搜档网
当前位置:搜档网 › 高等数学微积分期末试卷及答案

高等数学微积分期末试卷及答案

高等数学微积分期末试卷及答案
高等数学微积分期末试卷及答案

大一高等数学微积分期末试卷

选择题(6×2)

cos sin 1.()2,()()22

()()B ()()D x x f x g x f x g x f x g x C π

==1设在区间(0,)内( )。

A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数

2x 1

n n n n 20cos sin 1n A X (1) B X sin

21C X (1) x

n e x x n a D a π

→-=--==>、x 时,与相比是( )

A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )

A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )

n 1

X cos

n

=

2

00000001()

5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o

C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )

A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线

1~6 DDBDBD

一、填空题

1

d 1

2lim 2,,x d x

ax b

a b →++=xx2

211、( )=x+1

、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为:

3、函数y=的反函数及其定义域与值域分别是:2+1

x5、若则的值分别为:

x+2x-3

1 In 1x + ;

2 3

2

2y x x =-; 3 2

log ,(0,1),1x

y R x

=-; 4(0,0) 5解:原式=11(1)()1m

lim

lim 2

(1)(3)3477,6

x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 二、判断题

1、 无穷多个无穷小的和是无穷小( )

2、 0sin lim

x x

x

→-∞+∞在区间(,)是连续函数()

3、 0f"(x )=0一定为f(x)的拐点()

4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )

5、 设

(x)

[]

0,1上二阶可导且

'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有

1~5 FFFFT

三、计算题

1用洛必达法则求极限2

1

2

lim x x x e →

解:原式=2

2

2

1

1

1

33

0002

(2)lim

lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若3

4

()(10),''(0)f x x f =+求

解:332233

3

3

2

3

2

2

3

3

4

3

2

'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0

f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴=

3

2

4

lim(cos )x

x x →求极限

4

I cos 22

4

I cos lim 0

22000002

lim 1

(sin )

4

cos tan cos lim cos lim lim lim lim 22224

n x

x x n x x

x x x x x x e e x In x x x x In x x x x x x

e →→→→→→→-=---=====-∴=解:原式=原式

4 (3y x =-求 511

I 3112

322

1531111'3312122511'(3312(1)2(2)n y In x In x In x y y x x x y x x x x =-+---=?+?-?

---?

=-+-?---?

解:

5

3tan xdx ?

2222tan tan sec 1)tan sec tan tan sin tan tan cos 1

tan tan cos cos 1

tan cos 2

x xdx x xdx x xdx xdx x

xd x dx

x xd x d x

x

x In x c

=----++????????解:原式=( = = = =

6arctan x xdx ?求

2

22222

22211arctan ()(arctan arctan )

22111

(arctan )2111arctan (1)211arctan 22

xd x x x x d x x x x dx x x x dx x x x

x c

=-+--+??--??+??+-+????解:原式= = = =

四、证明题。

1、 证明方程3

10x x +-=有且仅有一正实根。 证明:设3

()1f x x x =+-

[][]1221

222212222(0)10,(1)10,()0,10,1),'(0

()01)()00()00,,(),,()()0

,()0'()31f f f x f f x f x f x x x x f x x x x x f x f x x x f f ξξξξξξ=-<=>∴∈==+∞=+∞>==∴?∈?==+且在上连续至少存在(使得)即在(,内至少有一根,即在(,)内至少有一实根假设在(,)有两不同实根x 在上连续,在()内可导且至少(),s t 而3110x x ≥∴+-=与假设相矛盾方程有且只有一个正实根

2、arcsin arccos 1x 12

x x π

+=-≤≤证明()

[][]

()arcsin arccos '()0,1,1()(0)arcsin 0arccos 02

(1)arcsin1arccos12

(1)arcsin(1)arccos(1)2

()arcsin arccos 1,12

f x x x

f x x f x c f f f f x x x x π

π

π

π

=+=-=∈-∴===+==+=

-=-+-=

∴=+=

∈-证明:设综上所述,,

五、应用题

1、描绘下列函数的图形

2

1

y x

x

=+

3

22

3

3

.Dy=(-,0)(0,+)

121

2.y'=2x-

1

'0

2

2

''2

''0,1

x

x x

y x

y

x

y x

∞?∞

-

=

==

=+

==-

解:1

令得

令得

3.

4.补充点

7179

(2,).(,).(1,2).(2,)

2222

---

5

lim(),()0 x

f x f x x

=∞∴=

有铅直渐近线

6如图所示:

2.讨论函数22()f x x Inx =-的单调区间并求极值

12()22(1)(1)'()2(0)'()0,1,1Df x R

x x f x x x x x

f x x x =-+=-

=≠==-=解:令得

由上表可知f(x)的单调递减区间为(,1)(0,1)-∞-和

单调递增区间为(1,0)1-+∞和(,)

且f(x)的极小值为f(-1)=f(1)=1

微积分笔记

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=2 1 ) ()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的;则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时, 若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 奇函数:f(-x)=-f(x) 偶函数:f(-x)=f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数 §1.2 极 限 一、 主要内容 ㈠极限的概念 1. 数列的极限: A y n n =∞ →lim 称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A. 定理: 若{}n y 的极限存在 ?{}n y 必定有界.

武大《高等数学》期末考试试题

2000~2001学年第二学期《 高等数学 》期末考试试题(180学时) 专业班级 学号_______________ 姓名 一、 已知一个二阶常系数线性齐次微分方程有相等的实根a ,试写出此微分方程及通解。 (8分) 二、 设幂级数∑∞=?0 )1(n n n x a 在x =3处发散,在x =1处收敛,试求出此幂级数的收敛半径。(8分) 三、 求曲面323 =+xz y x 在点(1,1,1)处的切平面方程和法线方程 。(10分) 四、 设)(,0x f x >为连续可微函数,且2)1(=f ,对0>x 的任一闭曲线L,有0)(43=+∫L dy x xf ydx x ,求)(x f 。 (10分) 五、 设曲线L (起点为A ,终点为B )在极坐标下的方程为36(,2sin πθπθ≤≤= r ,其中θ=6π 对应起点A ,3 π θ=对应终点B ,试计算∫+?L xdy ydx 。(10分) 六、 设空间闭区域Ω由曲面222y x a z ??=与平面0=z 围成,其中0>a ,Σ为Ω的 表面外侧,且假定Ω的体积V 已知,计算: ∫∫Σ=+?.)1(2222dxdy xyz z dzdx z xy dydz yz x 。(10分) 七、 函数),(y x z z =由0),(=z y y x F 所确定,F 具有连续的一阶偏导数,求dz 。 (12分) 八、 计算∫∫∫Ω +,)(22dxdydz y x 其中Ω是由平面z =2与曲面2222z y x =+所围成的闭区域。(12分) 九、 已知级数 ∑∞=1n n U 的部分和arctgn S n =,试写出该级数,并求其和,且判断级数∑∞=1n n tgU 的敛散性。(12分) 十、 设)(x f 连续,证明∫∫∫??=?A A D dt t A t f dxdy y x f |)|)(()(,其中A 为正常数。D :2||,2||A y A x ≤≤ 。(8分)

大一上学期微积分期末试卷及答案

1 1?设f(x) 2cosx,g(x) (l)sinx在区间(0, —)内( 2 2 A f (x)是增函数,g (x)是减函数 Bf (x)是减函数,g(x)是增函数 C二者都是增函数 D二者都是减函数2、x 0时,e2x cosx与sinx相比是() A高阶无穷小E低阶无穷小C等价无穷小 1 3、x = 0 是函数y = (1 -sinx)书勺() A连续点E可去间断点C跳跃间断点 4、下列数列有极限并且极限为1的选项为( ) n 1 n A X n ( 1) B X n sin - n 2 1 1 C X n n (a 1) D X n cos— a n 5、若f "(x)在X。处取得最大值,则必有() A f /(X。)o Bf /(X。)o Cf /(X。)0且f''( X o)

5、 若 则a,b 的值分别为: X 1 X + 2x-3

2 1 In x 1 ; 2 y x 3 2x 2; 3 y log^x 1 -,(0,1), R ; 4(0,0) x lim 5解:原式=x 1 (x 1)( x m ) ~~1)( x 7 b lim 3) x 7, a 1、 2、 、判断题 无穷多个无穷小的和是无穷小( lim 沁在区间(, X 0 X 是连续函数() 3、 f"(x 0)=0—定为f(x)的拐点 () 4、 若f(X)在X o 处取得极值,则必有 f(x)在X o 处连续不可导( 5、 f (x) 0,1 f '(x) 0令 A f'(0), f '(1),C f (1) f (0),则必有 A>B>C( 1~5 FFFFT 二、计算题 1用洛必达法则求极限 1 2 ~ lim x e x x 0 1 e 解:原式=lim x 0 1 x x 2 lim e x 2 ( 2x x 0 2x 3 3 4 k 2 若 f(x) (x 10),求f”(0) 3) 1 lim e x x 0 3 3 2 2 f '(x) 4(x 10) 3x 12x (x 3 3 2 3 2 2 f ''(x) 24x (x 10) 12x 3 (x 10) 3x 24x f ''(x) 0 10)3 3 .. .3 3 4 , 3 (x 10) 108 x (x 10)2 4 r t I 八] 2 3 求极限 lim(cos x)x x 0

高等数学微积分总结

积 分 整个高数课本,我们一共学习了不定积分,定积分,重积分(二重,三重),曲线积分(两类),曲面积分(两类).在此,我们对 积分总结,比较,以期同学们对积分有一个整体的认识. 一、不定积分 不定积分是微分的逆运算,其计算方法、各种技巧是我们后面各种积分计算的基础,希望同学们熟记积分公式,及各种 方法(两类换元,分部积分,有理函数积分等) 二、定积分 1.定义式: ()b a f x dx ? 2.定义域:一维区间,例如[,]a b 3.性质:见课本P 229-P 232 特殊:若 1f =,则()b a f x dx b a =-?,即区间长度. 4.积分技巧:奇偶对称性. 注意:定积分中积分变量可以任意替换即()()b b a a f x dx f y dy =? ?,而不定积分不具有这种性质. 5.积分方法:与不定积分的方法相同. 6.几何应用: 定积分的几何意义: ()b a f x dx ? 表示以()f x 为顶与x 轴所夹区域面积的代数和(注意如()0f x <,则面积为负); 其他应用:如 ()f x 表示截面积,则积分为体积;平面弧长 (b a f x ? 等. 三、二重积分 1.定义式: (,)xy D f x y d σ ?? 2.定义域:二维平面区域 3.性质:见下册课本P 77 特殊: 若 1f =,则(,)xy D f x y dxdy S =?? ,即S 为xy D 的面积. 4.坐标系: ①直角坐标系: X 型区域,Y 型区域 ②极坐标系:适用范围为圆域或扇形区域,注意坐标转换后不要漏掉r ,积分时一般先确定θ的范围,再确定r 的范围. 5.积分技巧:奇偶对称性(见后),质心; 6.几何应用: 二重积分的几何意义:若(,)0f x y ≥,则(,)xy D f x y dxdy ?? 表示以(,)f x y 为顶以xy D 为底的曲顶柱体体积; 其他应用:求曲面(,)z z x y =的面积xy D ?? 四、三重积分 1.定义式 (,,)f x y z dv Ω??? 2.定义域:三维空间区域; 3.性质:与二重积分类似; 特殊: 若 1f =,则(,,)f x y z dv V Ω =???,其中V 表示Ω的体积. 4.坐标系: ①直角坐标系:投影法,截面法(一般被积函数有一个自变量,而当该变量固定时所得截面 积易求时采用) ②柱坐标系:积分区域为柱形区域,锥形区域,抛物面所围区域时可采用; ③球坐标系:积分区域为球域或与球面相关的区域时,确定自变量范围时,先θ,后?,最后 r . 5.积分技巧:奇偶对称性,变量对称性(见后),质心等. 6.应用: (,,)f x y z 表示密度,则(,,)f x y z dv Ω ???为物体质量.(不考虑几何意义) 五、第一类曲线积分

同济大学版高等数学期末考试试卷

同济大学版高等数学期 末考试试卷 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211 f dx x x ??' ????的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ??+ ??? (D )1f C x ?? -+ ???

大一微积分期末试卷及答案

微积分期末试卷 选择题(6×2) cos sin 1.()2 ,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π→-=--== >、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小 3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001() 5"()() ()()0''( )<0 D ''()'()0 6x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线 C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 一、填空题 1d 12lim 2,,x d x ax b a b →++=x x2 21 1、( )= x+1 、求过点(2,0)的一条直线,使它与曲线y= 相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+14、y拐点为:x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11 (1)() 1m lim lim 2 (1)(3) 3 4 77,6 x x x x m x m x x x m b a →→-+++== =-++∴=∴=-= 二、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0 sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函数f(x)在 [] 0,1上二阶可导且 ' ()0A ' B ' (f x f f C f f <===-令(),则必有 1~5 FFFFT 三、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 解:原式=2 2 2 1 1 1 3 3 2 (2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若3 4 ()(10),''(0)f x x f =+求 解:3 3 2 2 3 3 3 3 2 3 2 2 3 3 4 3 2 '()4(10)312(10) ''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim (cos )x x x →求极限

高等数学笔记

第1章函数 §1 函数的概念 一、区间、邻域 自然数集N整数集Z有理数集Q实数集R 建立数轴后: 建立某一实数集A与数轴上某一区间对应 区间:设有数a,b,a0),则称实数集{x|a?δ

a称为N(a,δ)的中心,δ>0称为邻域N(a,δ)的半径。 去心邻域:把N(a,δ)的中心点a去掉,称为点a的去心邻域,记为N(a^,δ)={x|0<|x?a|<δ}=N(a,δ)?{a} 注:其中,?{a}表示去掉由a这一个数组成的数集。 二、函数概念 例1. 设圆的半径为x(x>0),它的面积A=πx2,当x在(0,+∞)内任取一个数值(记为?x∈(0,+∞))时,由关系式A=πx2就可以确定A的对应数值。 文章来源:https://www.sodocs.net/doc/9f12636035.html,/ 例2. 设有半径为r的圆,作圆的内接正n边形,每一边对应的圆心角α=2πn,周长S n=n?2r sinπn,当边数n在自然数 集N(n≥3)任取一个数,通过关系式S n=2nr sinπn就有一个S n对应确定数值。 函数定义:设有数集X,Y,f是一个确定的对应法则,对?x∈X,通过对应法则f都有唯一的y∈Y与x对应,记为x→f y,或f(x)=y,则称f为定义在X上的函数。 其中X称为f的定义域,常记为D f。 X——自变量,Y——因变量。 当X遍取X中的一切数时,那么与之对应的y值构成一个数集V f={y|y=f(x),x∈X},称V f为函数f的值域。 文章来源:https://www.sodocs.net/doc/9f12636035.html,/ 注意: (1)一个函数是由x,y的对应法则f与x的取值范围X所确定的。把“对应法则f”、“定义域”称为函数定义的两个要素。 例如,y=arcsin(x2+2)这个式子,由于x2+2>2,而只有当|x2+2|≤1时,arcsin才有意义,因此这个式子不构成函数关系。又例如,y=ln x2与y=2ln x不是同一个函数,因为定义域不同。而y=ln x2与y=2ln|x|是同一个函数,因为定义域相同。(2)函数的值域是定义域和对应法则共同确定的。 (3)确定函数定义域时,注意:若函数有实际意义,需依据实际问题是否有意义来确定。 若函数不表示某实际问题,则定义域为自变量所能取得的使函数y=f(x)成立的一切实数所组成的数值。 函数的几何意义:设函数y=f(x)定义域为D f,?x∈D f,对应函数值y=f(x)在XOY平面上得到点(x,y),当x遍取D f中一切实数时,就得到点集P={(x,y)|y=f(x),x∈D f}。点集P称为函数y=f(x)的图形。 文章来源:https://www.sodocs.net/doc/9f12636035.html,/ 三、函数的几个简单性质 1. 函数的有界性 若?M>0,s.t.|f(x)|≤M,x∈I,则称y=f(x)在区间I上有界。否则称f(x)在I上无界。 注:s.t.是“使得,满足于”的意思,I表示某个区间。

高等数学学期期末考试题(含答案全)

05级高数(2-3)下学期期末试题 (A 卷) 专业 ____________ 姓名 ______________ 学号 ________________ 《中山大学授予学士学位工作细则》第六条:“考试作弊不授予学士学位” 一,填空题 (每题4分,共32分) 1. 213______4 x y kx y z k π +-=-==若平面与平面成 角,则 1/4 2. 曲线20 cos ,sin cos ,1t u t x e udu y t t z e = =+=+? 在t = 0处的切线方程为________________ 3. 方程z e xyz =确定隐函数z = f (x,y )则z x ??为____________ 4. ( ),dy f x y dx ?1 交换的积分次序为_________________________ 5.()2221,L x y x y ds +=-=?L 已知是圆周则 _________π- 6. 收敛 7. 设幂级数0 n n n a x ∞ =∑的收敛半径是2,则幂级数 21 n n n a x ∞ +=∑的收敛半径是 8. ()211x y ''+=微分方程的通解是 ()2121 arctan ln 12 y x x c x c =-+++_______________________ 二.计算题 (每题7分,共63分) 1.讨论函数 f ( x, y ) = 221 ,x y + 220x y +≠, f ( 0 , 0 ) = 0 在点( 0 , 0 )处的连续性,可导性及可微性。 P 。330 2.求函数2 222z y x u ++=在点)1,1,1(0P 处沿P 0方向的方向导数,其中O 为坐 标原点。 3.2 1 2.1n n n n n ∞ =?? ?+?? ∑判别级数的敛散性 P .544 4.设u=),(z y xy f +,),(t s f 可微,求du dz f dy f x f dx y f '+??? ??'+'+?'2211. 012 112x y z ---==z z yz x e xy ?=?-211sin ____________1 n n n ∞ =++∑级数的敛散性为

大一微积分期末试题附答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001 () 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 二、填空题 1 d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+1 x5、若则的值分别为: x+2x-3

三、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 四、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 2 若34()(10),''(0)f x x f =+求 3 2 4 lim(cos )x x x →求极限 4 (3y x =-求 5 3tan xdx ? 五、证明题。 1、 证明方程3 10x x +-=有且仅有一正实根。 2、arcsin arccos 1x 12 x x π +=-≤≤证明() 六、应用题 1、 描绘下列函数的图形 21y x x =+

高等数学学习笔记

第一章 代数运算与自然数 主要内容: 1、集合与映射的概念 2、映射及其运算 3、代数系统 4、自然数及其他相关定义 5、归纳法原理与反归纳法的运用 重点掌握 1、由A →B 的单映射σ的定义为:设2121,,,:a a A a A a B A ≠∈∈→若由σ,就推出)()21a a σσ≠(,则称σ为从A 到B 的单映射。 2、由A →B 的满映射σ的定义为:设B ran B A =→)(,:σσ若,则称σ为从A 到B 的满映射。 3、给出一个由整数集合Z 到自然数集合N 的双射:可考虑分段映射,即将定义域分为小于0、等于0、大于0的整数三部分分别给出其象 4、若集合|A|=n ,则集合A →A 的映射共有n n 种。 5、皮阿罗公理中没有前元的元素为1。 6、自然数a 与b 加法的定义中两个条件为①:'1a a =+②:)'('b a b a +=+. 7、自然数a 与b 相乘的定义中两个条件为: ①:a a =?1;②:a b a b a +?=?' 8、自然数a>b 的定义为:如果给定的两个自然数a 与b 存在一个数k,使得a=b+k ,则称a 大于b,b 小于a,记为a>b 或b

12、若A 是有限集合,则A →A 的不同映射个数为:||||A A 。 13、从整数集合Z 到自然数集合N 存在一个单映射。 14、若A 是有限集合,则不存在A 到其真子集合的单映射。 15、若A 为无限集合,则存在A 的真子集合B 使其与A 等价。 16、存在从自然数集合N 到整数集合Z 的一个满映射,但不是单映射。 可考虑将定义域分成奇数、偶数两部分,定义一个与n )1(-有关的映射 17、存在从自然数N 到整数集合Z 的双射。 可考虑分段映射 18、代数系统(+R ,?)与代数系统(R,+)是同构的,其中+R 表示正实数集合,R 表示实数集合,?与+就是通常的实数乘法与加法。 根据同构定义,只需找到一个从(+R ,?)到(R,+)的一一映射,例如lgx 就可以证明上述论述。 19、令+Q 为正有理数集合,若规定 2 b a b a +=⊕,ab b a =? 则: (1){+Q ,⊕}构成代数体系,但不满足结合律。 (2){+Q ,?}不构成代数体系,但满足结合律。 根据代数体系和结合律的定义可得上述论述成立。 20、若在实数集合中规定b a ⊕=a+b-a ×b ,其中+与×是通常的加法与乘法,则⊕满足结合律。 只需证明等式(b a ⊕)⊕c=)(c b a ⊕⊕成立 21、分别利用归纳法与反归纳法可以证明n 个数的算术平均值大于等于这n 个数的几何平均值。 归纳法根据定义易证,在运用反归纳法证明时可先证n=2,4,…,n 2都成立,假设命题对n=k 成立,令,...21k a a a S k k +++= 1 ...1211-+++=--k a a a S k k ,利用12111...---≥k k k a a a S 证之成立

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0,(),0 x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3 分)定积分22 ππ-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241(sin )x x x dx -+=? . 3. (3分) 201lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求20ln(15)lim .sin 3x x x x →+ 2. (6 分)设y =求.y ' 3. (6分)求不定积分2ln(1).x x dx +? 4. (6分)求3 0(1),f x dx -?其中,1,()1cos 1, 1.x x x f x x e x ?≤?=+??+>?

5. (6分)设函数()y f x =由方程00cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞??+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x ππ??=-≤≤ ???与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--?? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 31;y x =+ 2 2;3 3 0; 4 0. 三、 1 解 原式2 05lim 3x x x x →?= 5分 53 = 1分 2 解 22l n l n l n (1),12 x y x x ==-++ 2分 2212[]121 x y x x '∴=-++ 4分

微积分期末测试题及答案

微积分期末测试题及答 案 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-???? ③(0,+∞) ④(-∞,+∞) 4.设2 ()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) sin lim sin x x x x x →∞-=+. 31lim(1)x x x +→∞+=. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=? ,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求 dy dx . 5.设111 1,11n n n x x x x --==+ +,求lim n x x →∞.

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? = 1ln ax b C a ++ 2.()d ax b x μ+?=1 1() (1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?= 2 1(ln )ax b b ax b C a +-++ 4.2 d x x ax b +? = 22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d () x x ax b +? =1ln ax b C b x +-+ 6.2 d () x x ax b +? =2 1ln a ax b C bx b x +- ++ 7.2 d () x x ax b +? =2 1(ln )b ax b C a ax b ++ ++ 8.2 2 d () x x ax b +? = 2 3 1(2ln )b ax b b ax b C a ax b +-+- ++ 9.2 d () x x ax b +? = 2 11ln () ax b C b ax b b x +- ++ 的积分 10.x ? = C 11.x ?=2 2(3215ax b C a -+ 12.x x ?= 2 2 2 3 2(15128105a x abx b C a -+ 13.x ? = 2 2(23ax b C a -+

14 .2 x ? = 222 3 2(34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>?的积分 22.2 d x ax b +? =(0) (0) C b C b ? +>? ? ?+< 23.2 d x x ax b +? = 2 1 ln 2ax b C a ++

(精选)大一高数期末考试试题

一.填空题(共5小题,每小题4分,共计20分) 1. 2 1 lim() x x x e x →-= .2. ()()1 2005 1 1x x x x e e dx --+-= ? .3.设函数()y y x =由方程 2 1 x y t e dt x +-=? 确定,则 x dy dx == .4. 设()x f 可导,且1 ()()x tf t dt f x =?,1)0(=f , 则()=x f .5.微分方程044=+'+''y y y 的通解 为 . 二.选择题(共4小题,每小题4分,共计16分) 1.设常数0>k ,则函数 k e x x x f +- =ln )(在),0(∞+内零点的个数为( ). (A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分 方程43cos2y y x ''+=的特解形式为( ). (A )cos2y A x *=; (B )cos 2y Ax x * =; (C )cos2sin 2y Ax x Bx x * =+; (D ) x A y 2sin *=.3.下列结论不一定成立的是( ). (A )若[][]b a d c ,,?,则必有()()??≤b a d c dx x f dx x f ;(B )若0)(≥x f 在[]b a ,上可积, 则()0b a f x dx ≥?;(C )若()x f 是周期为T 的连续函数,则对任意常数a 都有 ()()?? +=T T a a dx x f dx x f 0 ;(D )若可积函数()x f 为奇函数,则()0 x t f t dt ?也为奇函数.4. 设 ()x x e e x f 11 321++= , 则0=x 是)(x f 的( ). (A) 连续点; (B) 可去间断点; (C) 跳跃间断点; (D) 无穷间断点. 三.计算题(共5小题,每小题6分,共计30分) 1. 计算定积分 2 30 x e dx - 2.2.计算不定积分dx x x x ? 5cos sin . 求摆线???-=-=),cos 1(),sin (t a y t t a x 在 2π= t 处的切线的方程.

微积分期末试卷及答案

一、填空题(每小题3分,共15分) 1、已知2 )(x e x f =,x x f -=1)]([?,且0)(≥x ?,则=)(x ? . 答案:)1ln(x - 王丽君 解:x e u f u -==1)(2 ,)1ln(2x u -=,)1ln(x u -=. 2、已知a 为常数,1)12 ( lim 2=+-+∞→ax x x x ,则=a . 答案:1 孙仁斌 解:a x b a x ax x x x x x x x -=+-+=+-+==∞→∞→∞→1)11(lim )11( 1lim 1lim 022. 3、已知2)1(='f ,则=+-+→x x f x f x ) 1()31(lim . 答案:4 俞诗秋 解:4)] 1()1([)]1()31([lim 0=-+--+→x f x f f x f x

4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 答案:2 俞诗秋 解:)(x f '有3个零点321,,ξξξ:4321321<<<<<<ξξξ, )(x f ''有2个零点21,ηη:4132211<<<<<<ξηξηξ, ))((12)(21ηη--=''x x x f ,显然)(x f ''符号是:+,-,+,故有2个拐点. 5、=? x x dx 22cos sin . 答案:C x x +-cot tan 张军好 解:C x x x dx x dx dx x x x x x x dx +-=+=+=????cot tan sin cos cos sin sin cos cos sin 22222222 . 二、选择题(每小题3分,共15分) 答案: 1、 2、 3、 4、 5、 。 1、设)(x f 为偶函数,)(x ?为奇函数,且)]([x f ?有意义,则)]([x f ?是 (A) 偶函数; (B) 奇函数; (C) 非奇非偶函数; (D) 可能奇函数也可能偶函数. 答案:A 王丽君 2、0=x 是函数??? ??=≠-=.0 ,0 ,0 ,cos 1)(2x x x x x f 的 (A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点. 答案:D 俞诗秋

高等数学微积分复习题

第五章 一元函数积分学 1.基本要求 (1)理解原函数与不定积分的概念,熟记基本积分公式,掌握不定积分的基本性质。 (2)掌握两种积分换元法,特别是第一类换元积分法(凑微分法)。 (3)掌握分部积分法,理解常微分方程的概念,会解可分离变量的微分方程,牢记非齐次 线性微分方程的通解公式。 (4)理解定积分的概念和几何意义,掌握定积分的基本性质。 (5)会用微积分基本公式求解定积分。 (6)掌握定积分的凑微分法和分部积分法。 (7)知道广义积分的概念,并会求简单的广义积分。 (8)掌握定积分在几何及物理上的应用。特别是几何应用。 2.本章重点难点分析 (1) 本章重点:不定积分和定积分的概念及其计算;变上限积分求导公式和牛顿—莱布 尼茨公式;定积分的应用。 (2) 本章难点:求不定积分,定积分的应用。 重点难点分析:一元函数积分学是微积分学的一个重要组成部分,不定积分可看成是微分运算的逆运算,熟记基本积分公式,和不定积分的性质是求不定积分的关键,而定积分则源于曲边图形的面积计算等实际问题,理解定积分的概念并了解其几何意义是应用定积分的基础。 3.本章典型例题分析 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写

《高等数学B》本科期末考试试卷A卷

西南科技大学2013-2014-2学期 《高等数学B2》本科期末考试试卷(A卷) C.6 D.8 1 1)n的敛散性为()

4、求函数3u xy z =在点(1,1,2)-处的梯度__________。 5、设,αβ为有向曲线弧L 在点(,)x y 处的切向量的方向角,则平面曲线L 上的两类曲线积分的关系(________________)L L Pdx Qdy ds +=??。 三、解答题(1-2小题每题8分,3-8小题每题9分,共70分) 1、求曲面22214x y z ++=上平行于平面2320x y z ++=的切平面方程。 2、设2 2 (,),z f x y xy =-,其中f 具有连续的二阶偏导数,求2z x y ???。 3、求函数4242z x xy y =-+的极值。 4、计算|1|D I x y dxdy =+-??,其中[0,1][0,1]D =?。 5、把二次积分4 2200 )dx x y dy +?化为极坐标形式,并计算积分值。 n n 的收敛半径与收敛域。的一段弧。西南科技大学《高等数学B2

000 123 x y z k ===令 ,代入方程22214x y z ++=中可得1k =±---————--4分, 在点(1,2,3)处的切平面为2314x y z ++=-————----2分, 在点(-1,-2,-3)处的切平面为23140x y z +++=----————-2分。 2、解:122(3)z xf yf x ?'' =+?分。 3、解:3440,440x y z x y z x y =-==-+=求得驻点为(0,0),(1,1),(-1,-1)。(3分) 212,4,4xx xy yy A z x B z C z ====-==,在点(0,0)处2160AC B -=-<没有极值,(3分) 在点(1,1)和(-1,-1)处2320,0AC B A -=>>,所以有极小值(1,1) 1.z ±±=-(3分) 4、解: 5 、解3334 4cos 22 3 4 2200 )64cos 12dx x y dy d r dr d π π θ θθθπ+===??? ?分 分 分 。 6、解:131lim 3 31n n n n n ρ+→∞==+,所以收敛半径为3,收敛区间为323x -<-<,即15 x -<<(3分) 当5x =时11313n n n n n n ∞ ∞===∑∑发散(2分),当1x =-时11 (3)(1)3n n n n n n n ∞∞ ==--=∑∑收敛,(2分) 因此原级数的收敛域为[1,5)-。(2分) 7、解:42332,4,24Q P P xy y Q x xy x y x y ??=-=-==-??,所以该曲线积分和积分路径无关。(4分) 11 4 2 3 30 (23)(4)314)=3L xy y dx x xy dy dx y dy -++-=+-???((5分) 8、解:由高斯公式得22322()2=()xy dydz x y z dzdx xydxdy x y dxdy ∑ Ω +-++?????(4分) 由柱面坐标2 24 2230028()3 r x y dxdydz d r dz ππ θΩ +== ?????(5分)

相关主题