi)表示在语料库中出现yi时其上下文信息为xi。

(2)从训练样例中得到经验概率分布:其中Count(x,y)是语料中出现的次数,N为总词数。则

(3)特征f是指x与y之间存在的某种特定的关系,用二值函数表示:

(4)特征的经验概率期望值是所有满足特征要求的经验概率之和,即:

引入1个特征:

(5)特征的期望概率是特征在所学习的随机事件中的真实分布为:

其中,是指x出现的情况下,y的经验概率。是指x出现的情况下,y的真实概率。

(6)特征的经验概率与期望概率应该一致,即:

即:

上面的式子即成为约束等式。

(7)设存在k个特征f i(i=1,2,...,k),多个约束等式构成的集合叫做约束集,可表示为:

(8)最大熵模型,是满足约束条件的所有模型中熵最大的模型,即:

其中p为满足约束集C条件下的某一统计模型。argmax表示寻找具有最大评分的参量。

(9)于是我们可以把这个最大熵模型表示为:在满足约束条件中选择熵最大的那个。

这是一个有约束的优化问题

我们可以用拉格朗日乘数法来解决这个优化问题。

具体步骤如下:

为每一个特征f i引入一个参数λi(称为拉格朗日算子),另外由于p(y|x)是条件概率,所

以有,所以也要为每个实例x引入一个参数k(x)。那么拉格朗日函数可定义为:

然后对它求导,就可以求出最大时。

(10)特征f i的权重用相对应的参数λi表示,则满足最大熵条件p(y|x)用指数形式表示为:

其中:称为归一化因子。

(11)此时,最大值

(12)称为归一化因子,它的引入是为了保证的概率。

(13)这样我们就把一个有约束的优化问题转化为一个没有约束优化的问题。

八、最大熵模型的求解

许多自然语言处理问题都可以归结为分类问题,其任务是估计目标概念类y在实例或上下文或条件x的概率,即

p(y|x)。

最大熵模型有两个基本的任务:特征选择和模型选择。

特征选择:选择一个能表达随机过程的统计特征的特征集合。

模型选择:即模型估计或者参数估计,就是为每个入选的特征估计权重λ。九、基于最大熵的统计建模:参数估计Input:特征函数集合{f},特征经验分布。

Output:最优参数值集合{λ},最优模型。

GIS算法、IIS算法、SCGIS算法

十、基于最大熵的统计建模:特征选择

在所有的特征中选择最有代表性的特征,构造约束集合。

数据稀疏的问题。

特征选择的步骤:特征模板—>候选特征->选择特征

特征选择的方法:(1)增量式特征选择算法,基本算法和近似算法。(2)基于频数阈值的特征选择算法。

十一、最大熵模型的优缺点

优点:

(1)建模时,试验者只需集中精力选择特征,而不需要花费精力考虑如何使用这些特征。(2)特征选择灵活,且不需要额外的独立假定或者内在约束。

(3)模型应用在不同领域时的可移植性强。

(4)可结合更丰富的信息。

缺点:

(1)时空开销大

(2)数据稀疏问题严重

(3)对语料库的依赖性较强

十二、最大熵模型的应用

词性标注、短语识别、指代消解、语法分析、机器翻译、文本分类、问题回答、语言模型......

最大熵算法笔记

最大熵算法笔记 最大熵,就是要保留全部的不确定性,将风险降到最小,从信息论的角度讲,就是保留了最大的不确定性。 最大熵原理指出,当我们需要对一个随机事件的概率分布进行预测时,我们的预测应当满足全部已知的条件,而对未知的情况不要做任何主观假设。在这种情况下,概率分布最均匀,预测的风险最小。因为这时概率分布的信息熵最大,所以人们称这种模型叫"最大熵模型"。 匈牙利著名数学家、信息论最高奖香农奖得主希萨(Csiszar)证明,对任何一组不自相矛盾的信息,这个最大熵模型不仅存在,而且是唯一的。而且它们都有同一个非常简单的形式-- 指数函数。 我们已经知道所有的最大熵模型都是指数函数的形式,现在只需要确定指数函数的参数就可以了,这个过程称为模型的训练。 最原始的最大熵模型的训练方法是一种称为通用迭代算法GIS (generalized iterative scaling) 的迭代算法。GIS 的原理并不复杂,大致可以概括为以下几个步骤: 1. 假定第零次迭代的初始模型为等概率的均匀分布。 2. 用第N 次迭代的模型来估算每种信息特征在训练数据中的分布,如果超过了实际的,就把相应的模型参数变小;否则,将它们便大。 3. 重复步骤2 直到收敛。 GIS 最早是由Darroch 和Ratcliff 在七十年代提出的。但是,这两人没有能对这种算法的物理含义进行很好地解释。后来是由数学家希萨(Csiszar) 解释清楚的,因此,人们在谈到这个算法时,总是同时引用Darroch 和Ratcliff 以及希萨的两篇论文。GIS 算法每

次迭代的时间都很长,需要迭代很多次才能收敛,而且不太稳定,即使在64 位计算机上都会出现溢出。因此,在实际应用中很少有人真正使用GIS。大家只是通过它来了解最大熵模型的算法。 八十年代,很有天才的孪生兄弟的达拉皮垂(Della Pietra) 在IBM 对GIS 算法进行了两方面的改进,提出了改进迭代算法IIS (improved iterative scaling)。这使得最大熵模型的训练时间缩短了一到两个数量级。这样最大熵模型才有可能变得实用。即使如此,在当时也只有IBM 有条件是用最大熵模型。 由于最大熵模型在数学上十分完美,对科学家们有很大的诱惑力,因此不少研究者试图把自己的问题用一个类似最大熵的近似模型去套。谁知这一近似,最大熵模型就变得不完美了,结果可想而知,比打补丁的凑合的方法也好不了多少。于是,不少热心人又放弃了这种方法。第一个在实际信息处理应用中验证了最大熵模型的优势的,是宾夕法尼亚大学马库斯的另一个高徒原IBM 现微软的研究员拉纳帕提(Adwait Ratnaparkhi)。拉纳帕提的聪明之处在于他没有对最大熵模型进行近似,而是找到了几个最适合用最大熵模型、而计算量相对不太大的自然语言处理问题,比如词性标注和句法分析。拉纳帕提成功地将上下文信息、词性(名词、动词和形容词等)、句子成分(主谓宾)通过最大熵模型结合起来,做出了当时世界上最好的词性标识系统和句法分析器。拉纳帕提的论文发表后让人们耳目一新。拉纳帕提的词性标注系统,至今仍然是使用单一方法最好的系统。科学家们从拉纳帕提的成就中,又看到了用最大熵模型解决复杂的文字信息处理的希望。

浅谈最大熵原理和统计物理学

浅谈最大熵原理和统计物理学 摘要 在本文中我们将分别从物理和信息论角度简单讨论熵的意义并介绍由 E.T.Jaynes 所奠立基础的最大熵原理的原始理解。透过研究理想气体,我们将阐述如何运用最大熵 原理研究真实问题。同时藉由简短分析统计物理学研究方法的问题,本文会给出最大熵 原理更深层涵义及其应用。我们将称之为最大熵原理第二延伸。最后透过真实气体的研 究,我们将描绘出如何运用第二延伸来帮助我们思考及研究热力学系统。 一、前言 长时间以来人们对于熵有物理上的理解也有二、最大熵原理 (Information theory) 上的理解。物理上l、什么是最大熵原理信息论 的熵可以说明热力学系统的演化方向、热平衡的达相信物理系学生和物理研究人员都很熟悉成与否亦或是代表系统的混乱程度等[1-3]。在信Clausius的经验准则-热力学第二定律[1,2]。该定息论里,信息熵则代表量测信息系统的可信度或者律说明当一个热力学系统达到最后热平衡状态时,是忽略度[3,4]。然而不管物理或是信息论上对熵该系统的熵会达到最大值。进一步的研究指出当系的理解,实际上仍局限于将熵视为一个量测的工统的熵最大时,其自由能将会成为最小。在此一具。正如我们可藉由系统能量的量测来了解系统状特性的影响下人们惯性的倾向于将熵视为类似能态稳定与否。然而由于E.T.Jaynes的贡献,熵可量的巨观物理量。此一物理量成为描述系统乱度的

依据。此后由于 Gibbs 引入 ensemble 观念,开视为一种研究问题的推理工具,这一层意义才为人 所知[5,6]。时至今日,我们虽然仍无法全盘了解启微观角度的研究方法因而奠立近代统计力学理熵的真正意含,但是我们也渐渐掌握熵在物理学尤解熵的理论基础。在统计力学的观念中,观察者所其是统计物理中所能扮演的角色。通过本文浅显的量测到该系统热力学性质之巨观物理量诸如系统介绍,我们将从过去Jaynes对于熵的认识到今日内能或压力,基本上只能以平圴值来表现。原因在我们的新发现,掀开熵的神秘面纱。于观察者无法明确掌握系统微观状态。此种不确定 性可以藉由机率分布如canonical ensemble来量定义为忽略度 (degree of ignorance) 或者描述化表示。古典系统熵便可由此机率分布来定义出不了选取系统信息的倾向程度,称之为倾向度 (degree Of likelihood) 。通过 Cox 和 Skilling 连续表示, 完全不同的论证[5,7],信息熵的机率分布型式类 似于热力学熵。所不同者在于热力学熵含有波兹曼, (1) S,,kPlogP,biii常数。这样的相似性直到 Jaynes 在1957 年的研式中代表波兹曼常数而为观察者量测到kPbi究才证明这个相似其实是相等[5]。信息熵和热力系统处在状态时的机率分布。或者是连续表示, i学熵实际上具有相同的含意。Jaynes更进一步指出且证明最大熵原理 (maximum entropy principle) ,,,,S,,kdqPqlogPq , (2) 并不只是单纯的热力学第二定律。他的研究指出,bNNN, 最大熵原理不具任何物理意义仅是一个推论的工 具。藉由此原理,观察者所拥有的相关系统信息可式中,,代表空间和动量参数且q,r,pN以公正客观的被编入特定机率分布中来描述观察,,表示观察者量

熵增加原理在组织系统中的科学应用

熵增加原理在组织系统中的科学应用 [摘要]论文将广义熵增加原理应用于组织系统,分析了热熵和信息熵的博弈关系,并根据组织运行的实际情况提出了降低组织系统熵值的途径,这对于有效降低组织系统的不确定度和无序度有积极的意义。 [关键词]组织热熵信息熵熵增加博弈 组织膨胀是现代社会的一个普遍现象。人们一般比较关注组织的人员、物质、能量等,而很少去关注组织系统的熵增加问题。实际上,对于一个组织系统来说,熵值越大,无序度(混乱度)就越大,内耗加剧,绩效就会越低,进而影响组织的生存与发展。目前有不少专家、学者研究了组织系统的熵值,主要集中于管理熵,组织架构对于熵值的影响等。例如,马扬等(2004)从熵理论的基本原理出发,探讨了科研组织管理熵的内涵与特征,分析了影响科研组织管理熵流的基本因素,建立了相应的计量模型,对科研组织的管理工作提出了新的理论思考[1];高璇等(2004)以复杂系统中的“熵定律”来阐述企业组织的一些结构特征及行为规律,并以此理论为基础探讨企业的可持续发展之路[2];张言彩(2003)把熵理论的时效熵和质量熵概念应用于组织结构的优化设计,从量化的角度,以通用电气集团公司和国际商用机器公司的组织结构为例,比较两公司组织结构的时效熵和质量熵,得出通用电气集团公司的组织结构有序度优于国际商用机器公司组织结构有序度的结论[3];辛志红等(2006)分析了开放系统中子系统信息与系统信息之间的关系,建立了企业组织系统演进的熵模型[4];艾新波等(2005)分析了组织结构对组织内部信息流的影响,从信息流的时效性和准确度两方面构建了组织结构的有序度评价模型,通过引入信息流的时效和质量的概念,对比分析塔式结构和扁平化结构的有序度,得出扁平化结构有序度优于塔式结构有序度的结论[5]。本文试图将广义熵增加原理应用于组织系统,通过分析热熵和信息熵对组织运行的影响,进而探究降低组织系统熵值的措施,开辟一条从新的角度、新的视野去研究组织系统得以有序运行的途径。 1.广义熵增加原理[6-10] 熵(克劳修斯称之为“entropy”)是组成系统的微观粒子的无序性(或混乱度)的量度。一般认为,熵有热力学熵和信息熵两种形式。 1.1热力学熵(Energetic Entropy)。熵在物理学中用S表示,它是热力学几率W的函数,即S=f(W)。克劳修斯从宏观角度论述了热力学熵增加原理,他指出:当热力学系统从一个平衡态I(Initial)经过绝热过程到达另一个平衡态T

实验一-信息熵与图像熵计算-正确

实验一信息熵与图像熵计算(2 学时) 一、实验目的 1.复习MATLAB的基本命令,熟悉MATLAB下的基本函数; 2.复习信息熵基本定义,能够自学图像熵定义和基本概念。 二、实验内容 1.能够写出MATLAB源代码,求信源的信息熵; 2.根据图像熵基本知识,综合设计出MATLAB程序,求出给定图像的图像熵。 三、实验仪器、设备 1.计算机-系统最低配置256M内存、P4 CPU; 2.MATLAB编程软件。 四实验流程图 五实验数据及结果分析

四、实验原理 1.MATLAB中数据类型、矩阵运算、图像文件输入与输出知识复习。 2.利用信息论中信息熵概念,求出任意一个离散信源的熵(平均自信息量)。自信息是一个随机变量,它是指某一信源发出某一消息所含有的信息量。所发出的消息不同,它们所含有的信息量也就不同。任何一个消息的自信息量都代表不了信源所包含的平均自信息量。不能作为整个信源的信息测度,因此定义自信息量的数学期望为信源的平均自信息量: 1( ) 1 ( ) [log ] ( ) log ( ) i n i i p a i H E p a p a X 信息熵的意义:信源的信息熵H是从整个信源的统计特性来考虑的。它是从平均意

义上来表征信源的总体特性的。对于某特定的信源,其信息熵只有一个。不同的信源因统计特性不同,其熵也不同。 3.学习图像熵基本概念,能够求出图像一维熵和二维熵。 图像熵是一种特征的统计形式,它反映了图像中平均信息量的多少。图像的一维熵表示图像中灰度分布的聚集特征所包含的信息量,令Pi表示图像中灰度值为i的像素所占的比例,则定义灰度图像的一元灰度熵为: 2550 log i i i p p H 图像的一维熵可以表示图像灰度分布的聚集特征,却不能反映图像灰度分布的空间特征,为了表征这种空间特征,可以在一维熵的基础上引入能够反映灰度分布空间特征的特征量来组成图像的二维熵。选择图像的邻域灰度均值作为灰度2

现代熵理论在社会科学中的应用

现代熵理论在社会科学中的应用 摘要:文章简述了热学熵的理论及其统计解释,介绍了熵增原理,最大最小熵原理,对现代熵理论在人类社会,生态环境,致冷技术上的应用作了浅显 的说明,使人类意识到加强熵观念以维护良好社会秩序及生态环境的必 要性,最后讲解了现代熵理论在社会科学中的应用对我的启发与影响。 关键词: 现代熵现代熵理论现代熵与人类社会现代熵与生态环境 现代熵与致冷技术制冷技术现代熵理论的应用对我的启发 正文: 一. 现代熵理论的基本概念 1. 热熵的基本概念 克劳修斯引入了状态函数熵,记为 S。他采用宏观分析的方法得出 : 对于一个封闭系统 , 可逆过程的熵变 dS与系统从外界所吸收的热量 dQ和系统的温度 T之间存在如下关系: dS = dQ T 上式称为熵的克劳修斯关系式。由此定义的熵称为热力学熵 (或宏观熵 , 克劳修斯熵 ) 。 2. 统计熵 (或玻尔兹曼熵 )的概念 在克劳修斯给出热力学熵的定义以后 ,玻尔兹曼又从微观 (气体动理论 )的角 度 , 深入研究了状态函数熵 , 给出了一个统计物理学的解释。在等概率原理 的前提下 , 任一给定的宏观状态所包含的微观状态数的数目称为该宏观状态的热力学概率 , 用 Q表示。据此 , 玻尔兹曼对气体分子的运动过程进行了研 究 ,将熵 S和热力学概率Ω联系起来得出 S∝ lnΩ的关系 ,在 1900年由普朗克引进比例常数 k而成为 S = klnΩ。这就是统计物理的玻尔兹曼熵 关系式 ,其中 k为玻尔兹曼常量。由此定义的熵称为统计熵 (或玻尔兹曼熵 )。二.现代熵理论的原理 现代熵理论有熵增加原理,最大最小熵原理等。 1. 熵增原理: 处于平衡态的孤立系统的熵增加原理在定义熵的概念以后 ,克劳修斯把热 力学第二定律中熵用式中等号对应可逆过程 , 大于号对应不可逆过程。即在绝热过程中熵不可能减少,这就是熵增原理。

信息熵理论

信息熵理论 在通信系统中,信息从发送到接收的传输过程是一个有干扰的信息复制过程。 对每一个具体的应用而言,传输的信息是确定的,有明确的应用目的。 对一个通信系统而言主,不同的用户要传送的具体的信息内容是不同的,则如何从这些繁杂的具体信息中提炼出它们的共同特征,并可进行量化估计是shannon 信息论研究的基础。 所谓量化估计就是用提炼的共同特征估计与某些具体内容所对应的需要传输的信息量大小。 信息量定义的另一个重要特征是它能保证信息量值的大小与具体的信息内容无关。 1.定义信息熵: 设X 是一个离散的随机变量,其定义空间为一个字符集E 。 ()()E x x X P x p ∈==,,表示相应的概率分布函数,则 ()()()()x p x p X H x log ∑-=称为离散随机变量的熵。 有时记()()()()(){}X p E x p x p p H p x log log -=-=∑ {}p E 表示以概率分布()x p 对某随机变量或随机函数求概率平均。 2.定义联合熵: 设X ﹑Y 是丙个离散的随机变量,(X,Y )的联合概率分布函数为()()y Y x X P y x p ===,,,则 ()()()y x p y x P Y X H x y ,log ,,∑∑-= 称为离散随机变量X 与Y 的联合熵。 有时记为: ()()()(){}Y X p E y x p y x p Y X H p x y ,log ,log ,,-=-=∑∑ 3.定义条件熵: 如果()(),,~,y x p Y X 则条件熵()X Y H /定义为 ()()() ∑=-=x x X Y H x p X Y H // ()()()∑∑- =x y x y p x y p x p /log / ()()∑∑-=x y x y p y x p /log , (){}X Y p E /log -= 条件熵等于零的条件为()1==Y X p 事实上,对任意的y x ,都有()()0/log /=x y p x y p ,从而得()()1/0/==x y p x y p 或,又因为X 与Y 是取值空间完全相同的随机变量,所以有()1/=X Y p

信息熵与图像熵计算

p (a i ) ∑ n 《信息论与编码》课程实验报告 班级:通信162 姓名:李浩坤 学号:163977 实验一 信息熵与图像熵计算 实验日期:2018.5.31 一、实验目的 1. 复习 MATLAB 的基本命令,熟悉 MATLAB 下的基本函数。 2. 复习信息熵基本定义, 能够自学图像熵定义和基本概念。 二、实验原理及内容 1.能够写出 MATLAB 源代码,求信源的信息熵。 2.根据图像熵基本知识,综合设计出 MATLAB 程序,求出给定图像的图像熵。 1.MATLAB 中数据类型、矩阵运算、图像文件输入与输出知识复习。 2.利用信息论中信息熵概念,求出任意一个离散信源的熵(平均自信息量)。自信息是一个随机变量,它是指某一信源发出某一消息所含有的信息量。所发出 的消息不同,它们所含有的信息量也就不同。任何一个消息的自信息量都代表不了信源所包含的平均自信息量。不能作为整个信源的信息测度,因此定义自信息量的数学期望为信源的平均自信息量: H (X ) = E [ log 1 ] = -∑ p (a i ) log p (a i ) i =1 信息熵的意义:信源的信息熵H 是从整个信源的统计特性来考虑的。它是从平均意义上来表征信源的总体特性的。对于某特定的信源,其信息熵只有一个。不同的信源因统计特性不同,其熵也不同。 1. 学习图像熵基本概念,能够求出图像一维熵和二维熵。 图像熵是一种特征的统计形式,它反映了图像中平均信息量的多少。图像的一维熵表示图像中灰度分布的聚集特征所包含的信息量,令 P i 表示图像中灰度值为 i 的像素所占的比例,则定义灰度图像的一元灰度熵为: 255 H = p i log p i i =0

基于最大熵原理的语言建模

基于最大熵原理的语言建模 1 问题的引入 在自然语言处理中,为了建立语言模型,需要使用上下文文本中的信息特征,利用不同的信息特征所建立的语言模型,对当前词预测所得的概率结果可能会有所不同,这样的信息特征在上下文 中有多种。例如,利用当前词w i 前面的连续n-1个词(∈-+-1 i 1n i w h)作为历史信息特征构造的n-gram 模型,其概率估计为)W |W (P 1i 1n i i -+-;而触发对语言模型,则是利用当前词前面的某个历史窗口中的 词作为触发词,要预测的当前词作为被触发词,该模型中所用的历史信息特征和n-gram 中的就不同,它可以是历史窗口中与当前词相距为d 的某个词或词串。例如,如果我们想估计在给定的文本历史情况下词“模型”的出现概率P(模型|h),如果使用Bigram 模型,则就会将事件空间(h,模型)根据h 的最后一个词划分成几个等价类,比如说,在训练文本中可能有“数学模型”、“语言模型”、“工程模型”、“汽车模型”等这样的短语,因此,“模型”一词的历史文本h 的最后一个词可能就是“数学”、“语言”、“工程”、“汽车”等,并将它们分别看作一个等价类,Bigram 模型为每个等价类赋以相同的概率。例如: {语言,模型} 模型|语言)=K (P Bigram (1) 这里,K {语言,模型}定义如下: ) Count() ,Count(},{语言模型语言模型语言= K (2) Count(语言,模型)是“语言”与“模型”两个词在训练语料中的同现次数,Count(语言)是“语 言”在训练语料中出现的次数。另一种对“模型”出现概率的估计方法就是根据特殊的触发对,比如说“建立汉语语言模型”或“使用语言模型”,我们就要考察在相同的历史信息h 中,是否有“建立”或“使用”这样的词,这样,又可以形成对事件空间(h,模型)的另一种划分,利用Trigger 模型,可以为同一个等价类赋以相同的概率: 模型) 建立 模型建立建立模型,(h h K )|(P ∈=∈→ (3) 这里定义模型) 建立 ,(h K ∈为: ) C() ,C(K h h ,(h ∈∈∈建立模型建立= 模型) 建立 (4) 显然,利用Bigram 和Trigger 模型所使用的信息特征估计得到的“模型”出现概率是不一样的,同理,用前面提到的其他信息特征所得到的概率也会不一样,能不能将它们协调一致,建立一个符合多个信息特征约束的统一模型框架呢?1992年,Della Pietra 等人利用最大熵原理建立语言模型就是对这一想法的尝试。 2 最大熵原理 2.1 基本思想 最大熵原理是E.T.Jayness 于1950年提出的,其基本思想是:假设{X }是一个事件空间,有许多种能够刻画该事件空间的信息源特征(或称约束),可以用来对事件的出现概率P(X)进行表述,假设每个约束i 与一个约束函数f i (X)和一个数学期望K i 相联系,则该约束可以写为:

最大熵原理在气象学中的应用

第六章最大熵原理在气象学中的应用 上一章我们把熵原理作了简要介绍,并附带提及了它在一些领域的应用。由于熵原理的普遍的适用性,因而认真分析它在气象上的应用潜力是十分值得的。很显然,用熵原理说明的气象学中的问题越多,不仅越加显示熵原理的重要性,显示宇宙真理的统一性,而且也为气象学找到了新的理论武器,而这势必也提高了气象学的科学性和实用性。 在这一章我们就重点讨论最大熵原理怎样应用于各种气象问题之中,以及由此得出的结果。把最大熵原理用于说明气象现象大致包含如下步骤: ◆首先把气象问题归结为某种分布函数(这在第二章 已列出约30个分布函数的个例)。 ◆找出形成上述分布函数的物理(气象)过程中有哪些 重要的约束条件。 ◆从物理(气象)过程含有随机性引出对应的熵达到极 大值(即随机性导致最混乱)。 ◆进行数学处理,从熵理论导出分布函数。 ◆用实际资料验证理论结果(如不符,可再重复上述过 程)。 后边的介绍就是把上述步骤分别用于各个具体的气象分布问题中,并从中逐步加深对最大熵原理的认识。 另外,从70年代以来Paltridge[1]等人从热力学熵平衡角度研究地球纬圈上的气温分布的工作,也应属于试着用熵原理的一种事例。这个工作中尽管在原理上尚有不清楚之处,但其结果与实况的一致性和引用极值原理都是很有意义的。鉴于汤懋苍[2]近年对此已有介绍,我们这里就不再评述

了。 顺便指出,早在上世纪,从力学中发展起来的最小作用原理就从力学领域体现了自然界遵守某种极值原理的精神。 在气象界,罗伦茨[3]在60年代就设想大气也应当遵守某种极值原理。而我们指出有一些气象分布函数可以从熵达极大的角度推导出来,这可以看成是罗伦茨思想从统计角度(非决定论角度)的具体体现。 所以,最大熵原理在气象学中的应用不仅应看作是随机论(非决定论)的胜利,也应当看成广义的极值原理的胜利。 §1 大气的温度场和气压场 从最大熵原理出发,很容易说明大气中的温度场和气压场的分布。在第二章第4节我们已经论证了大气的温度场和气压场的分布。对气压场,我们从简单的分析得出它应是均匀分布,对温度场则从平均图上得出其分布也是均匀分布。这就是说,如果从大气中纯随机地抽取一个空气样品,则其气压(气温)为各种可能值的出现概率都是相等的,或者说各种可能的气压(温度)占有的大气质量是一样的。图2.5 就是其代表。 大气温度为什么恰为均匀分布(它竟然遵守如此简单的分布,确实有些出人意料!)? 形成现今温度分布的原因当然是太阳辐射和大气的对外辐射,这使我们想到如图6.1的极简单的模型。图的左侧有一高温的恒定热源,其温度为T1,左侧有一低温的恒定热汇,其温度为T0。介质处于T1和T0两个温度之间,它的温度在各处不会都是T1或T0,从而构成了一个温度场。如果介质仅能从左右两端吞吐热量而其他界面与外界绝缘,那么介质中的温度场理应会形成如图所示的等温线呈均匀分布之形状。此时介质上的温度分布函数应为均匀分布,对此我们也可以从解热传导方程中得出来。

熵及熵增加的概念及意义

熵及熵增加的概念及意义 摘 要:熵是热学中一个及其重要的物理概念。自从克劳修斯于1865年提出熵概念以来,由于各学科之间的相互渗透,它已经超出物理学的范畴。本文从熵的概念出发,简述了熵的概念和意义及熵增加的概念和意义,促进我们对熵的理解。 关键词:熵;熵概念和意义; 一. 熵概念的建立及意义 1.克劳修斯对熵概念的推导 最初,克劳修斯引进态函数熵,其本意只是希望用一种新的形式,去表达一个热机在其循环过程所必须的条件。熵的最初定义建立于守恒上,无论循环是否理想,在每次结束时,熵都回到它最初的数值。首先将此过程限于可逆的过程。则有 0d =?T Q 图1-1 闭合的循环过程 公式0d =?T Q 的成立,足以说明存在个态函数。因此,对于任意一个平衡态,均可引 入态函数——熵:从状态O 到状态A ,S 的变化为 ? =-A O T Q S S d 0S 为一个常数,对应于在状态O 的S 值。对于无限小的过程,可写上式为 可逆)d ( d T Q S = 或 可逆)d (d Q S T = 在这里的态函数S 克劳修斯将其定义为熵。不管这一系统经历了可逆不可逆的变化过程,具体计算状态A 的熵,必须沿着某一可逆的变化途径。这里不妨以理想气体的自由膨胀为例来说明这一点。 p V

设总体积为2V 的容器,中间为一界壁所隔开。 图1-2 气体的自由膨胀 初始状态时,理想气体占据气体为1V 的左室,右室为真空气体2V 。然后,在界壁上钻一孔,气体冲入右室,直到重新达到平衡,气体均匀分布于整个容器为止。膨胀前后,气体温度没有变化,气体的自由膨胀显然是一个不可逆的问题。对于此过程,是无法直接利用公式(1-1)来计算熵的变化的。但为了便于计算,不一定拘泥于实际所经历的路线。不妨设想一个联系初、终状态的可逆过程,气体从体积1V 扩展到2V 得等温膨胀。在此过程中,热量Q 全部转化为功W 。 ??===T W T Q Q T T Q d 1d ??===?V P V V T T W T Q S d 1d 2112ln V V nR = 计算中引用了理想气体状态方程 pV =nRT = NkT 时至今日,科学的发展远远超出了克劳修斯当时引进熵的意图及目标。熵作为基本概念被引入热力学,竟带来了科学的深刻变化,拓展了物理内容,这是克劳修斯所没有预料到的。 2.熵的概念 熵,热力学中表征物质状态的参量之一,用符号S 表示,其物理意义是体系混乱程度的度量。 3.熵的性质及意义 自然界中所有不可逆的过程不仅不能反向进行,而且在不引起其它条件的变化下,用任何方式也不能回到原来状态,这就表明,自发过程单向性或不可逆性并不由过程进行的方式和路径决定,而是由系统的初、终状态决定。所以,根据态函数的定义,不可逆的过程的单向性或不可逆性具有以上态函数的性质,因而熵就是用来表征这个态函数。熵的单位J/K 。熵具有以下两个性质: (1)熵是一个广延量,具有相加性。体系的总熵等于体系各部分的熵的总和。 (2)体系熵的变化可分为两部分:一部分是由体系和外界环境间的相互作用引起的。另一部分是由体系内部的不可逆过程产生的。 熵的物理意义可以这样来理解,在孤立的体系中进行不可逆的过程,总包含有非平衡态向平衡态进行的过程,平衡态与非平衡态比较,系统内运动的微观粒子更为有序,因此,系统的熵增加过程与从有序态向无序态转变有联系。熵越大的态, 系统内热运动的微观粒子越

第5讲信息熵课件

1 第5讲 随机变量的信息熵 在概率论和统计学中,随机变量表示随机试验结果的观测值。随机变量的取值是不确定的,但是服从一定的概率分布。因此,每个取值都有自己的信息量。平均每个取值的信息量称为该随机变量的信息熵。 信息熵这个名称是冯诺依曼向香农推荐的。在物理学中,熵是物理系统的状态函数,用于度量一个物理系统内部状态和运动的无序性。物理学中的熵也称为热熵。信息熵的表达式与热熵的表达式类似,可以视为热熵的推广。香农用信息熵度量一个物理系统内部状态和运动的不确定性。 信息熵是信息论的核心和基础概念,具有多种物理意义。香农所创立的信息论是从定义和研究信息熵开始的。这一讲我们学习信息熵的定义和性质。 1. 信息熵 我们这里考虑离散型随机变量的信息熵,连续型随机变量的信息熵以后有时间再讨论,读者也可以看课本上的定义,先简单地了解一下。 定义1.1 设离散型随机变量X 的概率空间为 1 21 2 ......n n x x x X p p p P ?? ??=???????? 我们把X 的所有取值的自信息的期望称为X 的平均自信息量,通常称为信息熵,简称熵(entropy ),记为H(X),即 1 1 ()[()]log n i i i H X E I X p p === ∑ (比特) 信息熵也称为香农熵。 注意,熵H (X )是X 的概率分布P 的函数,因此也记为H (P )。 定义1.2 信息熵表达式中的对数底可取任何大于等于2的整数r ,所得结果称为r-进制熵,记为H r (X ),其单位为“r-进制单位”。 我们有

2 ()() log r X H H r X = 注意,在关于熵的表达式中,我们仍然约定 0log 00 0log 00 x ==, 信息熵的物理意义: 信息熵可从多种不同角度来理解。 (1) H(X)是随机变量X 的取值所能提供的平均信息量。 (2) 统计学中用H(X)表征随机变量X 的不确定性,也就是随机性的大小。 例如,假设有甲乙两只箱子,每个箱子里都存放着100个球。甲里面有红蓝色球各50个,乙里面红、蓝色的球分别为99个和1个。显然,甲里面球的颜色更具有不确定性。从两个箱子各摸出一个球,甲里面摸出的球更不好猜。 (3) 若离散无记忆信源的符号概率分布为P ,则H(P)是该信源的所有无损编码的“平均 码长”的极限。 令X 是离散无记忆信源的符号集,所有长度为n 的消息集合为 {1,2, ,}n M X = 每个消息i 在某个无损编码下的码字为w i ,码字长为l i 比特。假设各消息i 出现的概率为p i ,则该每条消息的平均码长为 1 M n i i i L p l ==∑ 因此,平均每个信源符号的码长为 1 1M n i i i L p l n n ==∑ 这个平均每个信源符号的码长称为该编码的平均码长,其量纲为(码元/信源)。 我们有 () lim () n n n L L H X H X n n →∞≥=且 这是信源编码定理的推论。

熵最大原理

一、熵 物理学概念 宏观上:热力学定律——体系的熵变等于可逆过程吸收或耗散的热量除以它的绝对温度(克劳修斯,1865) 微观上:熵是大量微观粒子的位置和速度的分布概率的函数,是描述系统中大量微观粒子的无序性的宏观参数(波尔兹曼,1872) 结论:熵是描述事物无序性的参数,熵越大则无序。 二、熵在自然界的变化规律——熵增原理 一个孤立系统的熵,自发性地趋于极大,随着熵的增加,有序状态逐步变为混沌状态,不可能自发地产生新的有序结构。 当熵处于最小值, 即能量集中程度最高、有效能量处于最大值时, 那么整个系统也处于最有序的状态,相反为最无序状态。 熵增原理预示着自然界越变越无序 三、信息熵 (1)和熵的联系——熵是描述客观事物无序性的参数。香农认为信息是人们对事物了解的不确定性的消除或减少,他把不确定的程度称为信息熵(香农,1948 )。 随机事件的信息熵:设随机变量ξ,它有A1,A2,A3,A4,……,An共n种可能的结局,每个结局出现的概率分别为p1,p2,p3,p4,……,pn,则其不确定程度,即信息熵为 (2)信息熵是数学方法和语言文字学的结合。一个系统的熵就是它的无组织程度的度量。熵越大,事件越不确定。熵等于0,事件是确定的。 举例:抛硬币, p(head)=0.5,p(tail)=0.5 H(p)=-0.5log2(0.5)+(-0.5l og2(0.5))=1 说明:熵值最大,正反面的概率相等,事件最不确定。 四、最大熵理论 在无外力作用下,事物总是朝着最混乱的方向发展。事物是约束和自由的统一体。事物总是在约束下争取最大的自由权,这其实也是自然界的根本原则。在已知条件下,熵最大的事物,最可能接近它的真实状态。

信息熵在图像处理中的应用

信息熵在图像处理中的应用 摘要:为了寻找快速有效的图像处理方法,信息理论越来越多地渗透到图像处理技术中。文章介绍了信息熵在图像处理中的应用,总 结了一些基于熵的图像处理特别是图像分割技术的方法,及其在这一领域内的应用现状和前景 同时介绍了熵在织物疵点检测中的应用。 Application of Information Entropy on Image Analysis Abstract :In order to find fast and efficient methods of image analysis ,information theory is used more and more in image analysis .The paper introduces the application of information entropy on the image analysis ,and summarizes some methods of image analysis based on information entropy ,especially the image segmentation method .At the same time ,the methods and application of fabric defect inspection based on information entropy ale introduced . 信息论是人们在长期通信实践活动中,由通信技术与概率论、随机过程、数理统计等学科相结合而逐步发展起来的一门新兴交叉学科。而熵是信息论中事件出现概率的不确定性的量度,能有效反映事件包含的信息。随着科学技术,特别是信息技术的迅猛发展,信息理论在通信领域中发挥了越来越重要的作用,由于信息理论解决问题的思路和方法独特、新颖和有效,信息论已渗透到其他科学领域。随着计算机技术和数学理论的不断发展,人工智能、神经网络、遗传算法、模糊理论的不断完善,信息理论的应用越来越广泛。在图像处理研究中,信息熵也越来越受到关注。 1 信息熵 1948年,美国科学家香农(C .E .Shannon)发表了一篇著名的论文《通信的数学理论》 。他从研究通信系统传输的实质出发,对信息做了科学的定义,并进行了定性和定量的描述。 他指出,信息是事物运动状态或存在方式的不确定性的描述。其通信系统的模型如下所示: 图1 信息的传播 信息的基本作用就是消除人们对事物的不确定性。信息熵是信息论中用于度量信息量的一个概念。假定X 是随机变量χ的集合,p (x )表示其概率密度,计算此随机变量的信息熵H (x )的公式是 P (x ,y )表示一对随机变量的联合密度函数,他们的联合熵H (x ,y )可以表示为 信息熵描述的是信源的不确定性,是信源中所有目标的平均信息量。信息量是信息论的中心概念,将熵作为一个随机事件的不确定性或信息量的量度,它奠定了现代信息论的科学理论基础,大大地促进了信息论的发展。设信源X 发符号a i ,的概率为Pi ,其中i=1,2,…,r ,P i >O ,要 ∑=r i Pi 1 =1,则信息熵的代数定义形式为:

最大熵原理及其应用

论文名称:最大熵原理及其应用班级:13级通信工程班 专业:通信工程 学号: 学生姓名:指导老师: 时间:2015年11月8日 摘要 熵是源于物理学的基本概念,后来Shannon在信息论中引入了信息熵的概念,它在统计

物理中的成功使人们对熵的理论和应用有了广泛和高度的重视。最大熵原理是一种在实际问题中已得到广泛应用的信息论方法。本文从信息熵的概念出发,对最大熵原理做了简要介绍,并论述了最大熵原理的合理性,最后提及它在一些领域的应用,通过在具体例子当中应用最大熵原理,展示该原理的适用场合,以期对最大熵原理及其应用有更深刻的理解。 关键词:熵;信息熵;最大熵原理;不适定性问题 引言 科学技术的发展使人类跨入了高度发展的信息化时代。在政治、军事、经济等各个领域,信息的重要性不言而喻,有关信息理论的研究正越来越受到重视,信息论方法也逐渐被广泛应用于各个领域。 信息论一般指的是香农信息论,主要研究在信息可以度量的前提下如何有效地、可靠地、安全地传递信息,涉及消息的信息量、消息的传输以及编码问题。1948年C.E.Shannon 为解决通信工程中不确定信息的编码和传输问题创立信息论,提出信息的统计定义和信息熵、互信息概念,解决了信息的不确定性度量问题,并在此基础上对信息论的一系列理论和方法进行了严格的推导和证明,使以信息论为基础的通信工程获得了巨大的发展。信息论从它诞生的那时起就吸引了众多领域学者的注意,他们竞相应用信息论的概念和方法去理解和解决本领域中的问题。近年来,以不确定性信息为研究对象的信息论理论和方法在众多领域得到了广泛应用,并取得了许多重要的研究成果。迄今为止,较为成熟的研究成果有:A.N.Kolmogorov在1956年提出的关于信息量度定义的三种方法——概率法,组合法,计算法;A.N.Kolmogorov在1968年阐明并为J.Chaitin在1987年系统发展了的关于算法信息的理论。这些成果大大丰富了信息理论的概念、方法和应用范围。 在信息论中,最大熵的含义是最大的不确定性,它解决的一大类问题是在先验知识不充分的条件下进行决策或推断等。熵方法在谱估计、图象滤波、图象重建、天文信号处理、专家系统等中都有广泛的应用。最大熵原理在实际问题中的应用近年来一直在不断地发展。 1.信息熵的概念 信息熵是将熵概念成功地扩展到信息科学领域。熵是描述客观事物无序性的参数,它最早是由R.Clausius于1865年引入热力学中的一个物理概念,通常称之为热力学熵。后来L.Boltzmann赋予熵统计意义上的解释,称之为统计热力学熵。1929年,匈牙利科学家

熵增大原理的应用

最大熵法在股票交易中的应用 1 术语 1.1 热力学第二定律(second law of thermodynamics),热力学基本定律之一,其表述为:不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微增量总是大于零。又称"熵增定律",表明了在自然过程中,一个孤立系统的总混乱度(即"熵")不会减小。 1.2 熵增加原理 孤立系统的熵永不自动减少,熵在可逆过程中不变,在不可逆过程中增加。 也就是说,在孤立系统内对可逆过程,系统的熵总保持不变;对不可逆过程,系统的熵总是增加的。这个规律叫做熵增加原理。这也是热力学第二定律的又一种表述。熵的增加表示系统从几率小的状态向几率大的状态演变,也就是从比较有规则、有秩序的状态向更无规则,更无秩序的状态演变。熵体现了系统的统计性质。 1.3 反应活化能 分子从常态转变为容易发生化学反应的活跃状态所需要的能量称为活化能。(阿伦尼乌斯公式中的活化能区别于由动力学推导出来的活化能,又称阿伦尼乌斯活化能或经验活化能)活化分子的平均能量与反应物分子平均能量的差值即为活化能。 分子从常态转变为容易发生化学反应的活跃状态所需要的能量称为活化能。 2 熵的解析 2.1 初始理解: 第一,热力学第二定律的表述(说法)虽然繁多,但都反映了客观事物的一个共同本质,即自然界的一切自发过程都有“方向性”,并且一切自发过程都是不可逆的. 第二,热力过程的方向性,是可以用“熵”来衡量的,也即孤立系的一切实际过程,其总熵是增加的,理想条件下(即可逆),总熵不变. 第三,系统的熵值直接反映了它所处状态的均匀程度,系统的熵值越小,它所处的状态越是有序;越不均匀,系统的熵值越大,它所处的状态越是无序,越均匀。系统总是力图自发地从熵值较小的状态向熵值较大(即从有序走向无序)的状态转变,这就是隔离系统“熵值增大原理”的微观物理意义。 2.2 熵的哲学

实验一-灰度图像信息熵的相关计算与分析

实验一 灰度图像信息熵的相关计算与分析

一、实验目的 1、复习信息熵,条件熵,联合熵,互信息,相对熵的基本定义, 掌握其计算方法,学习互信息与相对熵的区别之处并比较两者的有效性,加深对所学理论理论知识的理解。 2、掌握图像的的基本处理方法,了解图像的编码原理。 3、学习使用matlab ,掌握matlab 的编程。 4、通过对比分析,。在解决问题的过程中,锻炼自身对问题的研究能力。 二、实验内容与要求 1、计算灰度图像的信息熵,条件熵,联合熵,互信息,相对熵,并比较互信息和相对熵在判别两幅图像的联系与区别。 2、利用matlab 编程计算,并书写完整实验报告。 三、实验原理 1、信息熵 离散随机变量X 的熵H(X)为: ()()log () x H X p x p x χ ∈=-∑ 图像熵是一种特征的统计形式,它反映了图像中平均信息量的多少。图像的一 维熵表示图像中灰度分布的聚集特征所包含的信息量,将图像的灰度值进行数学统计,便可得到每个灰度值出现的次数及概率,则定义灰度图像的一元灰度熵为: 255 log i i i H p p ==-∑ 利用信息熵的计算公式便可计算图像的信息熵,求出任意一个离散信源的熵(平均自信息量)。自信息是一个随机变量,它是指某一信源发出某一消息所含有的信息量。所发出的消息不同,它们所含有的信息量也就不同。任何一个消息的自信息量都代表不了信源所包含的平均自信息量。 信息熵的意义:信源的信息熵H 是从整个信源的统计特性来考虑的。它是从平均意义上来表征信源的总体特性的。对于某特定的信源,其信息熵只有一个。不同的信源因统计特性不同,其熵也不同。 图像的一维熵可以表示图像灰度分布的聚集特征,却不能反映图像灰度分布的空间特征,为了表征这种空间特征,可以在一维熵的基础上引入能够反映灰度分布空间特征的特征量来组成图像的二维熵。选择图像的邻域灰度均值作为灰度分布的空间特征量,与图像的像素灰度组成特征二元组,记为( i, j ),其中i 表示像素的灰度值(0255)i ≤≤,j 表示邻域灰度(0255)j ≤≤, 2 (,)/ij P f i j N =

信息熵个人总结超全

信息熵 熵的概念是由德国物理学家克劳修斯于1865年所提出。熵最初是被用在热力学方面的,由热力学第二定律可以推出熵增的结论,然后熵是用来对一个系统可以达到的状态数的一个度量,能达到的状态数越多熵越大。信息熵也基本是很类似的,是香农1948年的一篇论文《A Mathematical Theory of Communication》提出了信息熵的概念,并且以后信息论也被作为一门单独的学科。 信息熵是用来衡量一个随机变量出现的期望值,一个变量的信息熵越大,那么他出现的各种情况也就越多,也就是包含的内容多,我们要描述他就需要付出更多的表达才可以,也就是需要更多的信息才能确定这个变量。在吴军老师的那篇《汉语信息熵和语言模型的复杂度》文章里说,只考虑字频的话英文是4.46比特/字符的信息熵,汉字是9.6比特/字符,直观上很容易理解,英文字母只有26个,所以描述一个字母所需要的信息表示不多,而中文字却很多,就需要更多的信息量才能表示。用点通俗的来讲,信息熵衡量了一个系统的复杂度,比如当我们想要比较两门课哪个更复杂的时候,信息熵就可以为我们作定量的比较,信息熵大的就说明那门课的信息量大,更加复杂。 那么信息熵可以做什么呢,首先信息熵作为衡量一个系统复杂度的表示,在压缩时就相当于一个压缩极限的下限,不同的内容,如果他的信息熵越小,说明信息量越小,也就是压缩后所占的体积能够更小,信息熵在人工智能方面也有很多的应用,其中最有名的就是最大熵原理,保留尽可能大的不确定性而作出最佳的尽量无偏差的决定。 最后来看看信息熵的公式 为什么会有这样的公式呢,很多地方都直接没有说这个问题,这个公式并不是香农随便乱说的,在香农1948年的那篇文章里就可以看到,这个公式是推导出来的。香农说,熵这个公式需要满足这么几条性质,对于随机变量S的取值(s1,s2...sn)发生的概率是(p1,p2...pn),那么 信息熵对于pi应该是连续的 如果所有的pi都相等,也就是pi=1/n那么信息熵应该是关于n的单调递增函数

相关主题