搜档网
当前位置:搜档网 › 光伏离网及并网发电系统

光伏离网及并网发电系统

离网型太阳能光伏发电系统

离网型太阳能光伏发电系统 一、系统构成 离网型太阳能光伏发电系统主要由光伏电池板、光伏控制器、蓄电池组、变换器和监控系统等五部分构成。图1为光伏发电系统示意图,图2为系统构成原理框图。各部分的功能和作用是: 1、光伏电池板:它是光伏发电的核心,其作用是太阳辐射能直接转换为直流电能供给负载或储存在蓄电池中。 2、光伏控制器:由于一般的多晶硅或单晶硅光伏电池板输出为电流源型,不能直接输出给负载和蓄电池,需通过光伏控制器将其变换为蓄电池可接受的稳定的电压或电流,实现 蓄电池的有效充电或供给外接负载。光伏控制器还能实现对蓄电池组的过充和过放保护。 3、变换器:如果要求输出为直流,则可以通过该部分将蓄电池的电压转换成不同的直流电压以适应不同的负载设备。如果要求输出为交流,则可通过交流逆变器将直流电变换为220V(单相)、380V(三相)交流电,供给交流用电设备。对于家庭用,该部分一般采用交流逆变器。 4、监控系统:该部分的主要作用是监控各部分的工作参数和工作状态。同时提供人机操作界面。

图1 离网型光伏发电系统示意图 图2 离网型光伏发电构成原理框图 二、系统功能及特点 1、能实现对蓄电池组的恒压、恒流充电和充电过程的自动管理; 2、具有太阳能最大功率点跟踪控制功能(MPPT),发挥光伏电池的最大功效; 3、逆变器交流输出波形正弦度好,输出电压稳定,抗扰能力强;

4、保护功能完善,具有蓄电池过充、过放、输出过压、过流、短路等多种保护; 5、具有交流电网供电后备功能,当多日无太阳光照,蓄电池储存电能无法满足输出供电时,系统可自动切换为交流市电供电,由于采用直流侧无间断切换,交流输出无间断现象; 6、友好的人机操作界面、完善的监控功能,系统采用大尺寸触摸液晶屏,操控方便、显示直观; 三、系统适应领域 1、家庭供电:特别适用于独立式居住的家庭,如城市别墅区、农村家庭。对于城市居民小区,居住在顶楼的住户或私家阳台较大的家庭也较合适; 2、学校供电:特别适用于中小学和幼儿园,在这些地方,一般白天用电较多,且用电量不大; 3、医院供电:可与医院的应急供电系统融合在一起,可有效提高医院的应急电源的可靠性和经济性; 4、城市小区公共供电:可安装在城市小区公共部分,接入小区的公用电房,作为小区公用电使用; 5、政府部门、企事业单位办公大楼供电:集中安装在办公大楼的顶层,作为公用电接入大楼低压配电柜中。 四、系统主要规格与技术参数 1、光伏电池容量等级:1KW~100KW(可根据用户要求定制);

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优化设计

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优 化设计 《太阳能光伏发电系统》 课程设计 课题名称: 家庭并网光伏发电系统的优化设计专业班级: 学生姓名: 学生学号: 指导教师: 设计时间: 沈阳工程学院 报告正文 目录 第1章绪 论 ..................................................................... . (3) 1.1 设计背 景 ..................................................................... .. (3) 1.2 设计意 义 ..................................................................... ......................................... 3 第2章朝阳市气象资料及地理情况...................................................................... ............... 4 第3章家用并网型...................................................................... .. (6)

太阳能光伏发电系统的优化设 计 ..................................................................... .. (6) 3.1 设计方 案 ..................................................................... .. (6) 3.2负载的计算...................................................................... . (8) 3.3 太阳能电池板容量及串并联的设计及选 型 (9) 3.4 太阳能电池板的方位角与倾斜角的设 计 (10) 3.5 蓄电池容量及串并联的设计及选型..................................................................... 11 3.6 控制器、逆变器的选 型 ..................................................................... (12) 3.7 电气配置及其设 计 ..................................................................... (13) 3.8 系统配置清 单 .....................................................................

离网发电系统方案

光伏离网发电系统(技术部分) 上海泊吾电源有限公司 2013年1月

目录 第一章:系统概述 (3) 1.1 项目概述 (3) 1.2 系统设计依据 (3) 1.3 公司简介 (4) 第二章:系统配置 (4) 2.1系统构成 (4) 2.2系统选型 (4) 2.2.1光伏组件 (4) 2.2.2光伏组件支架 (5) 2.2.3光伏方阵防雷汇流箱 (6) 2.2.4接地和防雷 (7) 2.2.5线缆桥架 (8) 2.2.6光伏逆变器 (10) 2.2.7通讯及监控 (12) 2.2.8蓄电池 (14) 第三章:系统设计 (16) 3.1离网系统设计的基本原理 (16) 3.2气象数据分析................................................................................... 错误!未定义书签。 3.3 组件方阵设计 (17) 3.3.1倾角和方位角 (17) 3.3.2组件阵列间距 (19) 3.3.3组件距地(屋面)距离 (20) 3.4光伏逆变器电气设计 (21) 3.5光伏消防安全设计........................................................................... 错误!未定义书签。 3.5.1蓄电池设计方法.................................................................... 错误!未定义书签。第四章:系统发电量分析............................................................................. 错误!未定义书签。第五章:系统主要设备清单......................................................................... 错误!未定义书签。

光伏离网系统典型设计

光伏离网系统典型设计 当今世界上还有很大一部分人生活在缺电或无电的世界中,他们居住在贫困或偏远地区,远离发电厂和公共电网,因为没有电,无法享受到现代文明给生活带来的信息和便利。光伏离网发电系统是一种独立自给的可再生新能源供电系统,可以解决他们的基本用电问题。 典型光伏离网发电系统主要由太阳能组件,支架,太阳能控制器,离网逆变器,蓄电池,配电箱等六部分组成,太阳能组件接入到太阳能控制器后,首先满足用户负载使用,之后将多余的电量存储于蓄电池中,以备夜间及阴雨天使用,当蓄电池没电,大部分逆变器还可以支持市电输入(或者柴油发电机)作为补充能源给负载供电。 光伏离网系统的设计不同于并网发电系统,需要考虑用户的负载大小,日用电量,当地的气候条件等因素,根据客户的实际需求选择不同设计方案,相对较为复杂,为了保证离网系统能够可靠工作,做好前期的客户需求调查是非常有必要的。光伏离网系统的设计,主要包含逆变器的选型,组件容量的设计和蓄电池容量的设计: 一.逆变器选型:根据用户负载大小和类型确定逆变器功率 逆变器功率大小的选择一般要不小于负载总功率,但是考虑到逆变器的使用寿命和后续扩容,建议逆变器功率需要考虑留有一定的裕量,一般为负载功率的1.2~1.5倍,另外,如果负载包含有类似于冰箱,空调,水泵,抽油烟机等带电动机的感性负载(电动机的启动功率是额定功率的3~5倍),需要把负

载的启动功率考虑进来,即负载的启动功率要小于逆变器的最大冲击功率。以下是逆变器的功率选择的计算公式,供设计时参考。 二.组件容量确定:根据用户日用电量和光照强度确定组件容量 光伏组件白天发的电一部分供给负载使用,剩下部分给蓄电池充电,到了晚上或者太阳辐射不足情况下,储存在蓄电池的电将放电给负载使用,由此可见,在没有市电/或者柴油机作为补充能源情况下,负载的所耗电全部来自光伏组件白天所产生的电,考虑到不同季节,不同地区的光照强度会有差异,为了保证系统的可靠运行,光伏板的容量设计应该在光照最差的季节也能满足需求,以下是光伏板的容量计算公式: 三.蓄电池容量确定:根据夜晚用电量或者后备时间确定电池容量 光伏离网系统的蓄电池主要用于储能,保证在太阳辐射不足时负载还能够正常工作。对于有重要负载的光伏离网系统,蓄电池容量的设计需要考虑当地的最长阴雨天数。普通的光伏离网系统负载供电要求不高,考虑到系统成本原因,可以不考虑阴雨天数,只要根据实际的光照强度来调整负载的使用。另外,大部分光伏离网系统选用铅酸电池,一般取铅酸电池的放电深度为0.5-0.7,蓄电池容量的设计可以参考以下公式: 四.10kVA光伏离网系统典型设计方案

光伏并网发电系统设计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。 U R L

图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC变换器和后级的DC-AC逆变器组成。在系统中,DC-DC 变换器采用BOOST结构,主要完成系统的MPPT控制;DC-AC部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz交流电。设计采用单片机SPWM调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT原理及电路设计 MPPT原理 由于光伏阵列的最大功率点是一个时变量,可以采用搜索算法进行最大功率点跟踪。其搜索算法可分为自寻优和非自寻优两种类别。所谓自寻优算法即不直接检测外界环境因素的变化,而是通过直接测量得到的电信号,判断最大功率点的位置。典型的追踪方法有扰动观测法和增量导纳法等。增量导纳法算法的精确度最高,但是,由于增量导纳法算法复杂,对实现该算法的硬件质量要求较高、运算时间变长,会增加不必要的功率损耗,所以实际工程应用中,通常采用扰动观测法算法]1[。 扰动观测法原理:每隔一定的时间增加或者减少电压,并通过观测其后功率变化的方向,

太阳能并网光伏发电系统设计

】 南昌航空大学 自学考试毕业论文 【 题目太阳能并网光伏发电系统 专业光伏材料及应用 学生姓名 准考证号 指导教师 . 2012 年 04 月

光伏发电并网控制技术设计 摘要 随着全球经济社会的不断发展,能源消费也相应的持续增长。能源问题已经成为关系到人类生存和发展的首要问题。所以,迫切需要对新的能源进行开发和研究。而太阳能的利用近年来已经逐渐成为新能源领域中开发利用水平高,应用较广泛的能源,尤其在远离电网的偏远地区应用更为广泛。 本文主要对光伏并网发电系统作了分析和研究。论文首先介绍了太阳能发电的意义以及光伏并网发电在国内外的应用现状。其次,对太阳能发电系统的特性和基本原理分别做了具体分析,并对系统各组成部分的功能进行了详细的介绍。接着,对光伏并网中最重要部分——逆变器进行研究。再次,提出光伏并网发电系统的设计方案。最后,对光伏并网发电系统的硬件进行设计。并网光伏发电充分发挥了新能源的优势,可以缓解能源紧张问题,是太阳能规模化发展的必然方向。我国政府高度重视光伏并网发电,并逐步推广"屋顶计划"。太阳能并网发电正在由补充能源向替代能源方向迈进。 关键词:能源;太阳能;光伏并网;逆变器

目录 第一章太阳能光伏产业绪论 (1) 光伏发电的意义 (1) 光伏并网发电 (1) 第二章太阳能光伏发电系统 (5) 太阳能光伏发电简介 (5) 太阳能光伏发电系统的类别 (5) 太阳能光伏发电系统的发电方式 (6) 影响太阳能光伏发电的主要因素 (7) 第三章并网太阳能光伏发电系统组成 (10) 并网光伏系统的组成和原理 (10) 光伏电池的分类及主要参数 (12) 光伏控制器性能及技术参数 (14) 光伏逆变器性能及技术参数 (15) 第四章发展与展望 (18) 发展与展望 (18) 全文总结 (19) 参考文献 (20) 致谢 (21)

100kW光伏并网发电系统典型案例解

100kW光伏并网发电系统典型案例解 100kW光伏并网发电系统典型案例解析 1、项目地点分析 本项目采用光伏并网发电系统设计方案,应用类别为村级光伏电站项目。项目安装地为江西,江西位于位于中国的东南部,长江中下游南岸。地处北纬24°29′-30°04′,东经113°34′-118°28′之间。项目所在地坐标为北纬25°8′,东经114°9′。根据查询到的经纬度在NASA上查询当地的峰值日照时间如下: (以下数据来源于美国太空总署数据库) 从上表可以看出,项目建设地江西在国内属于二三类太阳能资源地区,年平均太阳能辐射量峰值平均每天为3.41kWh/m2,年平均太阳能总辐射量峰值为:3.41kWh/m2*365=1244.65 kWh/m2。 2、光伏组件 2.1光伏组件的选择 本项目选用晶硅太阳能电池板,单块功率为260Wp。下面是一组多晶硅的性能参数,组件尺寸为1650*990*35mm。 2.2光伏组件安装角度

根据项目所在地理位置坐标,项目所在地坐标为项目所在地坐标为北纬25°8′,东经114°9′,光伏组件安装最佳倾角为20°如下图所示: 2.3组件阵列间距及项目安装面积 采用260Wp的组件,组件尺寸为1650*990*35mm,共用400块太阳能电池板, 总功率104kWp。根据下表公式可以计算出组件的前后排阵列间距为2.4m,单 块组件及其间距所占用面积为2.39㎡。

104kWp光伏组件组成的光伏并网发电系统占地面积为2.39*400=956㎡,考虑到安装间隙、周围围墙等可能的占地面积,大约需要1000㎡。 3、光伏支架 本项目为水平地面安装,采用自重式支架安装方式。自重式解决方案适用于平屋顶及地面系统。利用水泥块压住支架底部的铝制托盘,起到固定系统的作用。

3KW家庭光伏离网发电系统方案

3KW家庭光伏离网发电系统方案 肩负责任?专心致志?追求杰出 家庭光伏离网发电3KW运行方案 1.光伏离网发电 光伏离网系统所需主要器件由光伏电池板和光伏逆变器及蓄电池构成。其工作模式为光伏电池产生的直流电能通过光伏逆变器 SMB 转换成优质交流为负载供电,多余电能自动储存在蓄电池里;当光伏不足时,由蓄电池和光伏一起向负载供电;没有光伏时,由蓄电池或市电向负载供电。通常用于电网供应不足的地区,可替代柴油发电机的可靠的、清洁和成本低廉的有效解决方案。 2.系统主要组件 1)光伏组件 光伏组件是将太阳光能直接转变为直流电能的发电装置,根据用户对功率和电压的需求,通过串并量得到适合的太阳能电池组件阵列,满足用电需求250Wp太阳能电池组件基本参数 序号项目单位技术参数备注 1 太阳电池种类多晶硅 1650×992×52 mm 光伏组件尺寸结构 0

3 kg 19.5 光伏组件重量 电参数 1 最大输出功率 Wp 250 肩负责任?专心致志?追求杰出 250Wp太阳能电池组件基本参数 序号项目单位技术参数备注 2 最大功率偏差 ?3% 3 开路电压(Voc) V 37.2 4 短路电流(Isc) A 8.8 5 最佳工作电压 V 31.7 6 最佳工作电流 A 7.92 7 组件全面积光电转换效率 % 14.66 8 反向电流能力或组串直流保险规格 A 15 9 填充因素FF 0.76 11 开路电压温度系数 %/K -0.37 12 %/K +0.06 短路电流温度系数 13 功率衰降 (1) 第1 年功率衰降 % ?2 (2) % ?10 前10年功率衰降 (3) 25年功率衰降 % ?20 极限参数 1 工作温度范围 ? -40,+85 2)逆变器 逆变器是将直流电变换为交流电的设备,并网型逆变器是光伏发电系统中的重要部件之 一。 交流上方SMB-3K/1S 额定功率 3000W 最大交流输出电流 15.0A 额定电网电 压 220V AC+20%, 50/60Hz+1Hz, 纯正弦波<3% THD, 单相 电网电压范围 176-264V AC 待机损耗 ?15W 显示 LCD,人机互动通讯方式无线连接 RS232/458, TCP/IP 后备电源切换 时间 <5 毫秒 直流最大直流输入电流 18.3A 肩负责任?专心致志?追求杰出可接入组串数 1

离网光伏系统设计方案

离网光伏系统设计方案 Modified by JACK on the afternoon of December 26, 2020

太 阳 光 伏 系 统 设 计 方 案 南京格瑞能源科技有限公司

一总体方案描述 面对化石燃料的逐渐枯竭和人类生态环境的日益恶化,在能源供应方面必须走可持续发展的道路,逐渐改变能源消费结构,大力开发利用以太阳能为代表的可再生能源,已逐步成为人们的共识。由于太阳能发电具有节能、环保,安装使用方便,一次投资,长期受益等特点,目前广泛应用在别墅群、旅游渡假村、草原牧区、偏远山村、高山海岛等。 采用210W单晶太阳电池组件组成太阳电池阵列,太阳能阵列把光能转换为电能,太阳电池阵列通过防雷汇流箱后,进线通过防雷处理进入光伏控制器,充电控制器作过充、灯控制进入蓄电池组,逆变器把蓄电池逆变为AC220V频率(50Hz±2%)交流电且和市电形成互补,通过AC220V交流配电柜输出配电和后级防雷保护处理后,共462盏LED等照明灯使用。 太阳能电池板总共需安装占地面积约120平方米左右,可分别安装在屋顶相应的朝南位置,电池板支架采用全铝结构,具体方案在图纸深化设计中体现。万泽大厦位于:E(东经)119°58′N(北纬)31°48′光伏组件安装倾角确定为32° 发电系统包括太阳能电池板、组件支架、防雷汇流箱、蓄电池组,控制器,逆变器及配电箱其附件。 二系统介绍 本系统的主要目的是给照明设备供电,采用LED灯后地下车库照明负载总功率为5544W,车道、车位共采用462盏 12W的LED灯管,负载需要电压为交流220V,负载每天工作8小时。根据电量平衡原理,需要太阳电池方阵功率为:11340Wp,方阵支架的倾角为32°,组件排列方式为6行9列。太阳能电池方阵占地面积:120㎡。系统设计2个阴雨能正常工作,蓄电池配置容量为:180Ah/DC220V。蓄电池,控制器,逆变器,以及输出控制柜安装在空置房内。

光伏并网发电系统设计复习过程

光伏并网发电系统设 计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。

R L U 图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC 变换器和后级的DC-AC 逆变器组成。在系统中,DC-DC 变换器采用BOOST 结构,主要完成系统的MPPT 控制;DC-AC 部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz 交流电。设计采用单片机SPWM 调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT 原理及电路设计 3.1 MPPT 原理

离网光伏发电配电系统

离网光伏发电系统 洛阳云嘉居网络科技有限公司 2014年9月16日

简介 光伏发电,其基本原理就是“光伏效应”。光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收的能量足够大,能克服金属内部引力做功,离开金属表面逃逸出来,成为光电子。光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 离网光伏发电系统在有光照的情况下将太阳能转换为电能,通过太阳能充放电控制器给负载供电,同时给蓄电池组充电;在无光照时,通过太阳能充放电控制器由蓄电池组给直流负载供电,同时蓄电池还要直接给独立逆变器供电,通过独立逆变器逆变成交流电,给交流负载供电。

离网光伏发电系统详解 一、光伏发电效益分析 以洛阳市地区为例,每平方米太阳年辐射量平均为1509kW·h ,使用多晶硅的光电转化效率平均为16.5%,则每平方米年理论发电量为249度。 实际安装运行过程中,太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时要考虑到0.95的影响系数。 此外,光伏组件温度、表面灰尘及太阳能辐射不均匀等环境因素都会影响太阳能电池板输出功率,综合分析要考虑到0.786的影响系数。对于并网光伏电站,考虑安装角度因素折算后的效率为0.88。 所以实际发电效率为:0.95 * 0.79 *0.88 =66.7%,即每平方米年实际发电量为166度。 二、离网光伏发电系统结构 离网光伏发电系统由太阳能电池板、蓄电池组、控制器、逆变器组成,可实现将太阳能转化成可供使用的交流电能(一般为220V,50Hz正弦波)。

5kWp光伏太阳能并网发电系统

5kWp光伏太阳能并网发电系统 设 计 方 案 设计人:申小波(Mellon) 单位:个人 电话: 日期: 2013年10月27日

目录 一、光伏太阳能并网发电系统简介 (2) 二、项目地点及气候辐照状况 (2) 三、相关规范和标准 (5) 四、系统结构与组成 (5) 五、设计过程 (6) 1、方案简介 (6) 2、设计依据 (6) 3、组件设计选型 (7) 4、直流防雷汇流箱设计选型 (9) 5、交直流断路器 (11) 6、并网逆变器设计选型 (13) 7、电缆设计选型 (14) 8、方阵支架 (15) 9、配电室设计 (15) 10、接地及防雷 (15) 11、数据采集检测系统 (16) 六、仿真软件模拟设计 (17) 七、接入电网方案 (22)

八、设备配置清单及详细参数 (22) 九、系统建设及施工 (22) 十、系统安装及调试 (23) 十一、运行及维护注意事项 (26) 十二、设计图纸 (28) 十三、工程预算投资分析报告 (32)

5kWp光伏太阳能并网发电系统配置方案 一、光伏太阳能并网发电系统简介 并网系统(Utility Grid Connected)最大的特点:太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网,并网系统中光伏方阵所产生电力除了供给交流负载外,多余的电力反馈给电网。在阴雨天或夜晚,太阳电池组件没有产生电能或者产生的电能不能满足负载需求时就由电网供电。 因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用光伏方阵所发的电力,从而减小了能量的损耗,并降低了系统的成本。但是系统中需要专用的并网逆变器,以保证输出的电力满足电网电力对电压、频率等电性能指标的要求。因为逆变器效率的问题,还是会有部分的能量损失。这种系统通常能够并行使用市电和太阳能太阳电池组件阵列作为本地交流负载的电源,降低了整个系统的负载缺电率,而且并网系统可以对公用电网起到调峰作用。但并网光伏供电系统作为一种分散式发电系统,对传统的集中供电系统的电网会产生一些不良的影响,如谐波污染,孤岛效应等。 二、项目地点及气候辐照状况 图片来自Google地球 1、项目地点为:江苏省泰州市XX区XX镇; 2、纬度:32°22’,经度:120°12’; 3、平均海拔高度:7m;

离网光伏系统设计

离网光伏发电系统容量设计 一.任务目标 1.掌握容量设计的步骤和思路。 2.掌握光伏发电系统的容量设计方法。 3.了解光伏发电系统容量设计考虑的相关因素。 二.任务描述 光伏发电系统容量设计主要涉及蓄电池容量、蓄电池串并联数、光伏发电系统的发电量、光伏组件串并联数的计算。本实验报告主要以两种常见的计算方法为主。计算过程中需要注意不同容量单位之间的换算。 三.任务实施 1.容量设计的步骤及思路: 光伏发电系统容量设计的主要目的是计算出系统在全年内能够可靠工作所需的太阳能电池组件和蓄电池的数量。主要步骤: 2.蓄电池容量和蓄电池组的设计: (1)基本计算方法及步骤 ①将负载需要的用电量乘以根据实际情况确定的连续阴雨天数得到初步的蓄电池容量。阴雨天数的选择可参照如下:一般负载,如太阳能路灯等,可根据经验或需要在3-7内选取,重要

的负载。如通信、导航、医院救治等,在7-15内选取。 ②蓄电池容量除以蓄电池的允许最大放电深度。一般情况下,浅循环型蓄电池选用50%的放电深度,深循环型蓄电池选用75%的放电深度。 ③综合①②得电池容量的基本公式为 最大放电深度 连续阴雨天数 负载日平均用电量蓄电池容量?= 式中,电量的单位是h A ?,如果电量的单位是h W ?,先将h W ?折算为h A ?,折算关系如下: 系统工作电压 ) 负载日平均用电量(负载平均用电量h W ?= (2)相关因素的考虑 上 ①放电率对蓄电池容量的影响。 蓄电池的容量随着放电率的改变而改变,这样会对容量设计产生影响。计算光伏发电系统的实际平均放电率。 最大放电深度 连续阴雨天数 负载工作时间)平均放电率(?= h 负载工作功率 负载工作时间负载工作功率负载工作时间∑∑?= ②温度对蓄电池容量的影响。 蓄电池的实际容量会随着温度的变化而变化,当温度下降时,蓄电池的实际容量下降;温度升高时,蓄电池的实际容量略有升高。蓄电池的实际容量与温度的关系如图4-3所示曲线所示。

5kW光伏离网发电系统方案.doc

5kWp光伏离网发电系统设计方案 二零一六年元月

目录 一、太阳能离网发电系统简介及建设容参数 (3) 1.1 太阳能离网发电系统简介 (3) 1.2 建设位置参数 (3) 1.3 项目用户负载参数 (4) 二、相关规和标准 (5) 三、系统组成与原理 (6) 3.1 光伏太阳能离网发电系统组成 (6) 3.2 光伏太阳能离网发电系统主要组成 (7) 3.3 离网系统原理示意图 (7) 四、离网发电系统方案设计过程 (8) 4.1 方案简介 (8) 4.2 使用具体要求信息 (8) 4.3 蓄电池设计选型 (9) 4.4 组件设计选型 (14) 4.5 离网逆变器设计选型 (18) 4.6 控制器设计选型 (20) 4.7 交直流断路器 (21) 4.8 电缆设计选型 (23) 4.9 方阵支架 (23) 4.10 配电室设计 (24) 4.11 接地及防雷 (24) 4.12 数据采集检测系统 (25) 五、设备配置清单及详细参数 (26) 六、系统建设及施工 (26) 6.1 施工顺序 (26) 6.2 施工准备 (27) 6.3 工程施工 (28) 七、系统安装及调试 (28) 7.1 太阳电池组件安装和检验 (28) 7.2 总体控制部分安装 (30) 7.3 检查和调试 (30) 八、工程预算分析报告 (31) 8.1 31

. 8.2 工程预算 (31) 九、运行及维护注意事项 (33) 9.1 日常维护 (33) 9.2 注意事项 (36)

. 一、太阳能离网发电系统简介及建设容参数 1.1 太阳能离网发电系统简介 独立光伏电站是独立光伏系统中规模较大的应用。它的主要特点就是集中供电,如在一个十几户的村庄就可建立光伏电站来利用太阳能,当然这是在该村庄地理位置较偏远,无法直接利用电力公司电能的情况下,所能用到的方法。用这种方式供电便于统一管理和维护。而户用系统是采用分散供电的方式提供电能,如果要在该村庄安装户用光伏系统,这样每一户都得需这么一套光伏系统,它比起独立光伏电站来,所需的元器件规格要小,控制器、逆变器和蓄电池及负载都比较小,但是独立光伏电站和户用光伏系统基本结构是完全一致的。 太阳能光伏建筑一体化(Building Integrated Photovoltaic —— BIPV)是应用太阳能发电的一种新形式,简单的讲就是将太阳能发电系统和建筑的围护结构外表面如建筑幕墙、屋顶等有机的结合成一个整体结构,不但具有围护结构的功能,同时又能产生电能供本建筑及周围用电负载使用。还可通过建筑物输电线路离网发电,向电网提供电能。太阳能光伏方阵与建筑的结合由于不占用额外的地面空 间,是光伏发电系统在城市中广泛应用的最佳安装方式, 因而备受关注。 1.2 建设位置参数 1、项目名称:; 2、项目地点:省市;

离网光伏系统设计方案

太 阳 光 伏 系 统 设 计 方 案 南京格瑞能源科技有限公司

一总体方案描述 面对化石燃料的逐渐枯竭和人类生态环境的日益恶化,在能源供应方面必须走可持续发展的道路,逐渐改变能源消费结构,大力开发利用以太阳能为代表的可再生能源,已逐步成为人们的共识。由于太阳能发电具有节能、环保,安装使用方便,一次投资,长期受益等特点,目前广泛应用在别墅群、旅游渡假村、草原牧区、偏远山村、高山海岛等。 采用210W单晶太阳电池组件组成太阳电池阵列,太阳能阵列把光能转换为电能,太阳电池阵列通过防雷汇流箱后,进线通过防雷处理进入光伏控制器,充电控制器作过充、灯控制进入蓄电池组,逆变器把蓄电池逆变为AC220V频率(50Hz±2%)交流电且和市电形成互补,通过AC220V交流配电柜输出配电和后级防雷保护处理后,共462盏LED等照明灯使用。 太阳能电池板总共需安装占地面积约120平方米左右,可分别安装在屋顶相应的朝南位置,电池板支架采用全铝结构,具体方案在图纸深化设计中体现。万泽大厦位于:E(东经)119°58′N(北纬)31°48′光伏组件安装倾角确定为32° 发电系统包括太阳能电池板、组件支架、防雷汇流箱、蓄电池组,控制器,逆变器及配电箱其附件。 二系统介绍 本系统的主要目的是给照明设备供电,采用LED灯后地下车库照明负载总功率为5544W,车道、车位共采用462盏 12W的LED灯管,负载需要电压为交流220V,负载每天工作8小时。根据电量平衡原理,需要太阳电池方阵功率为:11340Wp,方阵支 架的倾角为32°,组件排列方式为6行9列。太阳能电池方阵占地面积:120㎡。系统设计2个阴雨能正常工作,蓄电池配置容量为:180Ah/DC220V。蓄电池,控制器,逆变器,以及输出控制柜安装在空置房内。 本图供示意参考 2.1系统核心配置 名称型号参数备注

离网光伏发电系统设计案例分析

离网光伏发电供电系统设计案例 1系统原理图 1.1系统实物连接图(图一) 图一 1.2系统连接框图(图二) 图二

1.3系统安装方式 该系统用于医院,故太阳能电池板设计成地面电站安装形式(放于医院大楼屋顶),太阳能电池板固定支架之间采用螺丝固定的方式连接;支架底座考虑到风速及屋顶防水措施保护,采用一次性浇筑好的水泥压块(如图三所示);太阳能电池板之间接头采用MC4公母插头,方便拆卸。 图三 2、系统主要部件设计 2.1太阳能电池板 2.1.1太阳能电池板选型 光伏组件选用多晶硅组件,型号为250Wp的多晶硅组件,每块内部封装156*156多晶电池片60片,该组件拥有高转换效率,确保卓越品质;该组件能够承受高风压、雪压以及极端温度条件;能够达到12年90%和25年80%的输出功率,5年工艺材料的质保。 2.1.2

表六 2.1.3太阳能电池板实物图(如图四所示) 图四 2.2光伏汇流箱 2.2.1光伏汇流箱的选型 对于光伏发电系统,为了减少光伏组件与光伏控制器或者逆变器之间的连接线,方便维护,提供可靠性,一般需要在光伏组件与光伏控制器或者逆变器

之间增加直流汇流装置,故系统中需要增加光伏防雷汇流箱。又根据太阳能电池板的并联数为10并,我们正常把每并电流预设为10A,考虑到控制器是两路输入每路电流50A,故选用两台5进1出的汇流箱。 2.2.2功能特点 满足室内、室外安装要求 最大可接入16路光伏串列,单路最大电流20A 宽直流电压输入,光伏阵列最高输入电压可达1000VDC 光伏专用熔断器 光伏专用高压防雷器,正负极都具有防雷功能 可实现多台机器并联运行 维护简易、快捷 远程监控(选配)

光伏发电系统-毕业设计

1. 引言 日常生活和社会生产都离不开能源。人们通过直接或间接利用某些自然资源得到能,因而,把具有某种形式能量资源以及由它加工或转换得到的产品统称为能源。前者叫自然能源或一次能源,如矿物燃料、植物燃料、太阳能、水能、风能、海洋能、地热能和潮汐能等,后者通常又把可再生的自然资源称为新能源,其围包括太阳能、生物质能、风能、地热能和海洋能等。矿物燃料(煤、石油、天然气等)又称为常规能源。 值得注意,几乎所有的自然资源,从广义的角度看都来自太阳能。由大气、陆地、海洋、生物等所接受的太阳能都是各种自然资源的源泉。矿物燃料是古生物长期沉积在地下形成的,它的形成源自远古的太阳能。[9]水的蒸发和凝结,风、雨、冰、雪等自然现象的动力也是靠太阳,因而水能、风能归根到底都来自太阳能。生物质能是通过光合、光化作用转化太阳辐射能取得的。由于太阳和月球对地球水的吸水作用产生潮汐能。 世界上最丰富的永久能源是太阳能。地球截取的太阳能辐射能通量为1.7ⅹ1014kW,比核能、地热和引力能储量总和还要大5000多倍。其中约30%被反射回宇宙空间;47%转变为热,以长波辐射形式再次返回空间;约23%是水蒸发、凝结的动力,风和波浪的动能,植物通过光合作用吸收的能量不到0.5%。地球每年接受的太阳能总量为1ⅹ1018kW·h。这相当于5ⅹ1014桶原油,是探明原油储量的近千倍,是世界年耗总能量的一万余倍。 太阳的能量是如此巨大,正如通常所说的“取之不尽、用之不竭”,但是太阳辐射能的通量密度较低,大气层外为1353W/m2.太通过大气层时会进一步衰减,还会受到天气、昼夜以及空气污染等因素的影响,因而,太阳能对地球又呈

5kW光伏离网发电系统解决资料

5kWp 光伏离网发电系统设计方案 二零一六年元月

目录 一、太阳能离网发电系统简介及建设内容参数 (3) 1.1 太阳能离网发电系统简介 (3) 1.2 建设位置参数 (3) 1.3 项目用户负载参数 (4) 二、相关规范和标准 (5) 三、系统组成与原理 (6) 3.1 光伏太阳能离网发电系统组成 (6) 3.2 光伏太阳能离网发电系统主要组成 (7) 3.3 离网系统原理示意图 (7) 四、离网发电系统方案设计过程 (8) 4.1 方案简介 (8) 4.2 使用具体要求信息 (8) 4.3 蓄电池设计选型 (9) 4.4组件设计选型 (14) 4.5 离网逆变器设计选型 (18) 4.6 控制器设计选型 (19) 4.7 交直流断路器 (20) 4.8 电缆设计选型 (22) 4.9 方阵支架 (22) 4.10 配电室设计 (23) 4.11 接地及防雷 (23) 4.12 数据采集检测系统 (24) 五、设备配置清单及详细参数 (25) 六、系统建设及施工 (25) 6.1 施工顺序 (25) 6.2 施工准备 (26) 6.3 工程施工 (27) 七、系统安装及调试 (27) 7.1 太阳电池组件安装和检验 (27) 7.2 总体控制部分安装 (29) 7.3 检查和调试 (29) 八、工程预算分析报告 (30) 8.1 投资估算内容 (30)

8.2 工程预算 (30) 九、运行及维护注意事项 (32) 9.1 日常维护 (32) 9.2 注意事项 (35)

一、太阳能离网发电系统简介及建设内容参数 1.1 太阳能离网发电系统简介 独立光伏电站是独立光伏系统中规模较大的应用。它的主要特点就是集中供电,如在一个十几户的村庄就可建立光伏电站来利用太阳能,当然这是在该村庄地理位置较偏远,无法直接利用电力公司电能的情况下,所能用到的方法。用这种方式供电便于统一管理和维护。而户用系统是采用分散供电的方式提供电能,如果要在该村庄安装户用光伏系统,这样每一户都得需这么一套光伏系统,它比起独立光伏电站来,所需的元器件规格要小,控制器、逆变器和蓄电池及负载都比较小,但是独立光伏电站和户用光伏系统基本结构是完全一致的。 太阳能光伏建筑一体化(Building Integrated Photovoltaic——BIPV)是应用太阳能发电的一种新形式,简单的讲就是将太阳能发电系统和建筑的围护结构外表面如建筑幕墙、屋顶等有机的结合成一个整体结构,不但具有围护结构的功能,同时又能产生电能供本建筑及周围用电负载使用。还可通过建筑物输电线路离网发电,向电网提供电能。太阳能光伏方阵与建筑的结合由于不占用额外的地面空间,是光伏发电系统在城市中广泛应用的最佳安装方式, 因而备受关注。 1.2 建设位置参数 1、项目名称:; 2、项目地点:湖北省武汉市; 3、经度:114°30’,纬度:30°60’;

5kW并网型可调度式光伏发电系统设计

辽宁工业大学 光伏发电技术课程设计(论文)题目: 5kW并网型可调度式光伏发电系统设计 院(系): 专业班级: 学号: 121806015 学生姓名: 指导教师:(签字) 起止时间: 2015.12.14-2015.12.25

课程设计(论文)任务及评语 院(系):新能源学院教研室:电气教研室Array 注:成绩:平时40% 论文质量60% 以百分制计算

摘要 近些年来,能源问题迫使世界各国对新能源开发和利用。太阳能因其自身的优势成为最有前途的一种新能源。将太阳能转换为电能越来越多的成为人们关注的焦点,只要成功,前途无量。但太阳能光伏发电仍旧存在着一些缺点,如成本高、能量转换率低,需要不断地改良,优化。对于光伏发电而言,并网模式是将其效率最大化最为理想的方式,因此要做好并网光伏发电系统的设计优化,才能满足电网对发电质量的要求,以及本身的安全运行。本文先对光伏发电进行了回顾,而后重点介绍了并网光伏发电系统,并提出了并网光伏发电系统设计的优化建议。 关键词:无线传感器网络;室内定位;RSSI;加权质心;混合定位

目录 第1章绪论 (1) 1.1光伏发电系统概况 (1) 1.2本文研究内容 (2) 第2章光伏发电系统总体设计 (3) 第3章发电系统设备选择及设计 (4) 3.1太阳能电池板的选择 (4) 3.2蓄电池参数计算及选择 (5) 3.3逆变器设计 (6) 3.4汇流箱设计 (9) 3.5并网逆变器控制保护设计 (11) 第4章总结 (13) 参考文献 (14) 附录A 光伏并网系统结构图 (16) 附录B 并网发电系统原理图 (17)

离网光伏发电控制系统样本

一、国内外研究现状 随着传统能源的FI益枯竭,新能源发电逐渐得到世界各国的广泛重视,其中太阳能光伏发电凭借其多方面的优点得到越來越多的推广。为了充分利用太阳能,最大效率的将电池板上的太阳能转化为电能,减少充放电次数,使蓄电池优化运行,提高逆变器运行的可靠性、稳定性和安全性,必须对最大功率点跟踪、蓄电池控制、逆变器设计的控制策略展开深入的研究。 1、最大功率跟踪点算法研究现状 光伏电池是太阳能光伏发电系统最基本的环节,且价格比较昂贵,它的能量转换效率影响着系统的整体效率和成本,因此必须使其最大限度地输出功率。然而,光伏电池的输出特性具有强烈的非线性,输出功率很容易随着外界环境温度、光照强度、负载状态的变化而变化。在一定的电池温度和光照强度下光伏电池能够工作在不同的输出电压,拥有不同的输出功率,只有在某一电压值下,输岀功率才能达到最大值,这时光伏电池的工作点称之为最大功率点。也就是说,在一定光照强度和温度下,太阳能电池有唯一的最大输出功率点。为了始终能工作在最大功率点,以达到输出功率最大,能量利用率最高的目的,因此必须对光伏电池进行最大功率跟踪点跟踪(Maximum Power Point Tracking,简称 MPPT)o 当前提出的MPPT方法很多,主要有恒电压法、扰动观察法、 增量电导法、间歇扫描法、智能控制法等,每种方法都有各自的优缺点。下文将针对比较常见的、应用最为广泛的恒电压法、扰动观

察法、电导增量法进行简要介绍对比。 (R恒电压法 忽略电池温度影响时,在不同的光照强度下,光伏电池输岀曲线的最大功率点近似分布在一条垂直线的附近。只要保持光伏电池输出电压为常数,且等于某一光照强度下光伏电池最大功率点的电压,就能基本保证在该温度下光伏电池工作在最大功率点, 从而实现MPPTo 由此可知,恒电压法实质上是把MPPT控制简化为恒电压控制,构成了恒定电压的MPPT控制。 恒定电压法具有控制简单,易于实现,稳定性好,可靠性高等优点,比较适合于低成本的应用场合或教学实验中,能够简化控制部分的设计。可是,这种方法忽略了电池温度对光伏电池最大功率点的的影响,当温度变化时,如果仍采用此法,光伏电池的输岀功率将会偏离最大功率点,造成能量的浪费,特别是对于早昼夜和四季温差大的地区,控制精度就更差,系统损失功率就更多。因此恒定电压法并不能完全实现真正意义上的最大功率跟踪。为了克服使用场所冬夏早晚、阴晴雨雾等环境变化对系统造成的影响,在恒定电压控制的基础上能够引进温度反馈來修正工作点电压,提高系统的整体效率。 (b)扰动观察法 扰动观察法(Perturb & Observe Algorithms)又称爬山法,主要根据光伏电池的P-U特性,经过扰动端电压來寻找最大功率点。而且不论外界环境如何变化,它都能够真正实现MPPT控制,因此是当前MPPT应用最广泛的方法之一。其工作原理是在光伏电池正常工作时,

相关主题