搜档网
当前位置:搜档网 › MATLAB伪随机数发生器

MATLAB伪随机数发生器

MATLAB伪随机数发生器
MATLAB伪随机数发生器

MATLAB伪随机数发生器.txt生活是过出来的,不是想出来的。放得下的是曾经,放不下的是记忆。无论我在哪里,我离你都只有一转身的距离。

均匀性较好的随机数生成

zz from https://www.sodocs.net/doc/9f12395327.html,/lanmuyd.asp?id=3379

随机数生成算法[1]是一类重要的算法,广泛应用于仿真技术等场合。然而,目前的伪随机数生成器(Pseudo-random number generator, PRNG)[2]存在一个重要缺陷,即样本分布与真实分布不一致,这主要发生在以下两种情况:①抽样代价过高,样本数目较少;②空间维数较高[3]。

因此,有必要寻找一类新的随机数发生器。准随机数发生器(Quasi-random number generator,QRNG)[4]能够生成稳定、低差异性的(low-discrepancy)样本,而与样本数目或空间维数无关[5]。故针对蒙特卡罗积分结果不稳定的情况,提出一种基于QRNG的蒙特卡罗积分,发现比传统方法性能有所提升。

伪随机数介绍

伪随机数是由确定的算法生成的,其分布函数与相关性均能通过统计测试。与真实随机数的差别在于,它们是由算法产生的,而不是一个真实的随机过程。一般地,伪随机数的生成方法主要有以下3种[6]:

(1)直接法(Direct Method),根据分布函数的物理意义生成。缺点是仅适用于某些具有特殊分布的随机数,如二项式分布、泊松分布。

(2)逆转法(Inversion Method),假设U服从[0,1]区间上的均匀分布,令X=F-1(U),则X的累计分布函数(CDF)为F。该方法原理简单、编程方便、适用性广。

(3)接受拒绝法(Acceptance-Rejection Method):假设希望生成的随机数的概率密度函数(PDF)为f,则首先找到一个PDF为g的随机数发生器与常数c,使得f(x)≤cg(x),然后根据接收拒绝算法求解。由于算法平均运算c次才能得到一个希望生成的随机数,因此c的取值必须尽可能小。显然,该算法的缺点是较难确定g与c。

因此,伪随机数生成器(PRNG)一般采用逆转法,其基础是均匀分布,均匀分布PRNG 的优劣决定了整个随机数体系的优劣[7]。下文研究均匀分布的PRNG。

伪随机数生成器的缺点

重复做N=10000次试验,每次产生S=20与S=100个随机分布的样本,同时采用Kolmogorov- Smirnov假设检验(hypothesis test)来确定样本是否满足均匀分布。规定:

① 0假设(null hypothesis)为样本服从均匀分布;② 1假设(alternative hypothesis)为样本不服从均匀分布。

采用P值(∈[0, 1])衡量,P值越趋近于0,表示越有理由拒绝0假设,即样本不服从均匀分布;P值越趋近于1,表示越有理由接受0假设,即样本服从均匀分布。

如图1与图2所示:随着P值下降,样本也越来越不服从均匀分布。实践中希望P值越大越好。然而统计学的结论显示,P值一定服从均匀分布,与N、S大小无关,这表明由于随机性,总会出现某次抽样得到的样本不服从、甚至远离均匀分布。另外,样本大小的不同,造成检验标准的不同,直观上看S=100对应的均匀分布普遍比S=20对应的更均匀。因此,小样本情况下均匀分布PRNG的差异性尤为严重。

准随机数发生器

上节讨论了造成差异性的两个情况:小样本与高维空间。本节讨论如何构建一类新的随机数发生器,使其具有较低的差异性。

PRNG缺陷的根源在于“随机性”与“均匀性”的矛盾。因此,不要求新的发生器模拟真实的均匀分布,而力求任意大小的样本(尤其是小样本)都能满足低差异性。换言之,以牺牲随机性为代价,换来均匀性的提高,称其为准随机数发生器(QRNG)。均匀分布QRNG的优势在于,其生成的样本更趋于均匀分布。在其基础上构建的各类分布(包括高斯分布)的QRNG,其生成的样本也更趋于服从对应的分布。

目前有3种准随机序列(Quasi-random sequency)可用来辅助生成均匀分布随机数,分别是Halton序列、Sobol序列、Latin超立方体序列。

https://www.sodocs.net/doc/9f12395327.html,/access/helpdesk/help/toolbox/stats/qrandstream.html matlab的方法:

qrandstream - Class: qrandstream

Construct quasi-random number stream

Syntax

q = qrandstream(type,d)

q = qrandstream(type,d,prop1,val1,prop2,val2,...)

q = qrandstream(p)

Description

q = qrandstream(type,d) constructs a d-dimensional quasi-random number stream q of the qrandstream class, of type specified by the string type. type is either 'halton' or 'sobol', and q is based on a point set from either the haltonset class or sobolset class, respectively, with default property settings.

q = qrandstream(type,d,prop1,val1,prop2,val2,...) specifies property name/value pairs for the point set on which the stream is based. Applicable properties depend on type.

q = qrandstream(p) constructs a stream based on the specified point set p. p must be a point set from either the haltonset class or sobolset class.

Examples

Construct a 3-D Halton stream, based on a point set that skips the first 1000 values and then retains every 101st point:

q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)

q =

Halton quasi-random stream in 3 dimensions

Point set properties:

Skip : 1000

Leap : 100

ScrambleMethod : none

nextIdx = q.State

nextIdx =

1

Use qrand to generate two samples of size four:

X1 = qrand(q,4)

X1 =

0.0928 0.3475 0.0051

0.6958 0.2035 0.2371

0.3013 0.8496 0.4307

0.9087 0.5629 0.6166

nextIdx = q.State

nextIdx =

5

X2 = qrand(q,4)

X2 =

0.2446 0.0238 0.8102

0.5298 0.7540 0.0438

0.3843 0.5112 0.2758

0.8335 0.2245 0.4694

nextIdx = q.State

nextIdx =

9

Use reset to reset the stream, and then generate another sample:

reset(q)

nextIdx = q.State

nextIdx =

1

X = qrand(q,4)

X =

0.0928 0.3475 0.0051

0.6958 0.2035 0.2371

0.3013 0.8496 0.4307

0.9087 0.5629 0.6166

See Also

haltonset | qrand | reset | sobolset

类别:默认分类 | | 添加到搜藏 | 分享到i贴吧 | 浏览(274) | 评论 (0) 上一篇:zz关于交叉验证

最近读者:

网友评论:

发表评论:

姓名:habby1985

内容:

插入表情

同时将此文章分享给好友

验证码:请点击后输入四位验证码,字母不区分大小写

?2011 Baidu

matlab 产生随机数命令大全

matlab产生随机数 Matlab(https://www.sodocs.net/doc/9f12395327.html,) 随机数生成方法: 第一种方法是用 random 语句,其一般形式为 y = random('分布的英文名',A1,A2,A3,m,n), 表示生成 m 行 n 列的 m × n 个参数为 ( A1 , A2 , A3 ) 的该分布的随机数。例如: (1) R = random('Normal',0,1,2,4): 生成期望为 0,标准差为 1 的(2 行 4 列)2× 4 个正态随机数 (2) R = random('Poisson',1:6,1,6): 依次生成参数为 1 到 6 的(1 行 6 列)6 个 Poisson 随机数 第二种方法是针对特殊的分布的语句: 一.几何分布随机数(下面的 P,m 都可以是矩阵) R = geornd(P) (生成参数为 P 的几何随机数) R = geornd(P,m) (生成参数为 P 的× m 个几何随机数) 1 R = geornd(P,m,n) (生成参数为 P 的 m 行 n 列的 m × n 个几何随机数) 例如 (1) R = geornd(1./ 2.^(1:6)) ( 生成参数依次为 1/2,1/2^2,到 1/2^6 的 6 个几何随机数) (2) R = geornd(0.01,[1 5]) (生成参数为 0.01 的(1行5列)5 个几何随机数). 二.Beta 分布随机数 R = betarnd(A,B) (生成参数为 A,B 的 Beta 随机数) R = betarnd(A,B,m) (生成× m 个数为 A,B 的 Beta 随机数) 1 R = betarnd(A,B,m,n) (生成 m 行 n 列的 m × n 个数为 A,B 的 Beta 随机数). 三.正态随机数 R = normrnd(MU,SIGMA) (生成均值为 MU,标准差为 SIGMA 的正态随机数)R = normrnd(MU,SIGMA,m) (生成 1× m 个正态随机数) R = normrnd(MU,SIGMA,m,n) (生成 m 行 n 列的 m × n 个正态随机数)例如 (1) R = normrnd(0,1,[1 5]) 生成 5 个正态(0,1) 随机数 (2) R = normrnd([1 2 3;4 5 6],0.1,2,3) 生成期望依次为[1,2,3;4,5,6], 方

概率特性仿真实验与程序-Matlab仿真-随机数生成-负指数分布-k阶爱尔兰分布-超指数分布

概率特性仿真实验与程序-Matlab 仿真-随机数生成-负指数分布-k 阶 爱尔兰分布-超指数分布 使用Java 中的SecureRandom .nextDouble()生成一个0~1之间的随机浮点数,然后使用反函数法生成一个符合指数分布的随机变量(反函数求得为λ) 1ln(R x --=)。指数分布的 参数λ为getExpRandomValue 函数中的参数lambda 。生成一个指数分布的随机变量的代码如下,后面都将基于该函数生成一组负指数分布、K 阶爱尔兰分布、2阶超指数分布随机变量,然后将生成的随机数通过matlab 程序进行仿真,对随机数的分布特性进行验证。 生成一组参数为lambda (λ)的负指数分布的随机变量 通过下面的函数生成一组λ参数为lambda 的随机变量,其中size 表示随机变量的个数。通过该函数生成之后,可以将这些随机值保存在文件中,以备分析和验证,比如保存在exp.txt 文件中,供下面介绍的matlab 程序分析。 通过genExp (1000000, 0.2)生成1000000个参数为0.2的随机变量,然后保存到exp.txt 中,然后使用下面的matlab 程序对这些随机数的性质进行验证,如果这些随机数符合λ=0.2的负指数分布,则其均值应为1/λ,即1/0.2=5,其方差应为1/λ2=1/(0.2*0.2)=25。然后对这些随机数的概率分布进行统计分析,以长度为1的区间为统计单位,统计各区间内随机数出现的频数,求出在各区间的概率,绘制图形,与参数为λ的真实负指数分布曲线进行对比。下图为matlab 代码

如下图所示,均值为4.996423,约等于5,方差为24.96761,约等于25,与实际情况相符。此外,通过matlab统计的概率密度函数曲线与真实曲线基本重合(其中在0-1之间没有重合的原因是,实际情况是在0-1之间有无数个点,而matlab统计时以1为一个区间进行统计,只生成了一个统计项,而这无数个点的概率全部加到1点处,因此两条线没有重合,而且1点处的值远大于实际值,如果统计单位划分越细,0-1之间的拟合度更高),表明生成的随机数符合负指数分布。

VHDL产生伪随机数

Library IEEE ; use IEEE.std_logic_1164.all ; use IEEE.std_logic_arith.all ; entity lfsr is generic (data_width : natural := 8 ); port ( clk : in std_logic ; reset : in std_logic ; data_out : out UNSIGNED(data_width - 1 downto 0) ); end lfsr ; architecture rtl of lfsr is signal feedback : std_logic ; signal lfsr_reg : UNSIGNED(data_width - 1 downto 0) ; begin feedback <= lfsr_reg(7) xor lfsr_reg(0) ; latch_it : process(clk,reset) begin if (reset = '1') then lfsr_reg <= (others => '0') ;

elsif (clk = '1' and clk'event) then lfsr_reg <= lfsr_reg(lfsr_reg'high - 1 downto 0) & feedback ; end if; end process ; data_out <= lfsr_reg ; end RTL ; Reference URL:https://www.sodocs.net/doc/9f12395327.html,/eda/edasrc/6153.html

Matlab 各种随机数设置

Matlab 各种随机数设置 randn(伪随机正态分布数) Normally distributed pseudorandom numbers Syntax r = randn(n) randn(m,n) randn([m,n]) randn(m,n,p,...) randn([m,n,p,...]) randn(size(A)) r = randn(..., 'double') r = randn(..., 'single') Description r = randn(n) returns an n-by-n matrix containing pseudorandom values drawn from the standard normal distribution. randn(m,n) or randn([m,n]) returns an m-by-n matrix. randn(m,n,p,...) or randn([m,n,p,...]) returns an m-by-n-by-p-by-... array. randn returns a scalar. randn(size(A)) returns an array the same size as A. r = randn(..., 'double') or r = randn(..., 'single') returns an array of normal values of the specified class. Note The size inputs m, n, p, ... should be nonnegative integers. Negative integers are treated as 0. The sequence of numbers produced by randn is determined by the internal state of the uniform pseudorandom number generator that underlies rand, randi, and randn. randn uses one or more uniform values from that default stream to generate each normal value. Control the default stream using its properties and methods. Note In versions of MATLAB prior to 7.7 (R2008b), you controlled the internal state of the random number stream used by randn by calling randn directly with the 'seed' or 'state' keywords. Examples Generate values from a normal distribution with mean 1 and standard deviation 2. r = 1 + 2.*randn(100,1); Generate values from a bivariate normal distribution with specified mean vector and covariance matrix. mu = [1 2]; Sigma = [1 .5; .5 2]; R = chol(Sigma); z = repmat(mu,100,1) + randn(100,2)*R; Replace the default stream at MATLAB startup, using a stream whose seed is based on clock, so that randn will return different values in different MATLAB sessions. It is usually not desirable to do this more than once per MATLAB session. RandStream.setDefaultStream ...

MATLAB产生各种分布的随机数

M A T L A B产生各种分布 的随机数 The final revision was on November 23, 2020

MATLAB产生各种分布的随机数 1,均匀分布U(a,b): 产生m*n阶[a,b]均匀分布U(a,b)的随机数矩阵:unifrnd (a,b,m, n) 产生一个[a,b]均匀分布的随机数:unifrnd (a,b) 2,0-1分布U(0,1) 产生m*n阶[0,1]均匀分布的随机数矩阵:rand (m, n) 产生一个[0,1]均匀分布的随机数:rand 4,二类分布binornd(N,P,mm,nn)如binornd(10,,mm,nn) 即产生mm*nn均值为N*P的矩阵 binornd(N,p)则产生一个。而binornd(10,,mm)则产生mm*mm的方阵,军阵为N*p。 5,产生m*n阶离散均匀分布的随机数矩阵: unidrnd(N,mm,nn)产生一个数值在1-N区间的mm*nn矩阵 6,产生mm nn阶期望值为的指数分布的随机数矩阵: exprnd( ,mm, nn) 此外,常用逆累积分布函数表 函数名调用格式函数注释 norminv X=norminv(P,mu,sigma) 正态逆累积分布函数 expinv X=expinv(P,mu) 指数逆累积分布函数 weibinv X=weibinv(P,A,B) 威布尔逆累积分布函数 logninv X=logninv(P,mu,sigma) 对数正态逆累积分布函数

Chi2inv X=chi2inv(P,A,B) 卡方逆累积分布函数 Betainv X=betainv(P,A,B) β分布逆累积分布函数 随机数的产生 4.1.1 二项分布的随机数据的产生 命令参数为N,P的二项随机数据 函数 binornd 格式 R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。 R = binornd(N,P,m) %m指定随机数的个数,与R同维数。 R = binornd(N,P,m,n) %m,n分别表示R的行数和列数 例4-1 >> R=binornd(10, R = 3 >> R=binornd(10,,1,6) R = 8 1 3 7 6 4 >> R=binornd(10,,[1,10]) R = 6 8 4 6 7 5 3 5 6 2 >> R=binornd(10,,[2,3]) R = 7 5 8 6 5 6 >>n = 10:10:60; >>r1 = binornd(n,1./n) r1 = 2 1 0 1 1 2 >>r2 = binornd(n,1./n,[1 6]) r2 = 0 1 2 1 3 1 4.1.2 正态分布的随机数据的产生

伪随机数列发生器-TsouShih

8位伪随机数列发生器 天津工业大学理学院 XXX XXXXXXX 2011年12月09日

背景 如果一个序列,一方面它是可以预先确定的,并且是可以重复地生产和复制的;一方面它又具有某种随机序列的随机特性(即统计特性),我们便称这种序列为伪随机序列。因此可以说,伪随机序列是具有某种随机特性的确定的序列。它们是由移位寄存器产生确定序列,然而他们却具有某种随机序列的随机特性。因为同样具有随机特性,无法从一个已经产生的序列的特性中判断是真随机序列还是伪随机序列,只能根据序列的产生办法来判断。伪随机序列系列具有良好的随机性和接近于白噪声的相关函数,并且有预先的可确定性和可重复性。这些特性使得伪随机序列得到了广泛的应用,特别是在CDMA系统中作为扩频码已成为CDMA技术中的关键问题。伪随机序列的特性对系统的性能有重要的影响,因此有必要了解和掌握伪随机序列的的概念和特性。 原理 伪随机数列的概念与特性 伪随机数列也称作PN码。它具有近似随机数列(噪声)的性质,它的相关函数接近白噪声的相关函数 (Δ函数 ),即有窄的高峰或宽的功率谱密度 ,使它易于从其他信号或干扰中分离出来。而又能按一定的规律(周期)产生和复制的序列。因为随机数列是只能产生而不能复制的,所以称其为“伪”随机数列。广泛应用于通信、雷达、导航等重要的技术领域。近年来 ,在自动控制、计算机、声学、光学测量、数字式跟踪和测距系统 ,以及数字网络系统的故障分析检测也得到广泛的应用。 伪随机数列具有这样的特点: (1)每个周期中,“1”码出现2n-1次,“0”码出现2n-1次,即0、1出现概率几乎相等。 (2)序列中连1的数目是n,连0的数目是n-1。 (3)分布无规律,具有与白噪声相似的伪随机特性。

matlab中产生随机数的程序

1.由U(0,1)分布的随机数产生U(a,b)的随机数 r=rand(1,20); s=a+(b-a)*r; 例: r=rand(1,20); s=2+(10-2)*r s = Columns 1 through 11 7.0589 2.7803 4.2280 6.3751 9.6601 9.7191 3.2609 9.7647 9.6573 5.8830 8.4022 Columns 12 through 20 3.1351 5.3741 9.3259 8.3377 9.6759 7.2459 2.2857 8.7930 9.4719 2.指数分布的抽样 (6.9)n=10的时候 u=rand(1,19); r=1; for i=1:19 r=r*u(i); end s=log(r); m=1; for j=11:19 if(u(j-1)>u(j)) y(m)=u(j) else y(m)=u(j) end m=m+1; end for k=2:9 x(k)=(y(k-1)-y(k))*s end x y = 0.4168

0.4168 0.6569 y = 0.4168 0.6569 0.6280 y = 0.4168 0.6569 0.6280 0.2920 y = 0.4168 0.6569 0.6280 0.2920 0.4317 y = 0.4168 0.6569 0.6280 0.2920 0.4317 0.0155 y = 0.4168 0.6569 0.6280 0.2920 0.4317 0.0155 0.9841 y = 0.4168 0.6569 0.6280 0.2920 0.4317 0.0155 0.9841 0.1672

C语言程序设计 伪随机数的产生

4.3.1伪随机数的产生 产生伪随机数的函数是rand(),该函数可随机生成0~RAND_MAX之间的一个整数。RAND_MAX是头文件中定义的一个符号常量。ANSI规定RAND_MAX的值不小于32767。 在编写程序时经常需要各种范围的随机数,如投骰子时需要的随机数是1~6,投一枚硬币会有正反面,需要的随机数是0~1。根据公式: n=a+rand()%b 可以得到所需范围内的随机数。其中,a为位移,是所需连续整数范围的第一个数,b是比例因子,是所需连续整数范围的宽度,则希望产生1~6之间随机数的公式为:face=1+rand()%6 【例4-3】编写一个模拟投掷硬币的程序,模拟20次,统计出正面出现的次数。 问题分析:每调用一次rand()函数会产生一个随机数,循环20次可以产生20个随机数。硬币有正反两面,用1代表正面,0代表反面,产生伪随机数的公式为rand()%2。 参考程序如下: /*程序名:4_3.c*/ /*功能:模拟投掷硬币20次,打印投掷结果并统计出正面出现的次数*/ #include #include int main() { int i,face,iCount=0; for(i=1;i<=20;i++) { face=rand()%2; printf("%5d",face); if(i%10==0)printf("\n"); if(face)iCount++; } printf("正面出现次数:%d次\n",iCount); return0; } 运行程序,结果为: 1100100000 1111111010 正面出现次数:11次 如果再次运行该程序,会发现结果与上面的相同。这怎么称得上是随机数呢?实际上,每次调用rand函数产生的一系列数似乎是随机的,但每次执行程序所产生的序列则是重复的。程序调试完成后,可以使用函数srand(),通过提供不同的种子产生不同的随机数序列。

MATLAB随机数生成

2009年03月20日星期五 03:25 P.M. rand(n):生成0到1之间的n阶随机数方阵 rand(m,n):生成0到1之间的m×n 的随机数矩阵 (现成的函数) 另外: Matlab随机数生成函数 betarnd 贝塔分布的随机数生成器 binornd 二项分布的随机数生成器 chi2rnd 卡方分布的随机数生成器 exprnd 指数分布的随机数生成器 frnd f分布的随机数生成器 gamrnd 伽玛分布的随机数生成器 geornd 几何分布的随机数生成器 hygernd 超几何分布的随机数生成器 lognrnd 对数正态分布的随机数生成器 nbinrnd 负二项分布的随机数生成器 ncfrnd 非中心f分布的随机数生成器 nctrnd 非中心t分布的随机数生成器 ncx2rnd 非中心卡方分布的随机数生成器 normrnd 正态(高斯)分布的随机数生成器 poissrnd 泊松分布的随机数生成器 raylrnd 瑞利分布的随机数生成器 trnd 学生氏t分布的随机数生成器 unidrnd 离散均匀分布的随机数生成器 unifrnd 连续均匀分布的随机数生成器 weibrnd 威布尔分布的随机数生成器 (From:https://www.sodocs.net/doc/9f12395327.html,/question/30033707.html) matlab生成随机数据 matlab本身提供很多的函数来生成各种各样的随机数据: normrnd 可以生成一定均值和标准差的正态分布 gamrnd 可以生成gamma分布的伪随机数矩阵 chi2rnd 可以生成卡方分布的伪随机数矩阵 trnd 可以生成t分布的伪随机数矩阵 frnd 可以生成f分布的伪随机数矩阵 raylrnd 可以生成rayleigh分布的伪随机数矩阵

MATLAB伪随机数发生器

MATLAB伪随机数发生器.txt生活是过出来的,不是想出来的。放得下的是曾经,放不下的是记忆。无论我在哪里,我离你都只有一转身的距离。 均匀性较好的随机数生成 zz from https://www.sodocs.net/doc/9f12395327.html,/lanmuyd.asp?id=3379 随机数生成算法[1]是一类重要的算法,广泛应用于仿真技术等场合。然而,目前的伪随机数生成器(Pseudo-random number generator, PRNG)[2]存在一个重要缺陷,即样本分布与真实分布不一致,这主要发生在以下两种情况:①抽样代价过高,样本数目较少;②空间维数较高[3]。 因此,有必要寻找一类新的随机数发生器。准随机数发生器(Quasi-random number generator,QRNG)[4]能够生成稳定、低差异性的(low-discrepancy)样本,而与样本数目或空间维数无关[5]。故针对蒙特卡罗积分结果不稳定的情况,提出一种基于QRNG的蒙特卡罗积分,发现比传统方法性能有所提升。 伪随机数介绍 伪随机数是由确定的算法生成的,其分布函数与相关性均能通过统计测试。与真实随机数的差别在于,它们是由算法产生的,而不是一个真实的随机过程。一般地,伪随机数的生成方法主要有以下3种[6]: (1)直接法(Direct Method),根据分布函数的物理意义生成。缺点是仅适用于某些具有特殊分布的随机数,如二项式分布、泊松分布。 (2)逆转法(Inversion Method),假设U服从[0,1]区间上的均匀分布,令X=F-1(U),则X的累计分布函数(CDF)为F。该方法原理简单、编程方便、适用性广。 (3)接受拒绝法(Acceptance-Rejection Method):假设希望生成的随机数的概率密度函数(PDF)为f,则首先找到一个PDF为g的随机数发生器与常数c,使得f(x)≤cg(x),然后根据接收拒绝算法求解。由于算法平均运算c次才能得到一个希望生成的随机数,因此c的取值必须尽可能小。显然,该算法的缺点是较难确定g与c。 因此,伪随机数生成器(PRNG)一般采用逆转法,其基础是均匀分布,均匀分布PRNG 的优劣决定了整个随机数体系的优劣[7]。下文研究均匀分布的PRNG。 伪随机数生成器的缺点 重复做N=10000次试验,每次产生S=20与S=100个随机分布的样本,同时采用Kolmogorov- Smirnov假设检验(hypothesis test)来确定样本是否满足均匀分布。规定: ① 0假设(null hypothesis)为样本服从均匀分布;② 1假设(alternative hypothesis)为样本不服从均匀分布。 采用P值(∈[0, 1])衡量,P值越趋近于0,表示越有理由拒绝0假设,即样本不服从均匀分布;P值越趋近于1,表示越有理由接受0假设,即样本服从均匀分布。 如图1与图2所示:随着P值下降,样本也越来越不服从均匀分布。实践中希望P值越大越好。然而统计学的结论显示,P值一定服从均匀分布,与N、S大小无关,这表明由于随机性,总会出现某次抽样得到的样本不服从、甚至远离均匀分布。另外,样本大小的不同,造成检验标准的不同,直观上看S=100对应的均匀分布普遍比S=20对应的更均匀。因此,小样本情况下均匀分布PRNG的差异性尤为严重。

用C语言的rand()和srand()产生伪随机数的方法总结

标准库(被包含于中)提供两个帮助生成伪随机数的函数: 函数一:int rand(void); 从srand(seed)中指定的seed开始,返回一个[seed,RAND_MAX(0x7fff))间的随机整数。 函数二:void srand(unsigned seed); 参数seed是rand()的种子,用来初始化rand()的起始值。 可以认为rand()在每次被调用的时候,它会查看: 1)如果用户在此之前调用过srand(seed),给seed指定了一个值,那么它会自动调用srand(seed)一次来初始化它的起始值。 2)如果用户在此之前没有调用过srand(seed),它会自动调用srand(1)一次。 根据上面的第一点我们可以得出: 1)如果希望rand()在每次程序运行时产生的值都不一样,必须给srand(seed)中的seed一个变值,这个变值必须在每次程序运行时都不一样(比如到目前为止流逝的时间)。 2)否则,如果给seed指定的是一个定值,那么每次程序运行时rand()产生的值都会一样,虽然这个值会是[seed,RAND_MAX(0x7fff))之间的一个随机取得的值。 3)如果在调用rand()之前没有调用过srand(seed),效果将和调用了srand(1)再调用rand()一样(1也是一个定值)。 举几个例子,假设我们要取得0~6之间的随机整数(不含6本身): 例一,不指定seed: for(int i=0;i<10;i++){ ran_num=rand()%6; cout<

matlab产生随机数的方法

matlab 产生随机数的方法 第一种方法是用 random 语句,其一般形式为 y = random (' 分布的英文名 ',A1,A2,A3,m,n ) , 表示生成m 行n 列的m x n 个参数为(A1 , A2 , A3 ) 的该分 布的随机数。 例如: (1) R = random ('Normal',0,1,2,4): 生成期 望为 0, 标准差为 1 的(2 行 4 列)2 x 4个正态随机数 (2) R = random ('Poisson',1:6,1,6): 依次 生成参数为 1 到 6 的(1 行 6 列 )6 个 Poisson 随机数 第二种方法是针对特殊的分布的语句: 一. 几何分布随机数 R = geornd(P) R = geornd(P,m) (下面的 P , m 都可以是矩阵) (生成参数为 P 的几何随机数) (生成参数为 P 的 x m 个几何随机数) 1 R = geornd (P,m,n ) (生成参数为 P 的 m 行 n 列的 m x n 个几何随 机数) 例如 ⑴ R = geornd (1./ 2八(1:6))(生成参数依次为 1/2,1/2A 2,至U 1/2A 6 的 6 个几 何随机数 ) ⑵ R = geornd (0.01,[1 5])( 生成参数为0.01的(1行5列)5个几何随 机数). 二. Beta 分布随机数 R = betarnd(A,B) R = betarnd(A,B,m) 生成 m 行 n 列的 m x n 个数为 A,B 的 Beta 随 三.正态随机数 R = normrnd (MU, SIGMA ) (生成均值为 MU,标准差为SIGMA 的正态随机数) R = normrnd (MU , SIGMA,m ) (生成 1x m 个正态随机数) R = normrnd(MU , SIGMA,m,n) (生成 m 行 n 列的 m x n 个正态随机数) 例如 (1) R = normrnd(0,1,[1 5]) 生成 5 个正态 (0,1) 随机数 (2) R = normrnd([1 2 3;4 5 6],0.1,2,3) 生成期望依次为 [1,2,3;4,5,6], 方 差为 0.1 的 2x 3 个正态随机数. 生成参数为 A,B 的 Beta (生成 x m 个数为 A,B 随机数) 的 Beta 随机数) R = betarnd(A,B,m,n) 机数) .

matlab随机数生成方法

Matlab 随机数生成方法(转自雅虎空间) 第一种方法是用random 语句,其一般形式为 y = random('分布的英文名',A1,A2,A3,m,n), 表示生成m 行n 列的m × n 个参数为( A1 , A2 , A3 ) 的该分布的随机数。例如: (1) R = random('Normal',0,1,2,4): 生成期望为0,标准差为1 的(2 行4 列)2× 4 个正态随机数 (2) R = random('Poisson',1:6,1,6):依次生成参数为1 到6 的(1 行6 列)6 个Poisson 随机数 第二种方法是针对特殊的分布的语句: 一.几何分布随机数(下面的P,m 都可以是矩阵) R = geornd(P) (生成参数为P 的几何随机数) R = geornd(P,m)(生成参数为P 的× m 个几何随机数) 1 R = geornd(P,m,n)(生成参数为P 的m 行n 列的m × n 个几何随机数) 例如 (1)R = geornd(1./ 2.^(1:6)) ( 生成参数依次为1/2,1/2^2,到1/2^6 的6 个几何随机数) (2)R = geornd,[1 5]) (生成参数为的(1行5列)5 个几何随机数). 二.Beta 分布随机数 R = betarnd(A,B)(生成参数为A,B 的Beta 随机数) R = betarnd(A,B,m)(生成× m 个数为A,B 的Beta 随机数) 1 R = betarnd(A,B,m,n)(生成m 行n 列的m × n 个数为A,B 的Beta 随机数). 三.正态随机数 R = normrnd(MU,SIGMA)(生成均值为MU,标准差为SIGMA 的正态随机数) R = normrnd(MU,SIGMA,m)(生成1× m 个正态随机数) R = normrnd(MU,SIGMA,m,n) (生成m 行n 列的m × n 个正态随机数) 例如 (1) R = normrnd(0,1,[1 5]) 生成5 个正态(0,1) 随机数 (2) R = normrnd([1 2 3;4 5 6],,2,3)生成期望依次为[1,2,3;4,5,6], 方差为的2× 3 个正态随机数. 四.二项随机数:类似地有 R = binornd(N,P)R = binornd(N,P,m) R = binornd(N,p,m,n) 例如 n = 10:10:60; r1 = binornd(n,1./n)或r2 = binornd(n,1./n,[1 6]) (都生成参数分别为1 1 ), L, ( 60, ) 的6个二项随机数. (10, 10 60 五.自由度为V 的χ 2 随机数:

matlab随机数生成(全部函数)

matlab 全部的随机数函数 (一)Matlab内部函数 a.基本随机数 Matlab中有两个最基本生成随机数的函数。 1.rand() 生成(0,1)区间上均匀分布的随机变量。基本语法: rand([M,N,P ...]) 生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子: rand(5,1) %生成5个随机数排列的列向量,一般用这种格式 rand(5) %生成5行5列的随机数矩阵 rand([5,4]) %生成一个5行4列的随机数矩阵 生成的随机数大致的分布。 x=rand(100000,1); hist(x,30); 由此可以看到生成的随机数很符合均匀分布。(视频教程会略提及hist()函数的作用) 2.randn() 生成服从标准正态分布(均值为0,方差为1)的随机数。基本语法和rand()类似。 randn([M,N,P ...]) 生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子: randn(5,1) %生成5个随机数排列的列向量,一般用这种格式 randn(5) %生成5行5列的随机数矩阵 randn([5,4]) %生成一个5行4列的随机数矩阵 生成的随机数大致的分布。 x=randn(100000,1); hist(x,50); 由图可以看到生成的随机数很符合标准正态分布。 b.连续型分布随机数 如果你安装了统计工具箱(Statistic Toolbox),除了这两种基本分布外,还可以用Matlab内部函数生成符合下面这些分布的随机数。 3.unifrnd() 和rand()类似,这个函数生成某个区间内均匀分布的随机数。基本语法 unifrnd(a,b,[M,N,P,...]) 生成的随机数区间在(a,b)内,排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

伪随机数产生器

伪随机数产生器 ----------------------------------------------------------------------------- -- -- The following information has been generated by Exemplar Logic and -- may be freely distributed and modified. -- -- Design name : pseudorandom -- -- Purpose : This design is a pseudorandom number generator. This design -- will generate an 8-bit random number using the polynomial p(x) = x + 1. -- This system has a seed generator and will generate 2**8 - 1 unique -- vectors in pseudorandom order. These vectors are stored in a ram which -- samples the random number every 32 clock cycles. This variance of a -- priority encoded seed plus a fixed sampling frequency provides a

truely -- random number. -- -- This design used VHDL-1993 methods for coding VHDL. -- ---------------------------------------------------------------------------- Library IEEE ; use IEEE.std_logic_1164.all ; use IEEE.std_logic_arith.all ; entity divide_by_n is generic (data_width : natural := 8 ); port ( data_in : in UNSIGNED(data_width - 1 downto 0) ; load : in std_logic ; clk : in std_logic ; reset : in std_logic ; divide : out std_logic ); end divide_by_n ;

matlab随机数生成方法

Matlab(https://www.sodocs.net/doc/9f12395327.html,) 随机数生成方法 第一种方法是用random 语句,其一般形式为 y = random('分布的英文名',A1,A2,A3,m,n), 表示生成m 行n 列的m × n 个参数为( A1 , A2 , A3 ) 的该分布的随机数。例如: (1) R = random('Normal',0,1,2,4): 生成期望为0,标准差为1 的(2 行4 列)2× 4 个正态随机数 (2) R = random('Poisson',1:6,1,6):依次生成参数为1 到6 的(1 行6 列)6 个Poisson 随机数 第二种方法是针对特殊的分布的语句: 一.几何分布随机数(下面的P,m 都可以是矩阵) R = geornd(P) (生成参数为P 的几何随机数) R = geornd(P,m)(生成参数为P 的× m 个几何随机数) R = geornd(P,m,n)(生成参数为P 的m 行n 列的m × n 个几何随机数) 例如 (1)R = geornd(1./ 2.^(1:6)) ( 生成参数依次为1/2,1/2^2,到1/2^6 的6 个几何随机数) (2)R = geornd(0.01,[1 5]) (生成参数为0.01 的(1行5列)5 个几何随机数). 二.Beta 分布随机数 R = betarnd(A,B)(生成参数为A,B 的Beta 随机数) R = betarnd(A,B,m)(生成× m 个数为A,B 的Beta 随机数) R = betarnd(A,B,m,n)(生成m 行n 列的m × n 个数为A,B 的Beta 随机数). 三.正态随机数 R = normrnd(MU,SIGMA)(生成均值为MU,标准差为SIGMA 的正态随机数) R = normrnd(MU,SIGMA,m)(生成1× m 个正态随机数) R = normrnd(MU,SIGMA,m,n) (生成m 行n 列的m × n 个正态随机数) 例如

FPGA产生基于LFSR的伪随机数

FPGA产生基于LFSR的伪随机数 1.概念 通过一定的算法对事先选定的随机种子(seed)做一定的运算可以得到一组人工生成的周期序列,在这组序列中以相同的概率选取其中一个数字,该数字称作伪随机数,由于所选数字并不具有完全的随机性,但是从实用的角度而言,其随机程度已足够了。这里的“伪”的含义是,由于该随机数是按照一定算法模拟产生的,其结果是确定的,是可见的,因此并不是真正的随机数。伪随机数的选择是从随机种子开始的,所以为了保证每次得到的伪随机数都足够地“随机”,随机种子的选择就显得非常重要,如果随机种子一样,那么同一个随机数发生器产生的随机数也会一样。 2.由LFSR引出的产生方法 产生伪随机数的方法最常见的是利用一种线性反馈移位寄存器(LFSR),它是由n个D触发器和若干个异或门组成的,如下图: 其中,gn为反馈系数,取值只能为0或1,取为0时表明不存在该反馈之路,取为1时表明存在该反馈之路;n个D触发器最多可以提供2^n-1个状态(不包括全0的状态),为了保证这些状态没有重复,gn的选择必须满足一定的条件。下面以n=3,g0=1,g1=1,g2=0,g3=1为例,说明LFSR的特性,具有该参数的LFSR 结构如下图:

假设在开始时,D2D1D0=111(seed),那么,当时钟到来时,有: D2=D1_OUT=1; D1=D0_OUT^D2_OUT=0; D0=D2_OUT=1; 即D2D1D0=101;同理,又一个时钟到来时,可得D2D1D0=001. ……………… 画出状态转移图如下: 从图可以看出,正好有2^3-1=7个状态,不包括全0; 如果您理解了上图,至少可以得到三条结论: 1)初始状态是由SEED提供的; 2)当反馈系数不同时,得到的状态转移图也不同;必须保证g n===1,否则哪来的反馈? 3)D触发器的个数越多,产生的状态就越多,也就越“随机”; 3.verilog实现

Matlab随机数产生的问题

Matlab随机数产生的问题 2009-02-13 08:13 这2天发现这个问题讨论较多,所以就搜索了一些资料。发现自己之前的理解有些很有问题,同时欢迎大家继续讨论。先澄清一下几个容易弄错的地方(也不一定全对) (1)用计算机产生的是“伪随机数”。用投色子计数的方法产生真正的随机数 , 但电脑若也这样做 , 将会占用大量内存 ; 用噪声发生器或放射性物质也可产生真正的随机数 , 但不可重复 . 而用数学方法产生最适合计算机 , 这就是周期有限 , 易重复的” 伪随机数” (2)随机数的产生需要有一个随机的种子,因为用计算机产生的随机数是通过递推的方法得来的,必须有一个初始值。 (3)用同一台电脑,且在初始值和递推方法相同的情况下,可以产生相同的随机序列(由于以前每次使用randn或者rand得到都是不同值,所以曾经误以为相同的seed无法产生相同的序列) [size=2][color=red][b]一 matlab里产生随机数的方法[/b][/color][/size] matlab里和随机数有关的函数: (1) rand:产生均值为0.5、幅度在0~1之间的伪随机数 (2) randn:产生均值为0、方差为1的高斯白噪声 (3) randperm(n):产生1到n的均匀分布随机序列 (4) normrnd(a,b,c,d):产生均值为a、方差为b大小为cXd的随机矩阵 还有很多的扩展函数,不再一一列出。不过他们都调用的是rand或者randn函数,由此可见在matlab里rand和randn是产生随机数的关键所在。看来只有看他们的源文件了 function [varargout] = randn(varargin) %%%help 文档的内容略去%%% if nargout == 0 builtin('randn', varargin{:}); else [varargout{1:nargout}] = builtin('randn', varargin{:}); end 从这里也看不出到底是怎么产生的,就只看到builtin。而builtin函数的源文件是这样的: %BUILTIN Execute built-in function from overloaded method. % BUILTIN is used in methods that overload built-in functions to execute % the original built-in function. If F is a string containing the name % of a built-in function then BUILTIN(F,x1,...,xn) evaluates that % function at the given arguments. % % BUILTIN(...) is the same as FEVAL(...) except that it will call the % original built-in version of the function even if an overloaded one % exists (for this to work, you must never overload BUILTIN). % % [y1,..,yn] = BUILTIN(F,x1,...,xn) returns multiple output arguments. %

相关主题