搜档网
当前位置:搜档网 › ZEMAX光学辅助设计简明教程 2

ZEMAX光学辅助设计简明教程 2

ZEMAX光学辅助设计简明教程 2
ZEMAX光学辅助设计简明教程 2

ZEMAX光学辅助设计简明教程

沈常宇

中国计量学院光电子技术研究所

目录

第一章引言 (3)

第二章ZEMAX的基本界面及文件菜单 (4)

第三章编辑菜单 (6)

第四章系统菜单 (12)

第五章分析菜单 (17)

第六章工具菜单 (29)

第七章报告菜单 (36)

第八章宏指令菜单 (38)

第九章扩展命令菜单 (39)

第十章表面类型简介 (40)

第十一章设计优化实例 (46)

第一章引言

对于实际的光学系统来说,它的成像往往是非完善成像,对于怎样来判断一个光学系统的性能的优劣,是光学设计中遇到的一个重要问题.在当前计算机辅助科研、教学的迅猛发展过程中,计算机辅助光学系统设计已成为光学设计不可缺少的一种重要手段.其中,由美国焦点软件公司所发展出的光学设计软件ZEMAX,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件.其主要特色有分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function 参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件.

但是,这里必须强调一点的是,ZEMAX软件只是一个光学设计辅助软件,也就是说,该软件不能教你怎么去进行光学设计,而只是能对你设计的光学系统进行性能的优化以达最佳成像质量.所以,在应用本教程进行光学辅助设计之前,您最好先学习一下光学设计的有关知识:首先是几何光学基础,几何光学是光学设计的基础.要做光学设计必须懂得各种光学仪器成像原理,外形尺寸计算方法,了解各种典型光学系统的设计方法和设计过程.实际光学系统大多由球面和平面构成.记住共轴球面系统光轴截面内光路计算的三角公式,了解公式中各参数的几何意义是必要的,具体公式可参考有关光学书籍,在此就不一一介绍了.对于平面零件有平面反射镜和棱镜,它们的主要作用多为改变光路方向,使倒像成为正像,或把白光分解为各种波长的单色光.在光学系统中造成光能损失的原因有三点:透射面的反射损失、反射面的吸收损失和光学材料内部的吸收损失.其次是像差理论知识,对于一个光学系统,一般存在7种几何像差,他们分别是球差、彗差、像散、场曲、畸变和位置色差以及倍率色差.另外,还必须了解一点材料的选择和公差的分配方面的知识,以及一些光学工艺的知识,包括切割,粗磨,精磨,抛光和磨边,最后还有镀膜和胶合等.

第二章 ZEMAX的基本界面及文件菜单

§2.1 ZEMAX的基本界面

ZEMAX的基本界面比较简单,如下图所示.

包括一系列文件菜单和工具按钮.以及一个镜头数据编辑对话框.

Zemax基本界面中有不同的窗口,各窗口有不同的用途,主要有:

(1)主窗口:这个窗口有一个工作区和一个标题栏、一个菜单栏、一个工具栏.

(2)编辑窗口:主要由透镜数据编辑窗口(LDE),优化函数编辑窗口,复合构造编辑窗口等组成.

(3)图表窗口:用于显示数据、图表等,如设计布局图、扇型光线图等.

(4)文本窗口:显示文本数据,如边缘厚度、像差系数等.

下面将详细介绍各菜单及其子项的使用方法和功能:

§2.2 文件菜单的各子项

文件菜单的各子项如图所示.

1.新建(New)

目的:清除当前的镜头数据.说明:此选项使ZEMAX 恢复到起始状态.当前打开的窗口仍然打开,如果当前的镜头未保存,在退出前ZEMAX 将警告你要保存镜头数据.

2.打开(Open)

目的:打开一个已存在的镜头文件.说明:此选项打开一个新的镜头文件.当前打开的窗口仍然打开,如果当前的镜头未保存,在退出前ZEMAX 将警告你要保存镜头.

3.保存(Save)

目的:保存镜头文件.说明:此选项用于保存镜头文件,当将文件保存为另一名称或保存在另一路径下时,用“另存为”选项.

4.另存为(Save as)

目的:将镜头保存为另一名称.说明:此选项将文件保存为另一名称或保存在另一路径下.

5.附加(Append)

目的:将以前保存的镜头数据附加到当前镜头文件中.说明:这一选项同“打开”选项类似,但当前镜头数据并未覆盖.当选择文件附加后,ZEMAX 会提示新镜头插入面的数字,并为新数据让出空间.对话框中也有“Ignore Object”检验栏,缺省时将忽略新镜头的厚度.这样,新镜头数据将被附加在表面1 而不是表面0.虽然这一特性能保存许多键入的镜头,但是结果镜头包含一些特殊的表面,需稍加手工编辑达到希望的结果.

6.环境(Environment)

ZEMAX 允许使用一些能被设置和保存的选项,当ZEMAX 运行时,这些选项可被自动选择.主要配置文件是ZEMAX.CFG,这一文件能被删除,缺省时退回到启动配置.环境选项分为以下几组.

7.退出(Exit)

目的:退出ZEMAX.说明:如果镜头已被更改,ZEMAX 会提醒你保存镜头,否则,将终止程序.

第三章编辑菜单

编辑菜单(Editors)如下图所示:包括Lens Data,Merit Function,Multi-Config,Tolerance Data,Extra Data等.

§3.1镜头数据(Lens Data)

镜头数据编辑器是一个主要的电子表格,将镜头的主要数据填入就形成了镜头数据.这些数据包括系统中每一个面的曲率半径、厚度、玻璃材料.单透镜由两个面组成(前面和后面) ,物平面和像平面各需要一个面,这些数据可以直接输入到电子表格中.当镜头数据编辑器显示在显示屏时,可以将光标移至需要改动的地方并将所需的数值由键盘输入到电子表格中形成数据.每一列代表具有不同特性的数据,每一行表示一个光学面(或一个).如图所示.

移动光标可以到需要的任意行或列,向左和向右连续移动光标会使屏幕滚动,这时屏幕显示其他列的数据,如半口径,二次曲线系数,以及与所在的面的面型有关的参数.屏幕显示可以从左到右或从与右到左滚动.”Page Up”和”Page Down”键可以移动光标到所在列的头部或尾部.当镜头面数足够大时,屏幕显示也可以根据需要上下滚动.

3.1.1插入或删除面数据(Inserting and deleting surfaces)

在初始状态(除非镜头已给定) 通常显示三个面:即物面、光栏面、像面.物面与像面是永有的,不能删除.其它面可以用”Insert”和”Delete” 键插入或删除.物平面前和像平面后不能插入任何面.这里的“前面” 表示一

个序号较小的面,而“后面” 表示一个序号大的面.光线顺序地通过各个表面,ZEMAX 中的面序号是从物面,即第0 面,到最后一个面(即像面)排列的.若想在电子表格中输入数据,移动光标到正确的方格,然后从键盘输入.可以用“BackSpace”键编辑修改当前的数据,一旦你要编辑方格中的内容,可以用“Left”,“Right”,“Home ”,“End”键浏览整个文件.当数据已改好时,按任意光标键或点击屏幕的任意位置或按“Enter” 键可结束当前编辑.在数据编辑器中还有一些快捷方法:若要增加当前的值,在数字前写一个加号,例如如果显示的数据是10,键入“+5” 按“Enter”键,数字会变为15 符号“*” 和“/ ” 也同样有效.要减少数字,可用负号和一个空格.如输入“-5” 可以将17 变为12.注意这里“-” 和“5”之间必须有一个空格,如果不输入一个空格,程序会认为是你输入的是一个负的新数值.输入“*-1” 可以改变数值的正负号.

3.1.2输入面注释(Entering surface comments)

每个面都有一个注释栏,通过它可以输入最大到32 个用户文本字符,这些注释能增强镜头特性的可读性,且不影响光线追迹.在某些分析功能中也会显示这些面的注释.整个注释内容都可以被隐藏.参见下面”OPTIONS” 菜单中的说明.

3.1.3输入半径数据(Entering radii data)

为输入或改变一个面的曲率半径,移动光标到所要的方格中,将新的数据键入.半径数据通常用透镜的计量单位输入和显示,这些计量单位是表示长度的.输入厚度(Entering thickness data)为输入或改变面的厚度,移动光标到所要的方格中,将新的数据键入,厚度数据通常用透镜的计量单位输入和显示.面厚度表示一个面到另一个面的距离.像平面的厚度是唯一不被使用的数据.通常在一个反射镜后改变厚度符号.奇数次反射后,所有的厚度都是负的,这种符号规定与反射镜的序号和当前的坐标转折无关.这种基本规定不能通过将坐标旋转180 度来代替.

3.1.4输入玻璃数据(Entering glass data)

每个面所用的玻璃材料是通过将玻璃名写入镜头数据编辑器的“Glass” 中来确定的.玻璃名字必须是当前已被装载的玻璃库中的玻璃名称之一,缺省的玻璃目录是“Schott” ,其它目录也是可选用的.要使用多个玻璃库或查阅、编辑、添加玻璃目录,参见”使用玻璃库”这一章.如要把某一个表面定为反射面,这一面的玻璃应命名为“Mirror”.当输入新玻璃时,可在玻璃名称上添加”/ P” 选择项,这个选项可以使ZEMAX 通过改变前后面的曲率半径来维持该面前后顶点间的光焦度保持不变.例如,如果玻璃已选择为BK7,输入一个新玻璃“SF1/P” 将使玻璃变为SF1,同时调整前后面半径使光焦度保持不变.ZEMAX 能保持顶点间的光焦度保持不变,但是由于玻璃的光学厚度的改变,整个光焦度将会有微小的改变,这种影响对薄透镜是很小的.

3.1.5输入半口径数据(Entering semi-diameter)

半口径的缺省值是由通过追迹各个视场的所有光线沿径向所需的通光半径自动计算获得的.如果半口径值已给定,那么这个给定的数据旁将有一个“U”,这说明此半口径是用户定义的,这个半口径只影响外形图中各面的绘图,不反映面的渐晕.

3.1.6输入二次曲面数据(Entering conic data)

许多不同的曲面面型中都允许有二次曲面数据.输入或改变一个面的二次曲面系数时,移动光标到所需的方格,键入新数值即可.二次曲面系数不是长度度量.参见面型关于二次曲面的定义.

3.1.7确定光栏面(Defining the stop surface)

光栏面可以是系统中除去物面和像面的任意一面.要改变光栏面,可双击将成为光栏面的这一行最左边的一列(即有数字的一列),把面型对话框打开,单击“Make Surface Stop”标签,对话框消失,这个面显示”STO”,而不是面序数.确定光栏面时保证如下前提是很重要的:即使入射光瞳与物面同轴,假定此系统有坐标转折,偏心,全息,光栅以及其它能改变光轴的组件,应将光栏放在这些面之前.如果系统是关于光轴旋转对称的,那么这种限制就不需要了.只有使用了使光轴产生偏心或倾斜的面的系统,才要求将光栏放在这些面之前.如果坐标发生转折,对只是由反射镜组成的另一种共轴系统,那么即使光栏面放在这些反射镜后,光瞳位置也可以正确地计算出来.在某些系统中是不可能将孔径光栏放在坐标转折前的,因此,必须对光线进行定位,光线定位将在系统菜单(System Menu)一章中讲解.

3.1.8选择面型(Selecting surface types)

ZEMAX 中的面有平面,球面,二次曲面.所有这些面型都是在标准面型的基础上组合而成的.双击镜头数据编辑器最左一列,显示面型数据对话框.对话框里有一行是面型,从下拉菜单中选择适当的面型.ZEMAX 提供了包括标准型的多种面型.许多光学设计只使用标准面型.

3.1.9各面通光口径的确定(Specifying surface apertures)

各面的通光口径用来考虑渐晕的影响.ZEMAX 中有11 种通光口径类型:无口径,环形口径,环形挡光,长方形口径,长方形挡光,椭圆口径,椭圆挡光,星型挡光,用户自定义口径,用户自定义挡光和浮动口径.口径和挡光是用通过和阻拦光线的面积来分别定义的.当通光口径被定义在一个面时,ZEMAX 将在面序号前显示“*” ,或在数据编辑器中说明.可以在需要的位置插入一个厚度为0 的虚拟面,然后在此面上设定附加口径,从而在某一个光学元件中设定一个以上的口径,这对结构复杂的口径是很有用的.多重口径或挡光也可以由用户自定义其特性而同时放在一个单独的面上.可以在面数据对话框中为每个面设置通光口径.双击镜头数据编辑器最左边一列可

产生面数据对话框.当口径类型为”无口径” (缺省值) 时,所有反射和折射的光线都允许通过该面.通过一个面的光线完全与镜头数据编辑器中的半口径值无关.这些设置的半口径数据只在绘制镜片元件图时起作用,不决定渐晕.为把口径变成缺省值或改变当前口径的类型,可以在面数据对话框种选择其它的口径类型.如图所示.

下面分别讲述各个口径类型.

(1) 环形口径/挡光:环形口径是由环形面积定义的,到达该面时小于最小半径和大于最大半径的光线被拦掉.最小与最大半径之间的光线允许通过.环形挡光与环形口径互补.

(2) 长方形口径/挡光:如光线与该面的交点在由长方形的半宽度x,y决定的长方形面积以外,光线被阻止通过该面.长方形挡光与长方形口径互补.

(3) 椭圆口径/挡光:如光线与该面的交点在由椭圆的半宽度x,y 决定的椭圆面积以外,光线被阻止通过该面.椭圆挡光与椭圆口径互补.

(4) 星形:星形是由每臂的宽度和臂数定义的.ZEMAX 中假定取相同臂长,相同转角分布.第一个臂取沿x 轴正向角度为零的位置.具有不同臂长和不同转角分布的复杂星形可以用相邻的多个虚拟面上的几个星形构成.坐标

转折面可以将星形旋转至任何想要的角度.

(5)用户自定义口径/挡光:参见下一节中的详述.

(6)浮动口径:除了最小半径一直为零外,它与环形口径是相似的.最大半径与该面的半口径相同,由于半口径值可以用ZEMAX 调整

(在自动模式下) ,因而口径值随半口径值浮动.当宏指令或外部程序追迹缺省半口径以外的光线时,浮动口径是很有用的,它可以将这些光线拦掉.上述的所有口径都是由顶点的子午面向光学面投影模拟的.实际光线与表面交点的坐标x,y 用来决定渐晕,z 坐标被忽略.如果口径被放在当作光学面前面的虚构面而不是直接放在曲面上,那么对陡峭的光学面来说,会有不同的计算结果.只有在入射角很陡时这种情况才会发生.除非虚构面能更精确地代表你的现状,通常最好将口径直接放在光学面上.用输入X 偏离量或Y 偏离量或X、Y 偏离量的方法,所有类型的口径都可以偏离当前光轴,.这种偏离量以透镜计量单位给定.记住偏离不会改变主光线,光栏必须与物体同轴.例如:设计一个离轴望远镜,可以将光栏放在光轴和离轴系统中.

(7)用户自定义口径和挡光(User defined apertures and obscurations)

通常,可以方便地使用环形,长方形,椭圆口径和挡光,它们包括了大多数情况.但是,有时候需要一个更广义的口径.ZEMAX 允许用户用一系列有序数对(x1,y1), (x2,y2),. (xn,yn),来定义口径.这些点是多边形的顶点.多边形可以是任何形状,且可以用简单或复杂的方式封闭.复合多边形可以定义成嵌套或独立.建立用户自定义口径或挡光,从口径类型列表中选择需要的类型(口径或挡光) 然后点击“ Edit User Aperture“,将会出现一个允许编辑和滚动定义多边形的点的列表框.这是一个简单的文本编辑器.该面的X 和Y 的坐标可以直接输入,用一组X 和Y 都设置为0的数据行表示多边形的端点.因而多边形不能用顶点为(0,0) 的点定义.若一个顶点必须定义为(0,0),那么将用一个非常小的值代替其中的一个.例如(1e -6,0 ) ,只要至少有一个坐标不为0,那么这个点就被认为是顶点而不是表示多边形的端点.最后列出的顶点被认为与第一个点相连.例如定义一个边长为20 单位的矩形.这些点为

-10,-10

-10, 10

10, 10

10, -10

0, 0

注意,最后一个点与第一个点是被假定相联的.因而定义了矩形的最后一条边.复合多边形用坐标为(0,0) 的行将其分开.例如,由两个狭缝组成的口径,每个狭缝的宽度是5 个单位,狭缝之间相隔10个单位,这些点为:-10,-10

-10, 10

-5, 10

-5,-10

0, 0

10,-10

10, 10

5, 10

5,-10

0, 0

复合多边形也可以被嵌套.若一条光线的交点落在一个多边形中,而这个多边形又位于另一个多边形里面,那么这个点被认为是在口径外.允许在一个口径中定义一个岛形(Islands),使其变为挡光,反之亦然.允许有多层嵌套,每层都产生点的在内和在外的状态.允许用户自定义口径中的点的最大数目为100.

3.1.10.到达表面和从表面射出的光线的隐藏(Hiding rays to and fromsurfaces)

面对话框中有一个“hiding” 选项,可把到达表面和从表面射出的光线隐藏起来.若此选项被选中,在输出的各种外形图中被选中的面上将不绘制到达或从面上射出的光线.

3.1.11.设置和撤销求解(Setting and removing solves)

大多数数据列(如半径和厚度) 会有一种或多种求解的方法.在一个方格中设定解,在该位置处双击鼠标左键,单击鼠标右键或者在镜头数据编辑器中选择菜单都可实现上述功能.

3.1.12.LDE窗口的选项菜单(Menu options)

镜头数据编辑器中的选项栏用来插入和删除面数据,选择面型,和设置解和变量.

1.编辑(Edit):编辑菜单中提供以下选项,如图所示:

面型(Surface Type):这个选项可以改变面型.

插入面(Insert Surface):在电子表格的当前行中插入新面.快捷方式: Insert.

后插入(Insert After):在电子表格的当前行后中插入新面.快捷方式:Ctrl-Insert.

删除面(Delete Surface):删除电子表格的当前行.快捷方式:Delete.

剪切面(Cut Surface):将单面或多个面数据复制到Windows 剪切板上,然后删除这些面.单面或多面必须用以下的任一种方式选中.用鼠标:单击所要选中的第一面.按住左键拖动鼠标将所选的面覆盖.被选中的面会用当前显示色的反色显示.若只选一个面,从所要的面处上下拖动鼠标至两行被选中,然后将鼠标拖回到所要的行.

用键盘:将光标移至所要面的任意方格.按住Shift 键,上下移动光标直到所需的面被

选中,被选中的面用当前显示色的反色显示.若只选一个面,从所要的面处上下移动光标至两行被选中,然后将光标移回到所要的行.

复制面(Copy Surface):将单面或多个面数据复制到Windows剪切板上.选中单面或多面,参见” Cut Surface”中的介绍.

粘贴面(Paste Surface):从Windows 剪切板上复制单面或多个面数据到镜头数据编辑器中当前光标的位置.面数据必须先用上面讲的“Cut Surface”或“Copy Surface”复制到Windows 剪切板上.

复制方格(Copy Cell):复制单个方格数据到Windows 剪切板上.

粘贴方格(Paste Cell):将Windows 剪切板上的单个方格复制到当前方格.数据必须先用“Copy Cell”将其复制到Windows 剪切板上.

复制电子表格(Copy Spreadsheet):用适合于粘帖到另外的Windows 应用程序的文本格式将高亮显示的面或整个表格(如果没有面被选中) 复制到Windows 剪切板上.

3.2 求解(Solves):解和变量可以设置在镜头数据编辑器中的许多数据上.如图所示

.

半径(Radius):设置曲率半径求解.

厚度(Thickness):设置厚度求解.

玻璃(Glass):设置玻璃求解.

半口径(Semi-Diameter):设置半口径求解.

二次曲线(Conic):设置二次曲线系数求解.

参数(Parameter):设置参数列的求解.

变量附加标识(Variable Toggle):把当前所选方格的状态变为可变.此操作的快捷方式为Ctrl-Z.

3.3 选项(Options)

显示注释(Show Comments):若该菜单被选取,将显示注释列.若未被选取,注释列将隐藏.如图所示.注释的显示与隐藏,只是用于当前对话期间.

3.4帮助(Help)

使用LDE(Using LDE):产生使用镜头数据编辑器的联机帮助.

3.5.价函数(Merit Function):评价函数编辑器用来定义,修改,和检查系统的评价函数.系统的评价函数用于优化.如下图所示.

第四章系统菜单

系统菜单包括以下各子项:Update All,Update,General,Advanced,Fields,Wavelengths,Polarization State,等.

4.1 全部更新(Update All)

这个选项更新全部窗口以反映最新镜头数据.ZEMAX 不能在图形和文件窗口自动改变最后形成的镜头数据.这是由于新数据在镜头数据编辑器中被键入时, ZEMAX 如果不断地计算MTF,光线特性曲线,点列图和其它数据,那么程序反应会变得很慢.对镜头做所有需要的改变,然后选择“Update All”来更新和重新计算所有的数据窗口.单个曲线和文本窗口(非编辑器)也可以双击窗口内的任意位置更新.

4.2 更新(Update)

这个选项只更新镜头数据编辑器和附加数据编辑器中的数据.更新功能用来重新计算一阶特性,如光瞳位置,半口径,折射率和求解值.只影响镜头数据编辑器和附加数据编辑器中的当前数据.参见本章中§1 全部更新“Updata All”的内容.

4.3 通用数据(General)

这个选项产生通用系统数据对话框,它用来定义作为整个系统的镜头的公共数据,而不是与单个面有关的数据.参见“Advanced”部分.

1)镜头标题(Lens Title)

2)镜头标题出现在曲线和文本输出中.标题是通过将题目输入到所需位置得到的.附加的文本数据可以放在大多数图形输出中,参见本章后面“Configuring the environment”的说明.

3)光圈类型(Aperture Type)

4)系统光圈表示在光轴上通过系统的光束大小.要建立系统光圈,需要定义系统光圈类型和系统光圈值.用光标在下拉列表中选择所需的类型.系统光圈类型有如下几种:

5)入瞳直径(Entrance Pupil Diameter):用透镜计量单位表示的物空间光瞳直径

6)像空间F/# (Image Space F/#):与无穷远共轭的像空间近轴F/#

7)物空间数值孔径(Object Space Numerical Aperture)物空间边

8)缘光线的数值孔径(nsinθm)

9)通过光栏尺寸浮动(Float by Stop Size):用光栏面的半口径定义

10)近轴工作F/#(Paraxial Working F/#):共轭像空间近轴F/#

11)物方锥形角(Object Cone Angle):物空间边缘光线的半角度,它可以超过90 度.这些术语在第三章“约定和定义”中进一步定义.若选择了“ObjectSpace N.A”或“Object cone angle”作为系统光圈类型,物方厚度必须小于无穷远.上述类型中只有一种系统光圈类型可以被定义.例如,一旦入瞳直径确定,以上说明的所有其它光圈都由镜头规格决定.

12)光圈值(Aperture Value):系统光圈值与所选的系统光圈类型有关.例如,如果选择“Entrance Pupil Diameter” 作为系统光圈类型,系统光圈值是用透镜计量单位表示的入瞳直径.ZEMAX 采用光圈类型和光圈数值一起来决定系统的某些基本量的大小,如入瞳尺寸和各个元件的清晰口径.选择“Float by Stop Size”为系统光圈类型是上述规律的唯一例外.如果选择“ Float by Stop Size” 作为系统光圈类型,光栏面(镜头数据编辑器中设置)的半口径用来定义系统光圈.

13)镜头单位(Lens Units):镜头单位有四种选择:毫米,厘米,英尺,或米.这些单位用来表示数据,如半径,厚度,和入瞳直径.许多图形(光学特性曲线,点列图)使用微米做单位,波长也是用微米表示.

14)玻璃库(Glass Catalogs)本控件组有一个列出当前被使用的玻璃库(无扩展名)名称的可编辑栏.栏的缺省值是”schott”,它表示镜头可以从库中使用玻璃.如果需要不同玻璃类别,可以用按钮或键入玻璃类名来选择.若要使用不在按钮列表中的玻璃库,可以在在编辑栏键入类名.多个玻璃库之间可以用空格来分隔.关于改变玻璃库的内容参见“使用玻璃目录”一章.

15)注解(Notes):注解部分允许输入几行文本,它们与镜头文件一起被存储.

4.4 高级数据(Advanced)

这个选项产生Advanced System Data 对话框,它不是定义与单个面有关的数据,而是用来定义作为整个系统的镜头的少数公共数据.参见“通用” 部分.

1)光线定位(Ray Aiming):光线定位选择框由三种状态:无(None),近轴光线参考(Paraxial Reference)和实际光线参考(Real Reference).如果光线定位状态为“None”, ZEMAX 用近轴入瞳尺寸和位置来决定从物面发出的主波长光线,而入瞳由光圈设置确定并用主波长在轴上计算.这表示ZEMAX 忽略入瞳像差.对于有中等视场的小孔径系统,这是完全可以接受的.但是,那些有小F 数或大视场角的系统,具有很大的入瞳像差.光瞳像差的两个主要影响是光瞳位置随视场角的漂移和光瞳边缘的变形.如果光线定位被选定,ZEMAX 则考虑像差.光线定位后,每根光线在追迹时被迭代,同时,在程序运行时校正光线定位以便使光线准确通过光栏面.光栏面的正确位置是首先由计算的光栏面半径决定的.正确的光栏面坐标是用光瞳坐标线性缩放计算得到.例如,边缘光线的归一化的光瞳坐标为Py =1.0.光栏面的正确坐标是光栏面半径乘以Py.可以用近轴光线或实际光线计算光栏面半径.若选择“RealReference”那么主波长边缘光线从物面中心向光栏面追迹.光栏面上的光线高度就是光栏半径.若选择” Par axial Reference”,那么使用近轴光线追迹.当选择“Real Reference”时,所有的实际光线被调整以便在以实际光栏半径为基准的光栏面上正确定位,相应地,近轴光线以近轴光栏半径为基准.当使用光线定位时,光栏面(而不是入瞳)是被均匀照明的面.这会产生意外的结果.例如,当使用物方数值孔径作为系统光圈类型时, ZEMAX 用正确的数值孔径追迹近轴入瞳的位置和尺寸.如果光线定位随后被设置为“Paraxial Reference”,实际光线追迹将影响近轴光栏尺寸.这会产生一个与系统光圈值的不同的数值孔径.这是由于为消除光瞳像差而调整了光线角

度之故.解决这个问题的办法是使用实际光线参考(Real Reference).通常,首选设置为近轴光线参考“Paraxial reference”.虽然光线定位比近轴入瞳定位更精确,但在运行的时候,大多数的光线追迹将使用2 到8 倍的时间.(参见后面“Tolerance” 选项的说明).因此,只有需要时才使用光线定位.为确定系统中的入瞳像差量,关闭光线定位,然后查看光瞳像差曲线(参见分析菜单“Analysis menu” 这一章中的这一功能的说明).小于一定百分比的光瞳像差通常忽略不计.若系统中有较大的光瞳像差,选择光线定位打开,反复计算.像差将减少到零或接近零.

2)使用光线定位贮藏器(Use Ray Aiming Cache):若选取光线定位贮藏器, ZEMAX 贮藏光线定位坐标以便新光线追迹能利用先前光线定位结果进行迭代运算.使用贮藏器能明显加速光线追迹.但是,使用贮藏器需要精确追迹主光线.对于主光线不能被追迹的许多系统,贮藏器应被关闭.

3)加强型光线定位(慢)(Robust Ray Aiming (slow)):若选取本功能,ZEMAX 使用一种更可靠但较慢的运算来定位光线.只有在即使贮藏器打开,光线定位也失败时,此选项才被设置.除非光线定位贮藏器打开,否则此开关不起作用.加强模式执行一个附加检查来确定现存的同一光栏面是否有多重光路,只有正确的一条被选择.这在大孔径,广角系统中特别成问题,在这种系统的轴外视场中也许会发现一条通过光栏的实际光线会混淆光线定位迭代.

4)光瞳漂移:X,Y,Z (Pupil Shift:X,Y,and Z):对于多数系统,单纯选择光线定位时,尽可能少地追迹正确通过系统的光线就可以消除光瞳像差的影响.当然,它并不是实际消除像差,仅仅是考虑它.对于广角或大的倾斜或偏心的系统,若不帮助的话,光线定位功能将失效.因为是把近轴入瞳作为第一个估计值来追迹光线.如果光瞳像差很严重,可能连第一个估计值都无法被追迹,更无法得到第二个更好的估算值,从而使算法中断.本方法为光瞳关于近轴光瞳偏移量提供粗略的推测.这称为”光瞳漂移”,由三个分量:x,y,和z 组成.三个量的缺省值为0,可以通过修改三个缺省值来帮助算法寻找光线成功定位的第一估算值.漂移量z 的正值表示实际光瞳在近轴光瞳的后面(即在通用光学坐标系统右面),漂移量的负值表示光瞳向前漂移.多数的广角系统有向前漂移的光瞳.所提供的光瞳漂移量z 与所追迹光线的视场角成线性比例,因此光瞳漂移指的是全视场光瞳的偏移量.漂移量x,y 说明物平面倾斜或光栏偏心时光瞳位置的改变.若选择了“视场光瞳偏移比例因子”(Scale pupil shift factors by field),光瞳漂移量x,y 也随视场缩放,否则,漂移量未经缩放地用于所有视场.所有漂移量用镜头计量单位表示.需要理解的是:知道光瞳漂移的精确值并非重要.一旦第一条估算光线可以被追迹,光线定位算法将粗略地找到精确的光瞳位置.光瞳漂移值只是光线定位的开始.通常,推测光瞳偏移量是决定其适合值的可用方法.

5)变迹法(Apodization Type):缺省时,光瞳是均匀照射的.但是,有时光瞳必须使用非均匀照射.由于这个原因,ZEMAX 支持光瞳变迹,这种变迹是光瞳上振幅的变化.有三种光瞳变迹类型:均匀、高斯和正切.均匀表示光线均匀地分布在入瞳上,模拟均匀照射.高斯变迹是在光瞳上振幅以高斯曲线形式变化.变迹因子表示径2 )向的光瞳坐标函数的光束振幅递减率.光束振幅在光瞳中心归一化为1 个单位,入瞳其它点的振幅由下式给出:这里G 是变迹因子,p 是归一化的光瞳坐标.如果变迹因子是0,那么光瞳照射是均匀的.如果变迹因子是1.0,那么光束振幅

在入瞳边缘的1/e.(它表示光强度为e 的平方分之1,大约是峰值的13%).变迹因子可以是大于或等于0.0 的任意值.不建议采用大于4.0 的值.因为如果光束振幅离轴下降很快,在许多计算中取样的光线太少,以至于不能产生有意义的结果.正切变迹恰当地模拟了点光源照在平面上的强度衰退特点(如入瞳通常是平面).对于一个点光源,偏离点光源距离为Z 的面上的强度为:这里r 是平面上一点到光源的距离,强度在轴上已经归一化为一个单位.如r 用归一化的光瞳坐标来表示,振幅变迹可用平方根产生:这里tanθ是入瞳顶部的光线与z轴的夹角的正切.对于正切变迹,tanθ是变迹因子.特殊情况下变迹因子为0,当计算变迹时,ZEMAX 用入瞳位置和尺寸会自动计算出tanθ.除了在入瞳面一外,ZEMAX 也支持用户在任意面上自定义的变迹,用户自定义变迹用在“表面类型”这一章所讲的用户自定义面型来完成.

6)光程差参数(Referece OPD):光程差或OPD,在光学设计计算中很有意义,因为光程差表示成像的波前位相误差.对零光程的任意偏离都会在光学系统中形成衍射图像时产生误差.因为出瞳是光栏在像空间的像,出瞳表示像空间光束有清晰边界的位置.出瞳处的照度,其振幅和位相通常是平滑变化的,零振幅和非零振幅区域有明显的界限.换句话讲,在出瞳处观察,可以合理地假定波前没有明显的衍射影响.如果光学系统中的所有面的通光孔径比受光栏限制入射到每一面上的光束尺寸大,这一假定基本上是事实.甚至如果出瞳是虚拟的(这是常有的),出瞳仍然定义了像空间光束无衍射影响的唯一位置.关于衍射像形成的其它信息和出瞳的重要性.当波前从出瞳传播到像

平面时,光束外形在振幅和位相上变得很复杂,由于衍射的影响,波前扩展到整个空间.因此,为了精确地描述了波前和像的质量,在出瞳上测量位相误差是唯一有效和非常重要的.ZEMAX 缺省时,使用出瞳作为计算OPD 的参考面.因此,对一条给定的光线进行OPD 计算时,光线通过光学系统追迹,自始至终到达像平面,然后反向追迹到位于出瞳处的参考球面.这个面后得到的OPD 是有物理意义的位相误差,它对于如MTF,PSF 和环带能量等衍射计算是很重要的.由光线向后追迹到出瞳而得的附加路程,从参考球面的半径中减去,得到OPD 的微小调整,称之为”校正项”.这种计算对于所有实际应用是正确和需要的.但是,ZEMAX 也允许选择两种其他参考方法.无限远参考面:“Infinity”参考面假定出瞳在很远的地方(即使它也许不太远),OPD 校正项用光线中的角误差严格给定.只在一种可能时使用这个设置:即ZEMAX 不能正确计算出瞳位置.这发生在一些在光栏面不能成像(实像或虚像)的不常见的光学中.在这种情况发生时,ZEMAX 用特殊程序代码处理所有已知的可能发生这种情况的场合,因此,除非Focus Software 技术支持时特殊推荐它,否则这个设置不使用.当前尚没有已知的场合需要推荐这种设置.绝对参考面:“Absolute”参考面表示ZEMAX 根本不能在OPD计算中加上任何校正项,只加上光线的总光程并从主光线中减去它.这种方式并不是实际有效的,它的目的是用来调试和检查FocusSoftware 公司的OPD 算法.

7)半口径的快速计算法(Fast Semi-Diameters):ZEMAX 能“自动”计算半口径.它估算为让所有视场点和波长

的光线通过,各面所需要的明确的口径.对于共轴系统,可以通过追迹每个视场和波长的两条光线而精确计算.这两条光线是上下两条边缘光线.对于非共轴系统,除了沿渐晕光瞳周边追迹大量的光线外,没有通用的方法来精确计算半口径.虽然这种算法很精确,但速度很慢,因为ZEMAX 需要不断的更新半口径数据,尤其在优化时.速度和精确之间是要折衷的.对于非共轴系统,缺省时,ZEMAX 追迹每个视场和波长渐晕光瞳的实际子午面上的两条光线,然后用每条光线在每个面上的径向坐标估算所需的半口径.对于许多系统,估算结果不够精确.这主要包括具有较小边缘和明显口径限制的系统或具有偏心元件和只有少数视场点的系统.如果“ Fast Semi-Diameter”选项被选择

“off ”,那么对这些非共轴系统,ZEMAX 将反复追迹所需的光线来决定半口径, 其精度为0.01% (5 个有效数字).将“Fast Semi-Diameter”关闭可以明显减慢优化速度,但对于具有复杂评价函数的系统,上述间接操作相对较小.

4.5 视场(Fields)

视场对话框允许确定视场点.视场可以用角度,物高(有限共轭系统),或像高来确定.可通过用来启动或停止按钮来选择视场位置,也可以捡取数据.关于视场的规定,参见第三章“约定和定义”(Conventions and Definition).ZEMAX 也提供定义渐晕系数的数据栏.4 个渐晕因子为:VDX,VDY,VCX,和VCY.如果系统中没有渐晕,这些渐晕因子被设为0.这些因子在第三章“约定和定义”( Conventions and Definition)的“渐晕系数”中有说明.在视场对话框中也有一个标为“Set Vig”的按钮.点击此按钮将重新计算当前数据下每个视场的渐晕因子.用设置渐晕的算法估算渐晕偏心和压缩因子以便光瞳边缘的上,下,左,右四条边缘光线能通过每个面的用户自定义半口径.计算时只使用主波长.若要使渐晕因子成为缺省值0,单击:“Clr Vig”.该算法通过从光瞳发出一网格光线来开始运算.在使用用户自定义半口径的每一个面,光线被测试是否在确定的口径内

通过.通过所有面的所有光线用于计算无渐晕的光瞳中心.注意只有用户自定义(非自动)半口径被使用时,面孔径(如长方形或环形口径)被忽略.无渐晕的光瞳边缘用迭代方式精确计算到0.001% .这种算法不是在所有场合中都能起作用.对于设置渐晕失败的系统,渐晕因子需要手工调整.设置渐晕运算的精度可以用追迹少数边缘光线检测.

4.6 波长(Wavelength)

波长对话框用于设置波长,权因子,和主波长.按钮可以用来启动或停止输入波长和捡取数据.包括常用的波长列表.要使用列表中的项目,选择所需的波长,点击”Select”按钮.其它信息参见第三章“ 约定和定义”

( Conventions and Definition).

4.7 偏振状态(Polarization State)

偏振状态对话框用于设置使用偏振光线追迹的许多分析计算的缺省输入状态.许多分析功能“Use Polarization”开关来使用偏振光线追迹和变迹,如点列图和作为视场函数的均方根RMS .本对话框是设置初始偏振状态的唯一工具.对于这些功能,当考虑菲涅尔衍射,薄膜和内部吸收影响时,偏振光线追迹只被用来决定光线的透过强度.在这里电磁场的矢量方向被忽略,而假定只有标量理论可适用.光线只是在强度上衰减,加权计算被应用.偏振是由4 个数值定义的:表示电磁场X 和Y 方向模值的Ex和Ey,用度表示的X-位相和Y-位相的相位角.ZEMAX 将电磁场向量归一化为1 个强度单位.

有一个标签为“Unpolarized”检查框.若选取,那么偏振值Ex,Ey,X-位相,Y-位相被忽略.这时使用非偏振计算.非偏振计算用正交偏振的两条光线追迹并计算最终透过率的平均值.注意,非偏振计算比偏振计算所需的时间长,而偏振计算也比完全忽略偏振的计算所需的时间长.

4.8 下一重结构(Next Configuration)

当要更新所有的图表以便反映下一个结构(或变焦位置)时,本菜单选项提供了快捷方式.若选中,所有的电子表格,文本和图解数据都将被更新.

4.9 最后结构(Last Configuration)

当要更新所有的图表以便反映最后一个结构(或变焦位置)时,本菜单选项提供了快捷方式.若选中,所有的电子表格,文本和图解数据都将被更新.

第五章分析菜单

5.1 导言(Introduction)

这一章将详细介绍ZEMAX 种的所有分析功能.如下图所示.分析镜头数据的曲线和文本通常包括像差、MTF、点列图、以及其他的计算结果.

程序修改镜头数据和处理其它数据(如玻璃数据库)的特性将在工具菜单“Tools Menu” 一章中讲述.选择了一个菜单选项立刻执行一个需要的计算.一旦曲线和文本窗口被显示,可以用选择设置菜单选项来修改缺省设置.一旦你已经作了适当的改变,敲击“OK”,程序将重新计算和显示当前窗口种的数据.如果你要在曲线和文本数据显示前改变设置,在File:Environment:Graphics 中使用“Show Options First”选项框.在设置窗口中的“OK”,“Cancel”,“Save”,“Load”,“Reset”和“Help”的功能参见用户界面一章.每个分析窗口都有一个“Updata ”菜单项.更新功能会强迫ZEMAX 重新计算和重新显示当前窗口中的数据.当镜头数据改变和当前显示的曲线不能用时,这个功能是很有用的.在窗口双击会执行与选择更新选项相同的功能.敲击鼠标右键与敲击“Setting”相等.还有许多信息参见用户界面一章.

5.2 外形图(Layout)

二维外形图(2D Layout):通过镜头YZ 截面的外形曲线.如图所示:

各选项说明:

First surface 绘图的第一个面

Last surface 绘图的最后一个面

Wavelength 显示的任意或所有波长

Field 显示的任意或所有视场

Number of Rays 光线数目确定了每一个被定义的视场中画出的子午光线数目.除非变迹已被确定,否则光线沿着光瞳均匀分布.这个参数可以设置为0Scale Factor 若比例因子设置为零,那么“Fill Frame”将被选取,“Fill Frame”将缩放各面来充满画页.若输入数值,则图形将按实际尺寸乘以比例因子画出.例如,比例因子为1.0 将打印(不是在屏幕上)出镜头的实际尺寸.比例因子为0.5 将按尺寸的一半画图.Upper Pupil Limit 画出光线通过的最大光瞳坐标Lower Pupil Limit 画出光线通过的最小光瞳坐标

Marginal and ChiefOnly只画出边缘光线和主光线

Square Edges 若选中则画出平面和边缘,否则用半口径值画镜头的边缘

DXF File 在这个文本地址中输入使用DXF 格式的文件名.只有当以后把

“Export As DXF File”按钮按下时,这个选项才使用.在输出时,文件被存储在缺省目录下

Export As DXF File 若按下此按钮,则产生一个与当前显示的图解窗口有相同数据的DXF 格式文件.文件名在“DXF 文件”选项中给定.产生的DXF文件是一个能与输入到CAD 程序中的文件相匹配的2 维模型系统.

Color Rays By 选择“Field”用每个视场来区分,选择“wave”用每个波长来区

分Suppress Frame 隐藏屏幕下端的绘图框,这可以为外形图留出更多的空间.比例

尺,地址,或其它数据都不显示Delete Vignetted 若选取,被任意面拦住的光线不画出

3D 外形图(3D Layout):绘制镜头系统的三维外形图.运算绘制镜头的网格表示.

5.3.特性曲线(Fans),如图所示:

1)光线像差(Ray Aberration):显示作为光瞳坐标函数的光线像差.

2)Maximum Scale 设置图形中最大的垂直比例.对于光线特性曲线,最大比率利用微米表示,对于OPD 用波长表示,对于入瞳像差用百分比表示.本设置将复盖自动选择的绘图比例.输入0时自动设置比例Number of Rays 图形原点两边所追迹的光线数量Wavelength 执行计算所需的波长数目

3)Field 执行计算所需的视场数目

4)Tan Fan 选择像差的哪个分量画在子午曲线上.由于子午曲线是关于入瞳坐标的y 值的函数,缺省是绘制像差的y 分量图形Sag Fan 选择像差的哪个分量画在弧矢曲线上.由于弧矢曲线是关于入瞳坐标的x 值的函数,缺省是绘制像差的x 分量图形Use Dashes 画图时选择颜色(对彩色屏幕和绘图仪而言) 或虚线(对单色屏幕和绘图仪而言)Check Aperture 确定是否检查光线能不能通过所有的面口径.若选取,没有通过面口径的光线不被画出.面口径与半口径是不同的, Vignetted Pupil 若选取,光瞳坐标轴将按无渐晕缩放,此时所得数据将反映系统的渐晕;若不选取,光瞳坐标轴将按渐晕光瞳缩放

5)说明:

横向特性曲线是用光线的光瞳的y 坐标的函数表示的横向光线像差的x 或y 分量.缺省选项是画出像差的y 分量曲线.但是由于横向像差是矢量,它不能完整的描述像差.当ZEMAX 绘制y 分量时,曲线标称为EY,当绘制x 分量时,曲线标称为EX.垂轴刻度在图形的下端给出.绘图的数据是光线坐标和主光线坐标之差.横向特性曲线是以光瞳的y 坐标作为函数,绘制光线和像平面的交点的x 或y 坐标和主波长的主光线x 或y 坐标的差.弧矢特性曲线是以光瞳的x 坐标作为函数,绘制光线和像平面的交点的x或y 坐标和主波长的主光线x 或y 坐标的差.每个曲线图的横向刻度是归一化的入瞳坐标PX 或PY.若显示所有波长,那么图形参考主波长的主光线.若选择单色光那么被选择的波长的主光线被参照.由于这个原因,在单色光和多色光切换显示时,非主波长的数据通常被改变.因为像差是有x 和y 分量的矢量,光线像差曲线不能完全描述像差,特别是像平面倾斜或者系统是非旋转对称时.另外,像差曲线仅仅表示了通过光瞳的两个切面的状况,而不是整个光瞳.像差曲线图的主要目的是判断系统中有哪种像差,它并不是系统性能的全面描述,尤其系统是非旋转对称时.

(5)光程(Optical Path):显示用光瞳坐标函数表示的光程差.

除了由于OPD 是标量,“Tan Fan” 和“Sag Fan”选项只能是OPD 之外,本选项与光线像差曲线是相同的.

说明:垂轴刻度在图形的下端给出.绘图的数据是光程差(OPD),它是光线的光程和主光线的光程的差,通常,计算以返回到系统出瞳上的光程差为参考.每个曲线的横向刻度是归一化的入瞳坐标.若显示所有波长,那么图形以主波长的参考球面和主光线为参照基准的,如图.

若选择单色光那么被选择的波长的参考球面和主光线被参照.由于这个原因,在单色光和多色光切换显示时,非主波长的数据通常被改变.

(6)光瞳像差(Pupil Abberation):显示用光瞳坐标函数表示的入瞳变形.

除了由于光瞳像差是标量,“Tan Fan” 和“Sag Fan”选项只能是OPD 之外,本选项与光线像差曲线是相同的.

说明:

入瞳像差是实际光线在光栏面的交点和主波长近轴光线交点的差在近轴光栏半径所占的百分比来定义的.若最大像差超过一定的百分比,就得用光线定位(参见“系统菜单”一章) ,以便在校正物空间的光线使它正确地充满光栏面.若光线定位选择被打开,入瞳像差将为零(或剩下很小的值),因为变形被光线追迹算法补偿了.可以利用这一点来检查光线定位是否正确.这里所用的光瞳像差的定义并不是追求其完整性和与其它定义的一致性.本功能的唯一目的是为是否需要光线定位提供依据.

5.4各选项说明

Pup.Patt

光瞳模式可以是六角形,方形或高频脉冲.这些方式与出现在光瞳面的光线的分布模式有关.当镜头大离焦时来研究光瞳分布模式.高频脉冲点列图是在长方形或六角形模式的点列图中删去对称因素的伪随机光线产生的.如果光瞳变迹给定,那么用光瞳分布变形来给出正确的光线分布.没有最好的模式,每一种模式都只能表示点列图的不同特性.

Reference Point

缺省点列图是以实际主光线为参考的.列在图形尾部的RMS 和GEO(在说明部分定义)点尺寸是假定主光线是零像差点计算的.但是,本选项允许选择其他两个参考点:重心和中点.重心是用被追迹的光线分布定义的.中点定义使其最大光线误差在x 和y 方向相等.

ShowScale

比例条目是缺省的.选择艾利圆斑“Airy Disk” ,将在图“的每个点的周围画椭圆环表示艾利椭圆.空心环的半径是1.22 乘以主波长乘以系统的F#;它通常依赖于视场的位置和光瞳的方向.如果空心环比点大,空心环将设

置为放大尺,否则点尺寸将设置比例尺.选择“Square”将画方形,其中心是参考点,宽度是从参考点到最外光线的距离的2 倍.选择”Cross”将通过参考点画一个十字.设置为”Circle”将以参考点为中心画圆.

Wavelength

执行计算所需的波长数目

Field

执行计算所需的视场数目

Surface Number

选择点列图将被计算的面.它在计算中间像或渐晕时很有用.

Max Scale

设置用毫米表示的最大比例尺.零设置将产生一个适合的比例

Delta Focus

离焦增量选项只有在离焦点列图被选择时才使用.它是在点列图平面上Z方向的间隔.每个视场角显示5 个点列图.离焦量是给定的离焦增量分别乘以-2,-1,0,1,2.离焦量单位是mm..某些系统中,缺省的离焦增量太小以至于不能使点列图的结构发生改变.

Ray density

若选择六角形或高频脉冲光瞳模式,光线密度决定了六角环形的数目,若选择长方形模式,光线密度决定了光线数目的均方根.被追迹的光线越多,虽然计算时间会增加,但点列图的RMS 越精确.第一个六角环中有6 条光线,第二个有12 条,第三个有18 条,依此类推.

Use Symbols

若选中,每种波长将画不同的符号,而不是点.它可以帮助区分不同的波长

说明:

光线密度有一个依据视场数目,规定的波长数目和可利用的内存的最大值.离焦点列图将追迹标准点列图最大值光线数目的一半光线.列在曲线上的每个视场点的GEO 点尺寸是参考点(参考点可以是主波长的主光线,所有被追迹的光线的重心,或点集的中点)到距离参考点最远的光线的距离.换句话将,GEO 点尺寸是由包围了所有光线交点的以参考点为中心的圆的半径.RMS 点尺寸是径向尺寸的均方根.先把每条光线和参考点之间的距离的平方,求出所有光线的平均值,然后取平方根.点列图的RMS 尺寸取决于每一根光线,因而它给出光线扩散的粗略概念.GEO点尺寸只给出距离参考点最远的光线的信息.艾利圆环的半径是1.22 乘以主波长乘以系统的F# ,它通常依赖于视场的位置和光瞳的方向.对于均匀照射的环形入瞳,这是艾利圆环的第一个暗环的半径.艾利圆环可以被随意的绘制来给出图形比例.例如,如果所有的光线都在艾利圆环内,那么系统被认为处于衍射极限状态.若RMS 尺寸大于空心环尺寸,那么系统不是衍射极限.衍射极限特性的域值依赖于判别式的使用.系统是否成为衍射极限并没有绝对的界限.若系统没有均匀照射或用渐晕来除去一些光线,艾利圆不能精确地表示衍射环的形状或大小.在点列图中,ZEMAX 不能画出拦住的光线,它们也不能被用来计算RMS 或GEO 点尺寸.ZEMAX 根据波长权因子和光瞳变迹产生网格光线(如果有的话).有最大权因子的波长使用由“Ray Density”选项设置的最多光线的网格尺寸.有最小权因子的波长在图形中设置用来维持正确表达较少光线的网格.如果变迹被给定,光线网格也被变形来维持正确的光线分布.位于点列图上的RMS 点尺寸考虑波长权因子和变迹因子.但是,它只是基于光线精确追迹基础上的RMS 点尺寸的估算.在某些系统中它不是很精确.

像平面上参考点的交点坐标在每个点列图下被显示.如果是一个面被确定而不是像平面,那么该坐标是参考点在那个面上的交点坐标.既然参考点可以选择重心,这为重心坐标的确定提供了便利的途径.

5.5 调制传递函数MTF

计算所有视场位置的衍射调制传递函数.本功能包括衍射调制传递函数(DMTF),衍射实部传递函数(DRTF),衍射虚部传递函数(DITF),衍射相位传递函数(DPTF),方波传递函数(DSWM).如图.

各选项说明

Sampling 在光瞳上对OPD 采样的网格尺寸,采样可以是32×32,64×64 等等.虽然采样数目越高产生的数据越精确,但计算时间会增加.Show Diff Limit 选择是否需要显示衍射极限的MTF 数据.

Max Frequency 确定绘图的最大空间频率(每mm 的线对数)

Wavelength 计算中所使用的波长序号

Field 计算中所使用的视场序号

Type 可选择模数,实部,虚部,相位或方波

DMTF,DRTF,DITF,DPTF 和DSWM 函数分别表示模数(实部和虚部的模),实部,虚部,相位或方波响应曲线.与正弦波目标响应的其它曲线相反,方波MTF 是特定空间频率下方波目标的模数响应,方波响应是用下面的公式由DMTF 数据计算的:

这里S(v)表示方波响应,M(v)表示正弦目标响应的模数,v 表示空间频率.当采样点增加或OPD 的峰谷值减小时,衍射计算更精确.如果光瞳处的峰谷值很大,那么波前采样是很粗糙的,会有伪计算产生.伪计算会产生不精确的数据.当伪计算发生时,ZEMAX 会试图检测出来,并发出适当的出错信息.但是,ZEMAX 不能在所有情况下自动检测出何时采样太小,尤其是在出现很陡的波前相位时.当OPD(以波长为单位)很大时,如大于10 个波长,这时最好用计算几何MTF 来代替衍射MTF.对于这些大像差系统,几何

MTF 是很精确的,尤其是在低的空间频率下.任一波长的截止频率用波长乘以工作F/#分之一所得的值表

示.ZEMAX 分别计算每个波长,每个视场的子午和弧矢的工作F/#.这样可以得出精确的MTF 数据,即使是那些有失真和色畸变的系统,如有混合柱面和光栅的系统也是如此.因为ZEMAX 不考虑矢量衍射,MTF 数据对大于F/1.5 的系统是不精确的(精度的衰退变化是逐步的).这些系统中,OPD 特性曲线数据是更重要的,因而是更可靠的性能指标.如果系统不接近衍射极限,几何MTF 可以证实是有用的.若显示,衍射极限曲线是在轴上计算的与像差无关MTF 值.在轴上光线不能被追迹的情况下(如当一个系统只有在轴外视场才能工作时),那么第一个视场位置被用来计算“衍射极限”MTF.MTF 曲线的空间频率刻度用像空间每毫米的线对数表示,它只是一个对正弦目标响应MTF 曲线的确切术语.但术语“每毫米的线对数”经常被使用,与正弦目标曲线相反,严格地说“每毫米的线对数”应使用黑白条纹,因为在工业上是通用的,ZEMAX 在使用这些术语时不加区别.MTF 通常是在像空间测量的,当决定物空间的空间频率响应时,需要考虑系统的放大率.

离焦的MTF

在确定的空间频率下,计算所有视场位置的离焦衍射传递函数.此功能包括离焦衍射传递函数,离焦衍射传递函数的实部,离焦衍射传递函数的虚部,离焦衍射传递函数的相位,离焦衍射方波传递函数.

5.6 点扩散函数(PSF)

(1)FFT 点扩散函数

目的:

用快速傅立叶变换方法计算衍射的点扩散函数.

Sampling 详见MTF 的描述

Display:显示尺寸表示计算所用数据的哪一部分将在图上表示,显示网格可以为32×32 到两倍抽样网格尺寸.显示尺寸小,所表示的数据也少,但由于放大,可视性较好.

Rotation 本设置规定了表面图观察时旋转角度,可以为0,90,180 或270 度.Wavelength 用于计算的波长序号

Field 用于计算的视场序号

Type 可选择线性(强度),对数(强度)或相位.

Show As 可选择曲面图,等高线图,灰度图或伪彩色图作为显示方式.

Use olarization:若选中,对每一条所要求的光线进行偏振光追迹,由此可得出通过系统的最后的光强.在“系统菜单”一章的“偏振状态”一节,可找到定义偏振状态和其他信息的细节,只有ZEMAX-EE才有本功能.

讨论:

用快速傅立叶变换(FFT)来计算点扩散函数的速度很快,但必须有几个假设,这些假设并不是永远成立的.速度慢但更通用的办法是惠更斯法,它并不要求这些假定,详见下节.用FFT 计算的PSF(点扩散函数)可以计算由物方某一点光源发出由一个光学系统所成的衍射像的强度分布.强度是在垂直于参考波长入射主光线的成像平面上计算得出的,参考波长在多色光计算中指的是主波长,而在单色光计算中指的是所计算的波长.因为成像平面是与主光线垂直的,所以它不是像平面.因此当入射主光线的角度

不为零时,由FFT 计算PSF 的结果一般总是过于乐观的(即PSF较小),尤其是对倾斜像平面系统,广角系统,含有出瞳像差系统和离远心条件较大的系统,更是如此.对于那些主光线与像平面接近于垂直(小于20 度)和出瞳像差可以忽略的系统而言,用FFT 计算PSF 是精确的,并且总是比惠更斯方法更快,如果对计算结果有怀疑,可使用两种方法进行计算比较.用FFT 计算PSF 的算法基于下例事实:即衍射的点扩散函数和光学系统的出瞳上的波前的复数振幅的傅立叶变换有关.先计算出瞳上的光线网格的振幅和位相,然后进行快速傅立叶变换,从而可以计算出衍射像的强度.在出瞳的抽样网格尺寸和衍射像的抽样周期之间存在着一个折衷,如为了减少衍射像的抽样周期,瞳面上的抽样周期必须增加,这可以通过“扩大”入瞳抽样网格使它充满入瞳来达到.这一过程意味着真正处在入瞳中间的点子的减少.当抽样网格尺寸增加时,ZEMAX 按比例增加瞳面上的网格数,以增加处于瞳面上的点的数量,与此同时,可以得到衍射像的更接近

的抽样.每当网格尺寸加倍,瞳面的抽样周期(瞳面上各点之间的距离)在每一维上以2 的平方根的比例增加,像平面上的抽样周期也以2 的平方根的因子增加(因为在每维上的点子数增加了2 倍),所有比例是近似的,对大的网格是渐近式地正确的.网格延伸是以16×16 的网格尺寸为参考基准的.16×16 个网格点在整个瞳面上分布,处于光瞳内的各点被真正追迹,衍射像平面上的各点之间距离由下式给出:式中F 是工作F/#(与像空间F/#不同),λ是所定义的最短波长,n是通过网格的点数,在本例中n 为16(抽样网格尺寸为16×16),式中-2 是由于瞳面和网格不是同心的(因为n 是偶数),有一个n/2+1的偏离,分母中的2n 是由于零位添调整而产生的,详见以后论述.对一个大于16×16 的网格,每当抽样密度加倍时,网格在瞳空间以.的比例增大.像空间抽样的一般公式为:像方网格的总宽度为:因为瞳面网格的扩展会减少瞳面上抽样点的数目,有效的网格尺寸(即实际代表所追光线的网格尺寸)比抽样网格为小.随着抽样增加,有效网格尺寸也增加,但增加速度并没有那样快.下表所列的是近似的有效网格抽样尺寸随各种抽样密度值变化:

点扩散函数计算中有效网格尺寸

抽样网格尺寸近似的有效网格尺寸

32×32 23×23

64×64 32×32

128×128 45×45

256×256 64×64

512×512 90×90

1024×1024 128×128

2048×2048 181×181

抽样还是波长的函数,上述讨论只是对计算中最短波长有效,如果用多色光计算,那么对长波必须按比例缩小网格,这里的比例因子是波长之比.对波长范围较宽的系统选择抽样网格时,必须考虑到这一点.对多色光计算而言,

短波长的数据比长波长的数据来得精确.一旦抽样确定以后,ZEMAX 在一个被称为“零位添加”的过程中,将陈列尺寸加倍,这意味着对抽样密度为32×32 的网格,ZEMAX在中间部分用64×64 的网格.因此衍射点扩散函数将在64×64 的网格中分布.像空间中的抽样总是瞳面抽样的两倍,“零位添加”是为了减少伪运算.

(2)惠更斯点扩散函数:用惠更斯子波直接积分法计算衍射点扩散函数.

Pupil Sampling:选择光线网格尺寸进行光追计算,高的抽样密度得到的结果精确,但耗费时间较长.

Image Sampling:计算衍射像密度的点的网格的大小,该数字和像的δ值一起决定了所显示的面积大小.

Image Delta:像方网格点之间的距离(用微米表示).

Rotation 本设置规定了表面图观察时旋转角度,可以为0,90,180 或270 度.

Wavelength:用于计算的波长序号.

Field :用于计算的视场序号.

Type: 可选择线性(强度),对数(强度)

Scale by Strel:如果本设置被选中,则所显示的峰值乘以所计算出来的斯特列尔因子,因而图形可直接与其他PSF 图相比较,否则,峰值永远归化为一个单位.

Show As 可选择曲面图,等高线图,灰度图或伪彩色图作为显示方式.

Use Polarization:若选中,对每一条所要求的光线进行偏振光追迹,由此可得出通过系统的最后的光强.在“系统菜单”一章的“偏振状态”一节,可找到定义偏振状态和其他信息的细节,只有ZEMAX-EE 才有本功能.

讨论:

考虑衍射效应的一种方法是将波阵面上的每一个点想象成为具有一定振幅和位相的完整点光源,每一个这样的点都会发出球面的“子波”,有时人们也称它为“惠更斯子波”,这是因为惠更斯首先提出了这一模型.当波阵面在空中传播时,波面的衍射是由各个点发出的球面子波干涉或复数和.为了计算惠更斯点扩散函数,一个网格的光线将通过光学系统,每一条光线代表一个特殊的振幅和相位的子波,像面上任何一点的衍

射强度是所有子波的复数求和再平方.和FFT 的PSF 计算中不一样,ZEMAX 在主光线交点处与像平面相切的想像平面上计算惠更斯的点扩散函数.请注意,这个想像平面垂直于表面的法线而不是主光线,因此,惠更斯的点扩散函数计算中考虑了像平面上的任何倾斜,这些倾斜可以是像平面的倾斜引起的,或主光线的入射角引起的,或者同时由两者引起的.更进一步,惠更斯的PSF 计算方法中,考虑到了光束沿像面传播时衍射像的演变形状.如果像平面和入射光束之间是非常倾斜的话,这是一个很重要的效应.用惠更斯PSF 计算中心方法的另一个好处的使用者可任意选择网格大小和网格间隙,这样可以对两个不同镜头的PSF 值之间进秆直接比较,即使它们的F/#或波长不同.用惠更斯PSF 计算的唯一缺点是计算速度与FFT 方法相比,直接积分法并不是很有效(详见上节),因此它所耗费的时间很长,计算时间大致上与瞳面网格尺寸平方、像面网格尺寸平方、波长的个数成正比.

用FFT 计算PSF 横截面:本功能画出点扩散函数的横截面图形.

Sampling 详见MTF 的描述.

Row/Col:显示的行或列.对一个32×32 的抽样系统,有64 行64 列(见上节讨论),用行或列取决于类型设置.

Wavelength 用于计算的波长序号.

Field 用于计算的视场序号.

Type可选择X 方向或Y 方向的横切面,用线性或对数表示都可以.X 切面称为行,Y 切面称为列,但这是任意的.

Use Polarization若选中,对每一条所要求的光线进行偏振光追迹,由此可得出通过系统的最后的光强.

讨论:

切面是直接从PSF 数据中取得的.因为PSF 是直接从出瞳的位相计算出来的坐标系统的定位并不是在所有场合都是正确的.X 或Y轴正方向的指定也许会和像空间坐标(如点列图)中所提供的数据不相符合.

5.7. 其他

5.7.1 场曲和畸变:显示场曲和畸变曲线

设置:

1)Max Curvature:用透镜长度单位表示的场曲曲线图的最大场曲值,输入零代表自动设置.

zemax自聚焦透镜设计

目录 摘要................................................................ I Abstract........................................................... II 绪论. (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致谢 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

ZEMAX光学设计报告

光学设计报ZEMA 一、设计目 通过对设计一个双胶合望远物镜,学zema软件的基本应用和操作 二、设计要 的双胶合望远物镜,且相对孔径1:1设计一个全视场角1.56°,焦距1000m=13.6m要求相高三、设计过 1双胶合望远物镜系统初始结构的选 1.选 由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差 位置色差。又因为其相对孔径较小,所以选用双胶合即可满足设计要求。本系统采用紧 型双胶合透镜组,且孔径光阑与物镜框相重合 1.确定基本像差参 根据设计要求,假设像差的初级像差值为零,即球;正弦;位置色s 由此可得基本像差参量。那么按初级像差公式可F 1.冕牌玻璃在前0.0.80.0.8火石玻璃在前 0.008因为没有指定玻璃的种类,故暂选用冕牌玻璃进行计1.选定玻璃组 鉴玻璃的性价比较好,所以选作为其中一块玻璃。查表发现0.00 0.030.008Z组合,此时对应最接近的组合。此系统选 Z组合 的折射的折射0.038311.6721.516Z 1.74.284070.0609 2.009402.4 求形状系1.

考虑到任何实际的透镜组总是有一定的厚度,因此需要把薄透镜组转换成后透镜组 100m1/110m。选用压圈方式根据设计要,则通光口 3.m,由此可求得透镜组定透镜组,该方式所需余量由《光学仪器设计手册》查得103.m外径 对于凸透镜而言;假分别为球面矢高为折射球面曲率半径为透镜外径如图所示, 由上式可求。将所求的的结果代入下式中可求得凸透镜最小2.62.1 缘厚103.4.88.m11 利用下式可求得凸透镜的最小中心厚 m10.01.02.611.6 对于凹透镜而言:先求,再代入下式中可求得凹透镜最小边缘厚1.0.02.6103.11.6m11利用下式可求得凹透镜的最小中心厚不变的条件下进行薄透镜变换成后透镜时,应保

(整理)各种光学设计软件介绍-学习光学必备-peter.

光学设计软件介绍 ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用1994年,ORA公司聘请北京理工大学光电工程系为其中国服务中心。与国际上其它商业性光学软件相比,CODE V的优越性突出地表现在以下几个方面: 1.CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地

使用ZEMAX设计的典型实例分析

使用ZEMAX于设计、优化、公差和分析 武汉光迅科技股份有限公司宋家军(QQ:41258981)转载并修改 摘要 光学设计软件ZEMAX的功能讨论可藉由使用ZEMAX去设计和分析一个投影系统来讨论,包括使用透镜数组(lenslet arrays) 来建构聚光镜(condenser)。 简介 ZEMAX以非序列性(non-sequential) 分析工具来结合序列性(sequential) 描光程序的传统功能,且为一套能够研究所有表面的光学设计和分析的整合性软件包,并具有研究成像和非成像系统中的杂散光(stray light) 和鬼影(ghosting) 的能力,从简单的绘图(Layout) 一直到优化(optimization)和公差分析(tolerance analysis)皆可达成。 根据过去的经验,对于光学系统的端对端(end to end)分析往往是需要两种不同的设计和分析工具。一套序列性描光软件,可用于设计、优化和公差分析,而一套非序列性或未受限制的(unconstrained) 描光软件,可用来分析杂散光、鬼影和一般的非成像系统,包括照明系统。 “序列性描光程序”这个名词是与定义一个光学系统为一连串表面的工具有关。所有的光线打到光学系统之后,会依序的从一个表面到另一个表面穿过这个系统。在定义的顺序上,所有的光线一定会相交到所有的表面,否则光路将终止。光线不会跳过任何中间的表面,且光线只能打在每一个已定义的表面一次。若实际光线路径交到一个表面上超过一次,如使用在二次描光(double pass) 中的组件,必须在序列性列表中,再定义超过一次的表面参数。 大部份成像光学系统,如照相机镜头、望远镜和显微镜,可在序列性模式中完整定义。对于这些系统,序列性描光具有许多优点:非常快、非常弹性和非常普遍。几乎任何形状的光学表面和材质特性皆可建构。在成像系统中,序列性描光最重要的优点为使用简单且高精确的方法来做优化和分析。序列性描光的缺点,包括无法追迹所有可能的光路径(即鬼影反射) 和许多无法以序列性方式来描述的光学系统或组件。 非序列性描光最常用来分析成像系统中的杂散光和鬼影,甚致分析照明和其它非成像系统。在非序列性描光中,光线入射到光学系统后,是自由的沿着实际光学路径追迹;一条光线可能打到一个对象(object) 许多次,而且可能完全未打到其它对象。此外,非序列性方法可用来分析从光学或机构组件产生的表面散射(scatter),以及从场内(in-field) 和场外(out-of-field) 的光源所产生的表面反射而形成的鬼影成像。 ZEMAX的功能 ZEMAX可以用于一个完全序列性模式中、一个完全非序性模式中和一个混合模式中,混合模式对分析具有大部分序列性而却有一些组件是作用在非序列性方式的系统,是相当有用的,如导光管(light pipes) 和屋顶棱镜(roof prisms)等。

ZEMAX光学设计讲义

实验一:单镜头设计(Singlet) 实验目的: 1、学习如何启用Zemax 2、学习如何输入波长(wavelength)、镜头数据(lens data) 3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams), MTF等。 4、学习如何定义thickness solve以及变量(variables) 5、学习如何进行优化设计(optimization) 实验仪器:微机、zemax光学设计软件 实验步骤: 1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length)为100mm,波长为可见光, 用BK7玻璃为材料。 2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。什么是LDE呢?它 是你要的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。 3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data, 键入你要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-line光谱。在第 二、三行键入0.587及0.656,然后在primary wavelength上点在0.587的位置,primary wavelength 主要是用来计算光学系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。 4、确定透镜的孔径大小。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形 成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture 就是100/4=25(mm)。于是从system menu上选general data,aperture type里选择entrance pupil,在apervalue上键入25,然后点击ok。 5、回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源, STO即孔径光阑aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面(surface),于是点击IMA栏,选取insert,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 6、输入镜片的材质为BK7。在STO列中的glass栏上,直接键入BK7即可。 7、孔径的大小为25mm,则第一镜面合理的thickness为4,在STO列中的thickness栏上直接键入4。 Zemax的默认单位是mm 8、确定第1及第2镜面的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为 负值。再令第2面镜的thickness为100。

光学设计软件zemax study

光学系统设计(Zemax初学手册)蔡长青 ISUAL 计划团队 国立成功大学物理系 (第一版,1999年7月29日) 内容纲目: 前言 习作一:单镜片(Singlet) 习作二:双镜片 习作三:牛顿望远镜 习作四:Schmidt-Cassegrain和aspheric corrector 习作五:multi-configuration laser beam expander 习作六:fold mirrors和coordinate breaks 习作七:使用Extra Date Editor, Optimization with Binary Surfaces 前言 整个福尔摩沙卫星二号「红色精灵」科学酬载计划,其量测仪器基本上是个光学仪器。所以光学系统的分析乃至于设计与测试是整个酬载发展重要一环。 这份初学手册提供初学者使用软件作光学系统设计练习,整个需要Zemax光学系统设计软件。它基本上是Zemax使用手册中tutorial的中文翻译, 由蔡长青同学完成,并在Zemax E. E. 7.0上测试过。由于蔡长青同学不在参与「红色精灵」计划,所以改由黄晓龙同学接手进行校稿与独立检验,整个内容已在Zemax E. E. 8.0版上测试过。我们希望藉此初学手册(共有七个习作)与后续更 多的习作与文件,使团队成员对光学系统设计有进一步的掌握。(陈志隆注)(回内容纲目) 习作一:单镜片(Singlet) 你将学到:启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计优化。 设想你要设计一个F/4单镜片在光轴上使用,其focal length 为100mm,在可见光谱下,用BK7镜片来作。

ZEMAX光学设计软件操作说明详解

【ZEMAX光学设计软件操作说明详解】 介绍 这一章对本手册的习惯用法和术语进行说明。ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。 活动结构 活动结构是指当前在镜头数据编辑器中显示的结构。详见“多重结构”这一章。 角放大率 像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。 切迹 切迹指系统入瞳处照明的均匀性。默认情况下,入瞳处是照明均匀的。然而,有时入瞳需要不均匀的照明。为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。 有三种类型的切迹:均匀分布,高斯型分布和切线分布。对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。在“系统菜单”这一章中有关于切迹类型和因子的讨论。ZEMAX也支持用户定义切迹类型。这可以用于任意表面。表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。 后焦距 ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。 基面 基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。 除焦平面外,所有的基面都对应一对共轭面。比如,像空间主面与物空间主面相共轭,等等。如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。 ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。 主光线 如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。 如果使用了渐晕系数,主光线被认为是通过有渐晕入瞳中心的光线,这意味着主光线不一定穿过光阑的中央。 如果有瞳面像差(这是客观存在的),主光线可能会通过近轴入 瞳中心(如果没有使用光线瞄准)或光阑中央(如果使用光线瞄准),但一般说来,不会同时通过二者中心。 如果渐晕系数使入瞳减小,主光线会通过渐晕入瞳中心(如果不使用光线瞄准)或者渐晕光阑中心(如果使用光线瞄准)。 常用的是主光线通过渐晕入瞳的中心,基本光线通过无渐晕的光阑中心。ZEMAX不使用基本光线。大部分计算都是以主光线或者中心光线作为参考。优先使用中心光线,因为它是基于所有照射到象面的光线聚合效应,而不是基于选择某一条特殊光线。

【ZEMAX光学设计软件操作说明详解】2 中

评价函数的修改 用户可以修改评价函数。为了改变评价函数,在主菜单栏中选择编辑, 评价函数。可以使用插入或删除键来添加新的操作数或者删除一些操作 数。通过选择工具,更新,可以更新当前评价函数值和每个操作数的值。 操作数的设置过程是在第一列中键入名称,然后在余下的数据域中填 入数据。定义一个操作数可能需要八个数据域: Int1,Int2,Hx,Hy,Px,Py,目标值,和权重。Int 的值是一个整数参量, 它的含义依赖于选择的操作数。通常,Int1 是表面指标,Int2 是波长 指标,但不一定总是这样。不是所有的操作数都使用所有提供的数据域。 对于那些使用Int1 来指出表面编号的操作数,这个参数说明了在哪个 表面上求出对象的值。同样的,当Int2 被用作波长指示符时,它说明了 将使用那种波长。Int2 必须是等于波长编号的整数值。参数Int1和Int2 还有其他的用途,如下所述。 许多操作数要使用Hx,Hy,Px,和Py;它们是归一化的视场和光瞳坐 标(参见“约定和定义”一章中的“归一化的视场和光瞳坐标”部分)。 注意ZEMAX 不会通过检查来判断指定的Hx、Hy、Px 和Py坐标是否在单位圆之内。例如,一个坐标为(1,1)的光瞳实际上是在入瞳的外面,但 当追迹那些光线时,除非这些光线在几何上不能被追迹,否则不会出现 错误信息。 目标值是想要指定参数达到的值。将目标值和操作数值的差值平方, 总计所有操作数的这个值来产生评价函数值。目标值和操作数值本身是 不重要的,重要的是两者的差值。差值越大,其对评价函数的贡献就越 大。 权重对于哪个参数也是相当重要的。除了在特殊情况下用-1 外,权重

光学系统设计zemax初级教程

光学系统设计(Zemax初学手册) 内容纲目: 前言 习作一:单镜片(Singlet) 习作二:双镜片 习作三:牛顿望远镜 习作四:Schmidt-Cassegrain和aspheric corrector 习作五:multi-configuration laser beam expander 习作六:fold mirrors和coordinate breaks 习作七:使用Extra Date Editor, Optimization with Binary Surfaces 前言 整个中华卫星二号「红色精灵」科学酬载计划,其量测仪器基本上是个光学仪器。所以光学系统的分析乃至于设计和测试是整个酬载发展重要一环。 这份初学手册提供初学者使用软件作光学系统设计练习,整个需要Zemax光学系统设计软件。它基本上是Zemax使用手册中tutorial的中文翻译,由蔡长青同学完成,并在Zemax E. E. 7.0上测试过。由于蔡长青同学不在参和「红色精灵」计划,所以改由黄晓龙同学接手进行校稿和独立检验,整个内容已在Zemax E. E. 8.0版上测试过。我们希望藉此初学手册(共有七个习作)和后续更多的习作和文件,使团队成员对光学系统设计有进一步的掌握。(陈志隆注) (回内容纲目) 习作一:单镜片(Singlet)

你将学到:启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计最佳化。 设想你要设计一个F/4单镜片在光轴上使用,其focal length 为100mm,在可见光谱下,用BK7镜片来作。 首先叫出ZEMAX的lens data editor(LDE),什么是LDE呢?它是你要的工作场所,譬如你决定要用何种镜片,几个镜片,镜片的radius,thickness,大小,位置……等。 然后选取你要的光,在主选单system下,圈出wavelengths,依喜好键入你要的波长,同时可选用不同的波长等。现在在第一列键入0.486,以microns为单位,此为氢原子的F-line 光谱。在第二、三列键入0.587及0.656,然后在primary wavelength上点在0.486的位置,primary wavelength主要是用来计算光学系统在近轴光学近似(paraxial optics,即 first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes 等。 再来我们要决定透镜的孔径有多大。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture就是100/4=25(mm)。于是从system menu上选general data,在aper value上键入25,而aperture type被default为Entrance Pupil diameter。也就是说,entrance pupil的大小就是aperture的大小。 回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源,STO即aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA 就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面 (surface),于是在STO栏上,选取insert cifter,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 再来如何输入镜片的材质为BK7。在STO列中的glass栏上,直接打上BK7即可。又孔径的大小为25mm,则第一面镜合理的thickness为4,也是直接键入。再来决定第1及第2面镜的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为负值。而再令第2面镜的thickness为100。 现在你的输入数据已大致完毕。你怎么检验你的设计是否达到要求呢?选analysis中的fans,其中的Ray Aberration,将会把transverse的ray aberration对pupil coordinate 作图。其中ray aberration是以chief ray为参考点计算的。纵轴为EY的,即是在Y方个的aberration,称作tangential或者YZ plane。同理X方向的aberration称为XZ plane 或sagittal。 Zemax主要的目的,就是帮我们矫正defocus,用solves就可以解决这些问题。solves 是一些函数,它的输入变量为curvatures,thickness,glasses,semi-diameters,conics,以及相关的parameters等。parameters是用来描述或补足输入变量solves的型式。如curvature的型式有chief ray angle,pick up,Marginal ray normal,chief ray normal,Aplanatic,Element power,concentric with surface等。而描述chief ray angle solves

ZEMAX光学设计报告材料

ZEMAX 光学设计报告 一、设计目的 通过对设计一个双胶合望远物镜,学会zemax 软件的基本应用和操作。 二、设计要求 设计一个全视场角为1.56°,焦距为1000mm ,且相对孔径为1:10的双胶合望远物镜,要求相高为y`=13.6mm 。 三、设计过程 1.双胶合望远物镜系统初始结构的选定 1.1选型 由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差和位置色差。又因为其相对孔径较小,所以选用双胶合即可满足设计要求。本系统采用紧贴型双胶合透镜组,且孔径光阑与物镜框相重合。 1.2确定基本像差参量 根据设计要求,假设像差的初级像差值为零,即球差0'0=L δ;正弦差0'0s =K ;位置色差 0'0=FC l δ。那么按初级像差公式可得0===∑∑∑I I I I C S S ,由此可得基本像差参量为 0===I ∞ ∞C W P 。 1.3求0P )(() ?? ?? ?+-+-=∞∞∞∞ 火石玻璃在前时 冕牌玻璃在前时 2 2 02.085.01.085.0W P W P P 因为没有指定玻璃的种类,故暂选用冕牌玻璃进行计算,即0085.00-=P 。 1.4选定玻璃组合 鉴于9K 玻璃的性价比较好,所以选择9K 作为其中一块玻璃。查表发现当000.0=I C ,与 0085.00-=P 最接近的组合是9K 与2ZF 组合,此时对应的038.00=P 。此系统选定9K 与

2ZF 组合。 9 K 的 折 射 率 5163 .11=n , 2 ZF 的折射率 6725 .12=n , 038319.00=P ,284074.40-=Q ,06099.00-=W ,009404.21=?,44.2=A ,72.1=K 。 1.5求形状系数Q 一般情况下,先利用下式求解出两个Q 的值: A P P Q Q 00-±=∞ 再与利用下式求的Q 值相比较,取其最相近的一个值: ) (1 20 0+-+ =∞ A P W Q Q 因为 0P P ≈∞ ,所以可近似为284074.40-==Q Q ,06099.00-==∞ W W 。 1.6求归一化条件下的透镜各面的曲率 ()()?????????-=--+-==-=-+=+===-+-?=+-==77370.011 1127467 .2284074.4009404.21 61726.1284074.415163.1009404 .25163.111221233 12211111n Q n n r Q r Q n n r ?ρ?ρ?ρ 1.7求球面曲率半径 ???? ?????-=-='=-=-='==='=491.129277370.01000 624.43927467.21000330.61861726.110003322 11ρρρf r f r f r 1.8整理透镜系统结构数据 视场0136.0tan -=ω(负号表示入射光线从光轴左下方射向右下方),物距-∞=L (表示物体在透镜组左侧无穷远处),入瞳半径mm h 50=,光阑在透镜框上,即入瞳距第一折射

用zemax设计光学显微镜 光学系统设计实验报告

课 程 设 计 光学显微镜设计 设计题目 学 号 专业班级 指导教师 学生姓名 测量显微镜

根据学号得到自己设计内容的数据要求: 1.目镜放大率10(即焦距25) 2.目镜最后一面到物面距离110 3.对准精度1.2微米 按照实验步骤,先计算好外形尺寸。然后根据数据要求选取目镜与物镜。 我先做物镜。因为这个镜片比较少。按物镜放大率选好物镜后,将参数输入。简单优化,得到比较接近自己要求的物镜。 然后做目镜,同样的做法,这个按照焦距选目镜,将参数输入。将曲率半径设为可变量,调入默认的优化函数进行优化。发现“优化不了”,所有参数均没有变化。而且发现把光源放在“焦点”位置,目镜出射的不是平行光。我百思不得其解。开始认为镜头库的参数可能有问题。最后我问老师,老师解释,那个所谓的“焦点”其实不是焦点,我错误的把“焦点”到目镜第一个面的距离当成了焦距。这个目镜是有一定厚度的,不能简单等效成薄透镜。焦点到节点的距离才是焦距。经过老师指点后,我尝试调节光源到目镜第一面的距离,想得到出射平行光,从而找到焦点。但这个寻找是很费力气的,事倍功半。老师建议我把目镜的参数倒着顺序输入参数。然后用平行光入射,然后可以轻松找到焦点。 但是,按照这个方法,倒着输入参数,把光源放在无限

远的地方(平行光入射),发现光线是发散的。不解。还是按照原来的方法。把光源放在目镜焦点上,尽量使之出射平行光。然后把它与优化好的物镜拼接起来。后来,加入理想透镜(会聚平行光线),加以优化。 还有一个问题,就是选物镜的时候,发现放大倍率符合了自己的需求,但工作距离与共轭距,不符合自己的要求。这个问题在课堂上问过老师,后来经老师指点,通过总体缩放解决。 物镜参数及优化函数

ZEMAX光学辅助设计简明教程 2

ZEMAX光学辅助设计简明教程 沈常宇 中国计量学院光电子技术研究所

目录 第一章引言 (3) 第二章ZEMAX的基本界面及文件菜单 (4) 第三章编辑菜单 (6) 第四章系统菜单 (12) 第五章分析菜单 (17) 第六章工具菜单 (29) 第七章报告菜单 (36) 第八章宏指令菜单 (38) 第九章扩展命令菜单 (39) 第十章表面类型简介 (40) 第十一章设计优化实例 (46) 第一章引言 对于实际的光学系统来说,它的成像往往是非完善成像,对于怎样来判断一个光学系统的性能的优劣,是光学设计中遇到的一个重要问题.在当前计算机辅助科研、教学的迅猛发展过程中,计算机辅助光学系统设计已成为光学设计不可缺少的一种重要手段.其中,由美国焦点软件公司所发展出的光学设计软件ZEMAX,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件.其主要特色有分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function 参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件. 但是,这里必须强调一点的是,ZEMAX软件只是一个光学设计辅助软件,也就是说,该软件不能教你怎么去进行光学设计,而只是能对你设计的光学系统进行性能的优化以达最佳成像质量.所以,在应用本教程进行光学辅助设计之前,您最好先学习一下光学设计的有关知识:首先是几何光学基础,几何光学是光学设计的基础.要做光学设计必须懂得各种光学仪器成像原理,外形尺寸计算方法,了解各种典型光学系统的设计方法和设计过程.实际光学系统大多由球面和平面构成.记住共轴球面系统光轴截面内光路计算的三角公式,了解公式中各参数的几何意义是必要的,具体公式可参考有关光学书籍,在此就不一一介绍了.对于平面零件有平面反射镜和棱镜,它们的主要作用多为改变光路方向,使倒像成为正像,或把白光分解为各种波长的单色光.在光学系统中造成光能损失的原因有三点:透射面的反射损失、反射面的吸收损失和光学材料内部的吸收损失.其次是像差理论知识,对于一个光学系统,一般存在7种几何像差,他们分别是球差、彗差、像散、场曲、畸变和位置色差以及倍率色差.另外,还必须了解一点材料的选择和公差的分配方面的知识,以及一些光学工艺的知识,包括切割,粗磨,精磨,抛光和磨边,最后还有镀膜和胶合等. 第二章 ZEMAX的基本界面及文件菜单 §2.1 ZEMAX的基本界面 ZEMAX的基本界面比较简单,如下图所示. 包括一系列文件菜单和工具按钮.以及一个镜头数据编辑对话框.

zemax光学设计书汇总

广东工业大学物理与光电工程学院 ZEMAX软件和像差设计 [光学器件CAD] 应用光学和光学工程教研组 2013/9/2 1

前言 广东省的经济发展环境和产业分布特点吸引了众多的光学光电相关企业的进驻。国家的“节能减排”政策又大力促进了材料,半导体和照明产业的新一轮的改革和投入。例如,在LED节能照明,激光制版和光电子信息产业方面,无论是企业的数量还是企业对经济发展的贡献,都有可观的增长。所以,今后几年行业对专门应用型人才的旺盛需求。广东工业大学物理与光电工程学院及时地注意到行业发展的大趋势,进行了专业培养方案的调整,增设了光学工程教研组,旨在培养光学和光机电行业企业所需光学工程方面的人才。 光学工程的课程体系包含《应用光学》(2学分),《光学器件设计》(3学分)和《光学器件CAD课程设计》(2学分)。《应用光学》主要讲授高斯光学光束变换、成像原理;《光学器件设计》主要讲授像差理论和像质评价,为后续的课程设计打基础;《光学器件CAD课程设计》主要讲解光学系统设计,性能分析和优化方法。 ZEMAX光学设计软件,被广泛用于公司、研究所和高校用于产品设计,研究和教学培训。2007年被引进我校的光学设计教学当中,我们在像差教学以及课程设计教学中完全使用ZEMAX软件作为分析和优化工具。ZEMAX软件让学生得到直观和形象地感知透镜光学系统的建立,像质评价指标的物理表述,像差优化和系统成形等各个过程。 内容安排:第一章ZEMAX软件简介,讲述软件的用户界面,工具栏,透镜系统的建立的基本方法,像质评价的物理意义和相关举例。第二章ZEMAX优化操作符,介绍评价函数,操作符的定义和使用。第三章ZEMAX像差设计和优化,讲解建立像差控制的评价函数,如轴上和轴外像差的评价函数以及设计实例。第四章典型光学系统的设计。 i

ZEMAX光学设计软件操作说明详解

ZEMAX光学设计软件操作说明详解】 介绍 这一章对本手册的习惯用法和术语进行说明。ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。 活动结构 活动结构是指当前在镜头数据编辑器中显示的结构。详见“多重结构”这一章。 角放大率 像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。 切迹 切迹指系统入瞳处照明的均匀性。默认情况下,入瞳处是照明均匀的。然而,有时入瞳需要不均匀的照明。为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。 有三种类型的切迹:均匀分布,高斯型分布和切线分布。对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。在“系统菜单”这一章中有关于切迹类型和因子的讨论。 ZEMAX也支持用户定义切迹类型。这可以用于任意表面。表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。 后焦距 ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。基面 基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。 除焦平面外,所有的基面都对应一对共轭面。比如,像空间主面与物空间主面相共轭,等等。如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。 ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。 主光线 如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。 如果使用了渐晕系数,主光线被认为是通过有渐晕入瞳中心的光线,这意味着主光线不一定穿过光阑的中央。 如果有瞳面像差(这是客观存在的),主光线可能会通过近轴入 瞳中心(如果没有使用光线瞄准)或光阑中央(如果使用光线瞄准),但一般说来,不会同时通过二者中心。 如果渐晕系数使入瞳减小,主光线会通过渐晕入瞳中心(如果不使用光线瞄准)或者渐晕光阑中心(如果使用光线瞄准)。 常用的是主光线通过渐晕入瞳的中心,基本光线通过无渐晕的光阑中心。ZEMAX不使用基本光线。大部分计算都是以主光线或者中心光线作为参考。优先使用中心光线,因为它是基

ZEMAX光学设计软件操作说明详解_光学设计

ZEMAX光学设计软件操作说明详解 介绍 这一章对本手册的习惯用法和术语进行说明。ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。 活动结构 活动结构是指当前在镜头数据编辑器中显示的结构。详见“多重结构”这一章。 角放大率 像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。 切迹 切迹指系统入瞳处照明的均匀性。默认情况下,入瞳处是照明均匀的。然而,有时入瞳需要不均匀的照明。为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。 有三种类型的切迹:均匀分布,高斯型分布和切线分布。对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。在“系统菜单”这一章中有关于切迹类型和因子的讨论。 ZEMAX也支持用户定义切迹类型。这可以用于任意表面。表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。 后焦距 ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。 基面 基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。 除焦平面外,所有的基面都对应一对共轭面。比如,像空间主面与物空间主面相共轭,等等。如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。 ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。 主光线 如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。 如果使用了渐晕系数,主光线被认为是通过有渐晕入瞳中心的光线,这意味着主光线不一定穿过光阑的中央。如果有瞳面像差(这是客观存在的),主光线可能会通过近轴入瞳中心(如果没有使用光线瞄准)或光阑中央(如果使用光线瞄准),但一般说来,不会同时通过二者中心。如果渐晕系数使入瞳减小,主光线会通过渐晕入瞳中心(如果不使用光线瞄准)或者渐晕光阑中心(如果使用光线瞄准)。 常用的是主光线通过渐晕入瞳的中心,基本光线通过无渐晕的光阑中心。ZEMAX不使用基本光线。大部分计算都是以主光线或者中心光线作为参考。优先使用中心光线,因为它是基于所有照射到象面的光线聚合效应,而不是基于选择某一条特殊光线。 坐标轴(系)

ZEMAX光学设计软件操作说明详解_光学设计

ZEMAX光学设计软件操作说明详解 介绍 这一章对本手册的习惯用法和术语进行说明。ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。 活动结构 活动结构是指当前在镜头数据编辑器中显示的结构。详见“多重结构”这一章。 角放大率 像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。 切迹 切迹指系统入瞳处照明的均匀性。默认情况下,入瞳处是照明均匀的。然而,有时入瞳需要不均匀的照明。为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。 有三种类型的切迹:均匀分布,高斯型分布和切线分布。对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。在“系统菜单”这一章中有关于切迹类型和因子的讨论。 ZEMAX也支持用户定义切迹类型。这可以用于任意表面。表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。 后焦距 ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。 基面 基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。 除焦平面外,所有的基面都对应一对共轭面。比如,像空间主面与物空间主面相共轭,等等。如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。 ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。 主光线 如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。 如果使用了渐晕系数,主光线被认为是通过有渐晕入瞳中心的光线,这意味着主光线不一定穿过光阑的中央。如果有瞳面像差(这是客观存在的),主光线可能会通过近轴入瞳中心(如果没有使用光线瞄准)或光阑中央(如果使用光线瞄准),但一般说来,不会同时通过二者中心。如果渐晕系数使入瞳减小,主光线会通过渐晕入瞳中心(如果不使用光线瞄准)或者渐晕光阑中心(如果使用光线瞄准)。 常用的是主光线通过渐晕入瞳的中心,基本光线通过无渐晕的光阑中心。ZEMAX 不使用基本光线。大部分计算都是以主光线或者中心光线作为参考。优先使用中心光线,因为它是基于所有照射到象面的光线聚合效应,而不是基于选择某一条特殊光线。 坐标轴(系)

相关主题