搜档网
当前位置:搜档网 › 历年诺贝尔物理学奖得主(1901-2016)汇总

历年诺贝尔物理学奖得主(1901-2016)汇总

历年诺贝尔物理学奖得主(1901-2016)汇总
历年诺贝尔物理学奖得主(1901-2016)汇总

------------------------------------------精品文档-------------------------------------

历年诺贝尔物理学奖得主(1901-2016)

获奖原因获奖者国籍年份“发现不寻常的射线,之后以他的名字命名”(即X德国·伦琴威廉·1901年康拉德射线,又称伦琴射线,并伦琴做为辐射量的单位)荷兰·洛仑兹亨得里克(即塞曼效应)关于磁场对辐射现象影响的研究”“年1902荷兰彼得·塞曼”“亨利·贝克勒发现天然放射性法国“他们对亨利法国·1903年贝克勒教授所发现的放射性现象的皮埃尔·居里”居里共同研究法国玛丽·“对那些重要的气体的密度的测定,以及由这些研究而发现氩”斯特拉斯英国1904年(对氢气、氧气、氮气等气体密度的约翰·威廉·测量,并因测量氮气而发现氩)安菲利普·爱德华·”关于阴极射线的研究年“德国1905莱纳德冯··东年1906对气体导电的理论和实验研究约瑟夫·汤姆孙英国“他的精密光学仪器,以及借助它们所做的光谱学

美国迈克耳孙阿尔伯特·1907年”和计量学研究”他的利用干涉现象来重现色彩于照片上的方法法国年“加布里埃尔·李普曼1908意大利古列尔莫·马可尼”他们对无线电报的发展的贡献“年1909德国·布劳恩卡尔·费迪南德”关于气体和液体的状态方程的研究荷兰年

1910“范德华”“发现那些影响热辐射的定律威廉·维恩德国1911年“发明用于控制灯塔和浮标中气体蓄积器的自动调瑞典达伦古斯塔夫尼尔斯··年1912”节阀“他在低温下物体性质的研究,尤其是液态氦的制荷兰··年海克卡末林昂内斯1913”成”射线衍射现象发现晶体中的“X劳厄1914年马克斯·冯·德国英国·亨利布拉格·威廉”射线对晶体结构的研究“用X年1915英国·威廉劳伦斯·布拉格”格洛弗年1917查尔斯··巴克拉英国发现元素的特征伦琴辐射“”因他的对量子的发现而推动物理学的发展普朗克德国“·1918年马克斯“发现极隧射

线的多普勒效应以及电场作用下谱线德国年1919约翰尼斯·斯塔克”的分裂现象“他的,推动物理学的精密测量的,有关镍钢合金瑞士·1920年夏尔爱德华纪尧姆·”的反常现象的发现“他对理论物理学的成就,特别是光电效应定律的德国年1921爱因斯坦阿尔伯特·”发

现”“他对原子结构以及由原子发射出的辐射的研究玻尔·年1922尼尔斯丹麦”·罗伯特年1923他的关于基本电荷以及光电效应的工作美国密立根安德鲁·“塞格卡尔乔奇·曼内··[3]”射线光谱学领域的发现和研究X年1924他在“瑞典巴恩.

德国弗兰克詹姆斯·”“发现那些支配原子和电子碰撞的定律年1925德国古斯塔夫·赫

兹”法国“·佩兰1926年研究物质不连续结构和发现沉积平衡让”阿瑟·康普顿“美国发现以他命名的效应“通过水蒸气的凝结来显示带电荷的粒子的轨迹的年1927英国威耳逊查尔斯·”方法“他对热离子现象的研究,特别是发现以他命名的英国1928年理查森欧文·”定律”“年发现电子的波动性路易·德布罗意公爵法国1929卡拉塞卡拉·文钱德”“他对光散射的研究,以及发现以他命名的效应1930年印度拉曼塔·“创立量子力学,以及由此导致的氢的同素异形体德国1932年海森堡维尔纳·”的发现(即量子力学”“埃尔温·薛定谔发现了原子理论的新的多产的形式奥地利年1933薛定谔方程和狄拉克方程)·狄拉克英国的基本方程——保罗”詹姆斯·英国查德威克1935年“发现中子”发现宇宙辐射奥地利“·维克托弗朗西斯·赫斯年1936”发现正电子戴维··安德森美国“卡尔美国·克林顿·约瑟夫戴维孙”他们有关电子被晶体衍射的现象的实验发现“年1937英国汤姆孙乔治·证明了可由中子辐照而产生的新放射性元素的存“意大利1938恩里科·费米年”在,以及有关慢中子引发的核反应的发现对回旋加速器的发明和发展,并以此获得有关人“美国1939劳伦斯欧内斯特·年”工放射性元素的研究成果他对分子束方法的发展以及有关质子磁矩的研究“美国奥托·施特恩

1943年”发现”“他用共振方法记录原子核的磁属性拉比·艾萨克·美国年1944伊西多”沃尔夫冈“发现不相容原理,也称泡利原理·泡利奥地利1945年发明获得超高压的装置,并在高

压物理学领域作“美国·威廉斯布里奇曼·1946年珀西”出发现对高层大气的物理学的研究,

特别是对所谓阿普“阿普尔·维克托爱德华·英国1947年”顿层的发现顿改进威尔逊云雾室方法和由此在核物理和宇宙射“斯图梅纳德帕特里克··英国1948年”布莱克特线领域的发现·尔特”他以核作用力的理论为基础预言了介子的存在年1949汤川秀树日本“发展研究核

过程的照相方法,以及基于该方法的“英国鲍威尔··年1950塞西尔弗兰克”有关介子的研究发现考克饶··约翰道格拉斯他们在用人工加速原子产生原子核嬗变方面的开“英国夫1951

年”创性工作爱尔兰·欧内斯特沃吞发展出用于核磁精密测量的新方法,并凭此所得美国布洛赫·费利克斯“年1952”的研究成果美国·爱德华珀塞尔”他对相衬法的证实,特别是

发明相衬显微镜“荷兰塞尔尼克·弗里茨年1953.

“在量子力学领域的基础研究,特别是他对波函数英国·玻恩马克斯”年的统计解释1954”符合法,以及以此方法所获得的研究成果博特德国“瓦尔特·”美国他的有关氢光谱的精细结构的研究成果·兰姆“威利斯·尤金年1955”精确地测定出电子磁矩波利卡普·库施美国“肖克布

拉德福德·威廉·美国利”他们对半导体的研究和发现晶体管效应“年1956美国·约翰巴丁

美国豪泽·布喇顿沃尔特·“中国他们对所谓的宇称不守恒定律的敏锐地研究,该杨振宁年1957”中国李政道定律导致了有关基本粒子的许多重大发现阿列克谢耶维·帕维尔苏联切

连科夫·奇”伊利亚·弗兰克苏联发现并解释切连科夫效应“年1958维夫根耶伊戈尔·叶苏联

塔姆·奇美国塞格雷·吉诺·埃米利奥”发现反质子“年1959美国张伯伦欧文·”格拉泽

发明气泡室美国“1960年·唐纳德·阿瑟“关于对原子核中的电子散射的先驱性研究,并由此美国

霍夫施塔特罗伯特·”得到的关于核子结构的研究发现年1961“他的有关γ射线共振吸收现象的研究以及与这个穆斯路德维希··鲁道夫德国”堡尔以他命名的效应相关的研究发现”关

于凝聚态物质的开创性理论,特别是液氦·朗道苏联“年1962达维多维奇列夫·“他对原子核和基

本粒子理论的贡献,特别是对基美国维格纳帕尔耶诺··”础的对称性原理的发现和应用年1963美国玛丽亚·格佩特-梅耶”发现原子核的壳层结构“德国J·汉斯·D·延森美国汤斯查

尔斯·“在量子电子学领域的基础研究成果,该成果导致维拉尼古·根纳季耶苏联年1964·奇

巴索夫了基于激微波-激光原理建造的振荡器和放大器苏联亚历山大·普罗霍罗夫日本朝

永振一郎“他们在量子电动力学方面的基础性工作,这些工美国施温格年1965朱利安·”作

对粒子物理学产生深远影响美国理查德··费曼菲利普”1966年阿尔弗雷德发现和发展了

研究原子中赫兹共振的光学方法法国“·卡斯特勒“他对核反应理论的贡献,特别是关于恒星中能

源贝阿尔布雷希特汉斯··美国1967年”特的产生的研究发现“他对粒子物理学的决定性贡献,特别是因他发展阿尔瓦沃尔特·路易斯·了氢气泡室技术和数据分析方法,年1968从而发现了

一大美国雷茨”批共振态”“美国对基本粒子的分类及其相互作用的研究发现盖尔曼·默里

年1969“磁流体动力学的基础研究和发现,及其在等离子斯·尼汉斯夫洛奥哥·瑞典1970年”体物理学富有成果的应用阿尔文·达

“关于反铁磁性和铁磁性的基础研究和发现以及在法国·奈耳路易”固体物理学方面的重要应用”发明并发展全息照相法丹尼斯“1971年英国伽博·美国巴丁约翰·“他们联合创立了超

导微观理论,即常说的BCS理美国·1972年库珀利昂”论美国·施里弗约翰·罗伯特日本江崎玲于奈”发现半导体和超导体的隧道效应“挪威伊瓦尔·贾埃弗年1973“他理论上预测出

通过隧道势垒的超电流的性质,英国·约瑟夫森布赖恩·戴维”特别是那些通常被称为约瑟夫森效应的现象“他们在射电天体物理学的开创性研究:赖尔的发·赖尔英国马丁明和观测,特别是合成孔径技术;1974年休伊什在发现脉英国休伊什·安东尼”冲星方面的关键性角色丹麦·玻尔奥格·尼尔斯“发现原子核中集体运动和粒子运动之间的联系,丹麦·莫特森本·罗伊1975年”并且根据这种联系发展了有关原子核结构的理论美国·雷恩沃特利奥·詹姆斯美

国·里克特伯顿”“他们在发现新的重基本粒子方面的开创性工作年1976美国丁肇中美国安德森菲利普·沃伦·”莫特“英国对磁性和无序体系电子结构的基础性理论研究内维尔·年1977美国凡扶累克约翰·彼得·列昂尼多维奇·卡”“苏联低温物理领域的基本发明和发现皮查年1978美国彭齐亚斯·艾伦·阿尔诺”“发现宇宙微波背景辐射美国伍德罗·威尔逊罗伯特·美国李·格拉肖谢尔登·“关于基本粒子间弱相互作用和电磁相互作用的统巴基斯坦阿卜杜勒·1979年萨拉姆”一理论的,包括对弱中性流的预言在内的贡献美国史蒂文·温伯格美国·克罗宁詹姆斯·沃森”介子衰变时存在对称破坏发现中性K“年1980美国·菲奇瓦尔·洛格斯登”“·西格巴恩瑞典对开发高分辨率电子光谱仪的贡献凯美国年布隆伯根尼古拉斯·1981”“对开发激光光谱仪的贡献美国肖洛阿瑟·”美国对与相转变有关的临界现象理论的贡献1982年“肯尼斯·威尔逊“有关恒星结构及其演化的重要物理过程的理论研钱德拉苏布拉马尼扬·美国”塞卡究年1983“对宇宙中形成化学元素的核反应的理论和实验研美国·福勒威廉”究“对导致发现弱相互作用传递者,场粒子W和Z卡洛·鲁比亚的意大利年1984”荷兰大型项目的决定性贡献西蒙·范德梅尔”克利青“德国发现量子霍尔效应·1985年克劳斯·冯“电子光学的基础工作和设计了第一台电子显微德国恩斯特·鲁斯卡”镜1986年”研制扫描隧道显微镜“德国宾宁·格尔德.

瑞士海因里希·罗雷尔德国约翰内斯·贝德诺尔茨”“在发现陶瓷材料的超导性方面的突破年1987瑞士·米勒卡尔中微子束方式,以及通过发现美国·莱德曼“利昂年1988”梅尔文·施瓦茨子中微子证明了轻子的对偶结构美国“发明分离振荡场方法及其在氢激微波和其他原子美国拉姆齐诺曼·”钟中的应用年1989美国·汉斯德默尔特”发展离子陷阱技术“德国保罗沃尔夫冈·“美国·弗里德曼他们有关电子在质子和被绑定的中子上的深度非杰尔姆弹性散射的开创性研究,这些研究对粒子物理学的亨利·肯德尔美国1990年”加拿大夸克模型的发展有必不可少的重要性理查·泰勒发现研究简单系统中有序现象的方法可以被推广“特别是推广到液晶和聚合到比较复杂的物质形式,-吉勒·德热纳年1991法国皮埃尔”物的研究中”“法国年发明并发展了粒子探测器,特别是多丝正比室乔治·夏帕克1992发现新一类脉冲星,该发现开发了研究引力的新“美国赫尔斯拉塞尔·年1993”的可能性泰勒美国约瑟夫·对中子频谱学的发展,以及对用于凝聚态物质研“加拿大伯特伦·布罗克豪斯”究的中子散射技术的开创性研究年1994对中子衍射技术的发展,以及对用于凝聚态物质“美国沙尔克利福德·”研究的中子散射技术的开创性研究,以及对轻子物理学的开创性实验研”“发现τ轻子美国·马丁佩尔究年1995”“发现中微子,以及对轻子物理学的开创性实验研弗雷德里克·莱因斯美国美国李·戴维”-3道格拉斯·奥谢罗夫美国里的超流动性“发现了在氦年1996美国·理查森罗伯特美国朱棣文”发展了用激光冷却和捕获原子的方法“·克洛德科昂-唐努德日法国年1997美国威廉·菲利普斯美国·罗伯特劳夫林发现一种带有分数带电激发的新的量子流体形“德国施特默年1998霍斯特·”式美国崔琦荷兰特·胡夫特·杰拉德”“阐明物理学中弱电相互作用的量子结构年1999荷兰·马丁纽斯韦尔特曼发展了用于高速电子学和光电子学的半导体异质“俄罗斯·若雷斯阿尔费罗夫”克勒默德国结构·2000年赫伯

特”·杰克基尔比美国“在发明集成电路中所做的贡献爱因斯坦凝聚态方“美国·埃里克康奈尔在碱性原子稀薄气体的玻色-以及凝聚态物质属性质的早期基础威曼卡尔年2001·面取得的成就,美国”克特勒·沃尔夫冈性研究德国在天体物理学领域做出的先驱性贡献,尤其是探美国戴维斯·雷蒙德“年2002”测宇宙中微子日本小柴昌俊

“在天体物理学领域做出的先驱性贡献,这些研究美国里卡尔多·贾科尼”射线源的发现导致了宇宙X阿列克谢·阿布里科索俄罗斯夫”对超导体和超流体理论做出的先驱性贡献“年2003俄罗斯维塔利·金兹堡美国·莱格特安东尼美国·格娄斯戴维”发现强相互作用理论中的渐近自由休·波利策“美国年2004美国·韦尔切克弗朗克”对光学相干的量子理论的贡献·格劳伯美国“罗伊“2005年美国约翰·霍尔对包括光频梳技术在内的,基于激光的精密光谱”

德国特奥多尔·亨施学发展做出的贡献,美国·马瑟约翰”发现宇宙微波背景辐射的黑体形式和各向异性“年2006美国斯穆特乔治·法国艾尔伯·费尔”发现巨磁阻效应“年2007德国·格林贝格彼得“日本发现对称性破缺的来源,并预测了至少三大类夸小林诚”2008年克在自然界中的存在益川敏英日本”发现亚原子物理学的自发对称性破缺机制美国“南部阳一郎“在光学通信领域光在纤维中传输方面的突破性成英国高锟”就年2009美国·博伊尔威拉德”发明半导体成像器件电荷耦合器件“美国·史密斯乔治俄罗斯·海姆安德烈”“在二维石墨烯材料的开创性实验年2010俄罗斯诺沃肖洛夫康斯坦丁·澳大利亚施密特布莱恩·”“美国透过观测遥距超新星而发现宇宙加速膨胀亚当·里斯年2011美国索尔·珀尔马特“阿罗什能够量度和操控个体量子系统的突破性实验手法国塞尔日·年2012”美国大卫·维因兰德法彼得·W·希格斯英国2013年对希格斯玻色子的预测[1][4-6]

弗朗索瓦·恩格勒比利时

赤崎勇日本“发明一种新型高效节能光源,即蓝色发光二极管2014年天野浩日本(LED)”中村修二美国

梶田隆章日本“通过中微子振荡发现中微子有质量。” 2015年阿瑟·麦克唐纳加拿大

戴维·索利斯

“发现了物质的拓扑相变和拓扑相”美国年2016邓肯·霍尔丹

迈克尔·科斯特利茨

【历届诺贝尔奖得主(五)】1956年物理学奖得主

物理学奖 美国,布拉顿(WalterHouserBrattain1902-1987),研究半导体、发明晶体管 获奖理由:因对半导体的研究和发现了晶体管效应,与肖克利和巴丁分享了1956年度的诺贝尔物理学奖金。 简历 布拉顿(Brattain,WalterHouser)美国物理学家。1902年2月10日生于中国(父母是美国人)厦门。布拉顿的少年时期是在牧场上度过的。他1924年毕业于惠特曼学院(在华盛顿州沃拉沃拉),1929年在明尼苏达大学取得博士学位。同年,他进入贝尔电话实验室,成为一名物理学研究人员。第二次世界大战期间,他在那里从事潜艇磁探测的工作。他同肖克利和巴丁共同获得1956年诺贝尔物理学奖。1967年,他接受惠特曼学院的聘请,担任了自己母校的教授。 美国,巴丁(JohnBardeen1908-1991),研究半导体、发明晶体管 生平 1908年5月23日生于威斯康星州麦迪逊城,1923年入威斯康星大学电机工程系就学,毕业后即留在该校担任电机工程研究助理。1930-1933年在匹兹堡海湾实验研究所从事地球磁场及重力场勘测方法的研究。1928年获威斯康星大学理学士学位,1929年获硕士学位。1936年获普林斯顿大学博士学位。1933年到普林斯顿大学,在E·P·维格纳的指导下,从事固态理论的研究。1935-1938年任哈佛大学研究员。1936年以《金属功函数理论》的论文从普林斯顿大学获得哲学博士学位。1938-1941年任明尼苏达大学物理学助理教授,1941-1945年在华盛顿海军军械实验室工作,1945-1951年在贝尔电话公司实验研究所研究半导体及金属的导电机制、半导体表面性能等基本问题。1947年和其同事W·H·布喇顿共同发明第一个半导体三极管,一个月后,W·肖克莱发明PN结晶体管。这一发明使他们三人获得1956年诺贝尔物理学奖,巴丁并被选为美国科学院院士。 科研方向与获奖情况 1951年迄今,他同时任伊利诺伊大学物理系和电机工程系教授。他和L·N·库珀、J·R·施里弗合作,于1957年提出低温超导理论(BCS理论),为此,他们三人被授予1972年诺贝尔物理学奖,在同一领域(固态理论)中,一个人两次获得诺贝尔奖,历史上还是第一次。 晚年他研究如何用简单而基本的成分理解大自然非常复杂的性质,对整个近代理论物理学发展提出明确的见解。1980年他发表题为《物质结构的概念统一》的总结性论文,强调相同的基本物理概念可以广泛地用于表面上似乎悬殊的各个问题上,包括固体、液晶、核物质、高能粒子等领域。 巴丁发明了晶体管.1956年和肖拉克一起获得了诺贝尔物理学奖.1972年巴丁,库柏,施里弗一起获得了诺贝尔物理学奖. 巴丁于1991年1月30日上午8时45分去世 美国,肖克利(WilliamBradfordShockley1910-1989),研究半导体、发明晶体管 发明创造 获奖理由:因对半导体的研究和发现了晶体管效应,与巴丁和布拉顿分享了1956年度

对诺贝尔物理学奖获得者的统计与分析

对诺贝尔物理学奖获得者的统计与分析 物理是一门神奇的学科,在努力学好规定课程外,还应该多了解一些课外知识,随着2012年诺贝尔奖揭晓仪式将于10月8日起陆续举行,物理学奖于2012年10月9日揭晓。我们对历届诺贝尔物理学将获得者是否有一些共性产生了兴趣,为此组成了课题组对历届诺贝尔物理学奖获得者进行了统计与分析。 诺贝尔物理学奖是根据诺贝尔遗嘱而设立的五个基本奖项之一,旨在奖励那些在物理学领域里做出突出贡献的科学家。自1901年首届诺贝尔物理学奖颁发至2012年112年间,除了1916 年因第一次世界大战,1931年和1934 年因世界经济大萧条,以及1940~1942年因第二次世界大战未颁发外,一共授奖106次,共有192人次,191人获得此项殊荣。其中美国科学家巴丁是唯一一位两次荣获诺贝尔物理学奖的物理学家。他分别在1956年因发明晶体管及对晶体管效应的研究以及时隔16年后与库伯、施里弗创立BCS超导微观理论而两次获此殊荣。获奖者中有2名女科学奖。她们是法国的居里夫人1903年因发现自发放射性和在放射学方面的深入研究和杰出贡献而获奖,以及美国的迈耶夫人1963年因对原子核和基本粒子理论所做的贡献,特别是对称性基本原理的发现和应用获得该奖,其余186人皆为男性。对女性科学家的关注不够是造成这种现象的重要原因。而居里夫妇也是这112年中唯一一对获得该奖的夫妻,更令世人对他们的甜蜜爱情和同登科学高峰的研究精神羡慕钦佩。在这112年中,最年轻的物理学奖得主是1915年获此殊荣的英国物理学家劳伦斯·布拉格,时年25岁;最年长的物理学奖得主是2002年获得该奖的美国物理学家雷蒙德·戴维斯,他得奖时已是85岁高龄。112年中曾出现过布拉格父子、汤姆孙父子、玻尔父子和西格班父子等四对父子获得诺贝尔物理学奖,他们父子情深、追求卓越、同攀科学高峰的精神彪炳史册,为世人学习和铭记。 一、诺贝尔获奖者所处的环境 影响诺贝尔物理学奖获得者的环境因素很多,经过查阅资料发现诺贝尔物理学奖获得者所处的环境的几个共同点是:开放的国家环境、稳定的社会环境、激发创造活力的教育环境与和谐的人际关系。以马克斯·玻恩为例(1954年获奖),在获奖前,他的主要经历是1907年哥廷根大学获得博士,1908年剑桥大学学习物理知识,1909年至1915年先后在哥廷根大学,及印度科学院学习和工作。后来在爱丁堡大学工作17年。许多获奖物理学家都有相似的经历,而这样的经历又只有在开放的国家环境中才能实现。稳定的社会环境是科学家潜心研究的必要条件战争和动乱是对科学研究的最大干扰,对科学家的身心也是极大的磨损和消耗。以德国为例,1933年希特勒上台后,德国在22年里无一人获奖,其中奥托·斯特恩、马克斯·玻恩、贝蒂、加波等四位科学家是在希特勒执政时离开德国分别在美英继续研究。可见一个稳定的社会环境对科学研究时多么的重要。富有创造活力的教育环境是科学幼苗成长为科学巨匠的适宜土壤。因发现泡利不相容原理而于1945年获诺贝尔物理学奖的泡利其成长经历就是一例,证上中学时18岁的泡利就写了一篇关于相对论的论文讨论了引力场动量一能量张量的能量分量,他把论文带到了慕尼黑经过著名物理学家索末菲的推荐发表在德国期刊上,此后他继续研究了广义相对论问题发表的论文引起了同行们的注意。随后又和数学家克莱因合作编写《数理科学全书》第五卷,不久泡利就写出了一篇250页左右的综述文章。克莱因看完文章后,把著作权给了泡利。这篇稿子成了全面论述爱因斯坦的数学思想和物理观念的最早论著之一,而且至今仍是有关相对论的重要经典。 192位获奖者不仅在物理学研究领域有很高的造诣而且大多表现出了高尚的人格魅力和处理人际关系的艺术,师生关系和谐、合作伙伴关系和谐、家庭,和谐是科学家研究取得突破的重要基础。例如居里夫妇,劳伦斯·布拉格父子等等。

历年诺贝尔物理学奖得主(1901-2016)汇总

历年诺贝尔物理学奖得主(1901-2016)年份获奖者国籍获奖原因 1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X 射线,又称伦琴射线,并伦琴做为辐射量的单位) 1902年亨得里克·洛仑兹荷兰 “关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰 1903年亨利·贝克勒法国“发现天然放射性” 皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的 共同研究” 玛丽·居里法国 1904年约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩) 1905年菲利普·爱德华·安 东·冯·莱纳德 德国“关于阴极射线的研究” 1906年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究" 1907年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究” 1908年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法” 1909年古列尔莫·马可尼意大利 “他们对无线电报的发展的贡献”卡尔·费迪南德·布劳恩德国 1910年范德华荷兰“关于气体和液体的状态方程的研究”1911年威廉·维恩德国“发现那些影响热辐射的定律” 1912年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀” 1913年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成” 1914年马克斯·冯·劳厄德国“发现晶体中的X射线衍射现象” 1915年威廉·亨利·布拉格英国 “用X射线对晶体结构的研究”威廉·劳伦斯·布拉格英国 1917年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射” 1918年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展” 1919年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象” 1920年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现” 1921年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现” 1922年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923年罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作” 1924年卡尔·曼内·乔奇·塞格 巴恩 瑞典“他在X射线光谱学领域的发现和研究”[3]

1998年诺贝尔物理学奖

·1998年诺贝尔物理学奖——分数量子霍耳效应的发现 1998年诺贝尔物理学奖授予美国加州斯坦福大学的劳克林(Robert https://www.sodocs.net/doc/a017332662.html,ughlin,195O—),美国纽约哥伦比亚大学与新泽西州贝尔实验室的施特默(Horst L.St rmer,1949—)和美国新泽西州普林斯顿大学电气工程系的崔琦(Daniel C.Tsui,1939—),以表彰他们发现了一种具有分数电荷激发状态的新型量子流体,这种状态起因于所谓的分数量子霍耳效应。 量子流体早在研究极低温状态下的液氦和超导体时就已有所了解。在这些领域里,已经有好几位物理学家获得过诺贝尔物理学奖。例如,卡末林-昂内斯由于液氦的研究和超导电性的发现获1913年诺贝尔物理学奖;朗道由于液氦和超流理论获1962年诺贝尔物理学奖;巴丁、库珀和施里弗由于提出超导电性的BCS 理论获1972年诺贝尔物理学奖;卡皮查由于发现氦的超流动性获1978年诺贝尔物理学奖;柏诺兹和缪勒由于发现高温超导获1987年诺贝尔物理学奖;戴维·李、奥谢罗夫和R.C.里查森则因发现氦-3的超流动性获1996年诺贝尔物理学奖。这么多的物理学家受到如此殊荣,说明凝聚态物理学在20世纪有极大的发展,而低温和超导在这一领域内又具有特殊重要的地位。分数量子霍耳效应正是继高温超导之后凝聚态物理学又一项崭新课题。 分数量子霍耳效应是继霍耳效应和量子霍耳效应①的发现之后发现的又一项有重要意义的凝聚态物质中的宏观量子效应。冯·克利青由于在1980年发现了量子霍耳效应而于1985年获得诺贝尔物理学奖。图98-1表示冯·克利青所得霍耳电阻随磁场变化的台阶形曲线。台阶高度等于物理常数h/e2除以整数i。e 与h是自然的基本常数——e是电子的基本电荷,h是普朗克常数。h/e2值大约 为25kΩ。图中给出了i=2,3,4,5,6,8,10的各层平台。下面带峰的曲线表示欧姆电阻,在每个平台处趋于消失。量子数i也可用填充因子f 代替,填 充因子f由电子密度和磁通密度确定,可以定义为电子数N与磁通量子数Nφ(=φ/φ0)之比,即f=N/Nφ,其中φ为通过某一截面的磁通,φ0为磁通量子, φ0=h/e=4.1×10-15Vs.当f是整数时,电子完全填充相应数量的简并能级(朗 道能级),这种情况的量子霍耳效应叫做整数量子霍耳效应,以与分数量子霍耳效应相区别。

历届诺贝尔物理学奖

历届诺贝尔物理学奖 1901年威尔姆·康拉德·伦琴(德国人)发现X 射线 1902年亨德瑞克·安图恩·洛伦兹、P. 塞曼(荷兰人)研究磁场对辐射的影响 1903年安东尼·亨利·贝克勒尔(法国人)发现物质的放射性皮埃尔·居里(法国人)、玛丽·居里(波兰人)从事放射性研究 1904年J.W.瑞利(英国人)从事气体密度的研究并发现氩元素 1905年P.E.A.雷纳尔德(德国人)从事阴极线的研究 1906年约瑟夫·约翰·汤姆生(英国人)对气体放电理论和实验研究作出重要贡献1907年 A.A.迈克尔逊(美国人)发明了光学干涉仪并且借助这些仪器进行光谱学和度量学的研究 1908年加布里埃尔·李普曼(法国人)发明了彩色照相干涉法(即李普曼干涉定律)1909年伽利尔摩·马可尼(意大利人)、K . F. 布劳恩(德国人)开发了无线电通信O.W.理查森(英国人)从事热离子现象的研究,特别是发现理查森定律 1910年翰尼斯·迪德里克·范德华(荷兰人)从事气态和液态议程式方面的研究1911年W.维恩(德国人)发现热辐射定律 1912年N.G.达伦(瑞典人)发明了可以和燃点航标、浮标气体蓄电池联合使用的自动节装置 1913年H·卡末林—昂内斯(荷兰人)从事液体氦的超导研究 1914年马克斯·凡·劳厄(德国人)发现晶体中的X射线衍射现象 1915年威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国人)借助X射线,对晶体结构进行分析 1916年未颁奖 1917年 C.G.巴克拉(英国人)发现元素的次级X 辐射的特征 1918年马克斯·卡尔·欧内斯特·路德维希·普朗克(德国人)对确立量子理论作出巨大贡献 1919年J.斯塔克(德国人)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象 1920年 C.E.纪尧姆(瑞士人)发现镍钢合金的反常现象及其在精密物理学中的重要性

2016诺贝尔奖

精心整理 诺贝尔奖评选委员会表示,上世纪90年代初,大隅良典通过利用常见的酵母进行一系列实验后,发现了对细胞自噬机制具有决定性意义的基因。基于这一研究成果,他随后又阐明了自噬机制的原理,并证明人类细胞也拥有相同的自噬机制。 评选委员会在当天发布的新闻公报中指出,大隅良典的研究成果有助于人类更好地了解细胞如何实现自身的循环利用。在适应饥饿或应对感染等许多生理进程中,

细胞自噬机制都有重要意义,大隅良典的发现为理解这些意义开辟了道路。此外,细胞自噬基因的突变会引发疾病,因此干扰自噬过程可以用于癌症和神经系统疾病等的治疗。 获奖者介绍 1945年生于日本福冈县,1974 2009 2005年到2008年间,他研究的动植 年获得京都奖。 获奖反应 或医学奖再次颁发给亚洲的科学家,无疑是对亚洲科学家在医学领域的肯定。诺贝尔生理学或医学奖评委会秘书长托马斯·佩勒曼表示,“亚洲是医学领域的新兴力量,很多科学家活跃在医学领域前沿,并作出了卓越贡献。” 当大隅良典接到得奖通知时感到很惊讶,他说:“我很惊讶,我正在我的实验室。”朝日新闻报道,由于网络直播声音不太好,大隅良典没能听到颁奖的瞬间。

大隅良典表示,有许多科学家从事细胞自噬领域的研究,自己能够单独获得诺奖肯定十分意外。“这一领域的研究发展迅速。我刚开始做研究的时候,每年只有约不到20篇关于细胞自噬的论文发表,如今这一数字超过5000。在过去的15年间,细胞自噬研究经历了巨大的变化。” 诺贝尔物理学奖 瑞典皇家科学院10月4日宣布,2016年诺贝尔物理学奖授予三位科学家——戴 如今,望。 年代早期,当时的理论认为超导现象和超流体现象不可能在薄层中产生,而戴维·索利斯和迈克尔·科斯特利茨推翻了这一理论。他们证明了超导现象能够在低温下产生,并阐释了超导现象在较高温度下也能产生的机制——相变。 后来到了80年代,戴维·索利斯成功地解释了之前的一个实验,即超薄导电层中的电导系数可被精确测量到整数。他证明了这些整数在自然属性中处于拓扑状态。

【历届诺贝尔奖得主(八)】1983年物理学奖

1983年12月10日第八十三届诺贝尔奖颁发。 物理学奖 美国科学家昌德拉塞卡因对恒星结构方面的杰出贡献、美国科学家福勒因与元素有关的核电应方面的重要实验和理论而共同获得诺贝尔物理学奖。 苏布拉马尼扬·钱德拉塞卡是一位印度裔美国籍物理学家和天体物理学家。钱德拉塞卡在1983年因在星体结构和进化的研究而与另一位美国体物理学家威廉·艾尔弗雷德·福勒共同获诺贝尔物理学奖。他也是另一个获诺贝尔奖的物理学家拉曼的亲戚。钱德拉塞卡从1937年开始在芝加哥大学任职,直到1995年去世为止。他在1953年成为美国的公民。钱德拉塞卡兴趣广泛,年轻时曾学习过德语,并读遍自莎士比亚到托马斯·哈代时代的各种文学作品。 人物简介 苏布拉马尼扬·钱德拉塞卡(SubrahmanyanChandrasekhar,1910年10月19日 —1995年8月15日),在恒星内部结构理论、恒星和行星大气的辐射转移理论、星系动力学、等离子体天体物理学、宇宙磁流体力学和相对论天体物理学等方面都有重要贡献。1983年因在星体结构和进化的研究而获诺贝尔物理学奖。他是另一个获诺贝尔奖的物理学家拉曼的亲戚。 他一生中写了约四百篇论文和诸多书籍。他兴趣广泛,年青时曾学习德语,读遍自莎士比亚到托马斯·哈代的文学作品。 1937年起钱德拉塞卡在芝加哥大学工作,1953年取得美国国籍。晚年他曾研读牛顿的《自然哲学的数学原理》,并写了《Newton'sPrincipiafortheCommonReader》。此书出版后不久他便逝世了。 他算过白矮星的最高质量,即钱德拉塞卡极限。所谓“钱德拉塞卡极限”是指一颗白矮星能拥有的最大质量,任何超过这一质量的恒星将以中子星或黑洞的形式结束它们的命运。 人物生平 钱德拉塞卡于1910年出生在英属印度旁遮普地区拉合尔(现在的巴基斯坦),在家中排名第3,父亲为印度会计暨审计部门的高阶官员。 钱德拉塞卡的父亲也是一位技术娴熟的卡纳蒂克音乐(Carnaticmusic)演奏者与一些音乐学著作的作者。他的母亲则是一位知识份子,并曾将亨利克·易卜生的剧作《玩偶之家》翻译成泰米尔语。 钱德拉塞卡起初在家中学习,后来则进入清奈的高中就读(1922年至1925年间)。他在1925年至1930年进入了清奈的院长学院(PresidencyCollege),并获得学士学位。钱德拉塞卡在1930年7月获得印度政府的奖学金,于是前往英国剑桥大学深造。他后来进入剑桥三一学院就读,并成为劳夫·哈沃德·福勒(RalphHowardFowler)的学生。在保罗·狄拉克的建议下,钱德拉塞卡花费一年的时间在哥本哈根进行研究,并且认识了尼尔斯·玻尔。 钱德拉塞卡在1933年夏天获得剑桥大学的博士学位,并且在当年十月成为三一学院的研究员(1933年-1937年),他在这段时期认识了天文学家亚瑟·爱丁顿与爱德华·亚瑟·米尔恩(EdwardArthurMilne)。 钱德拉塞卡在1936年与LalithaDoraiswamy结婚。 学术生涯 苏布拉马尼扬·钱德拉塞卡,1930年毕业于印度马德拉斯大学,1933年获得英国剑桥大学三一学院博士学位。 1930~1934年在英国剑桥大学三一学院学习理论物理。

1983年诺贝尔物理学奖——天体物理学的成就

1983年诺贝尔物理学奖——天体物理学的成就 1983年诺贝尔物理学奖一半授予美国伊利诺斯州芝加哥大学的钱德拉塞卡尔(Subrahmanyan Chandrasekhar,19l0—1995),以表彰他对恒星结构和演变有重要意义的物理过程的理论研究;另一半授予加利福尼亚州帕萨迪那加州理工学院的W.A.福勒(William AlfredFowler,1911—1995),以表彰他对宇宙中化学元素的形成有重要意义的核反应的理论和实验研究。 钱德拉塞卡尔是另一诺贝尔物理学奖获得者拉曼(SirChandrasekhara Venkata Raman)的外甥,1910年10月19日出生于巴基斯坦的拉合尔,1930年毕业于印度马德拉斯大学,后在英国剑桥大学学习和任教。1937年移居美国。 钱德拉塞卡尔的主要贡献是发展了白矮星①理论。 白矮星的特性是大约在1915年由美国天文学家亚当斯(W.S.Adams)发现的。1925年英国物理学家R.H.福勒(R.H.Fowler)用物质简并假说解释了白矮星的巨大密度。物质简并假说称,电子和电离的核在极大的压力下组成高度密集的物质。1926年爱丁顿(A.S.Eddington )建议,氢转变为氦是恒星能量的可能泉源,这就为恒星演化理论奠定了基础。 1930年—1936年,钱德拉塞卡尔在剑桥大学三一学院工作期间,就投入到了白矮星的研究之中。他找到了决定恒星生命的基本参数,通过应用相对论和量子力学,利用简并电子气体的物态方程,为白矮星的演化过程建立了合理的模型,并作出了如下预测: 1.白矮星的质量越大,其半径越小; 2.白矮星的质量不会大于太阳质量的1.44倍(这个值被称为钱德拉塞卡尔极限); 3.质量更大的恒星必须通过某些形式的质量转化,也许要经过大爆炸,才能最后归宿为白矮星。 钱德拉塞卡尔的理论解释了恒星演化的最后过程,因此对宇宙学作出了重大贡献。1939年他在全面研究了恒星结构的基础上出版了《恒星结构研究导论》一书,系统总结了他的白矮星理论。他还在恒星和行星大气的辐射转移理论、星系动力学、等离子体天体物理学、宇宙磁流体力学等方面进行了许多工作。 钱德拉塞卡尔1995年8月21日由于心脏病发作而去世,享年84岁。他在晚年时潜心研究牛顿的《自然哲学的数学原理》。1995年3月20日他还在美国物理学会圣何塞年会上做过题为“牛顿…原理?的一些命题”的特邀报告。当时他正在写一本有关牛顿的书。 W.A.福勒1911年8月9日出生于美国宾夕法尼亚州的匹兹堡。由于从事与

近五年诺贝尔物理学奖简介

2008年至2012年诺贝尔物理学奖获得者及其主要贡献简介 获奖年度:2012年 获奖者:沙吉·哈罗彻(Serge Haroche)大卫·温兰德(David J. Wineland) 获奖者简介:沙吉·哈罗彻1944年生于摩洛哥的卡萨布兰卡,现为法 国籍。他1971年在巴黎第六大学获得博士学位,曾任职于法国国家科研中心和法国综合理工大学,现为法兰西学院和巴黎高等师范学院教授。 大卫·温兰德1944年生于美国密尔沃基,1970年在哈佛大学获得博士学位,现任职于美国国家标准与技术研究所和科罗拉多大学博尔德分校。 获奖原因 瑞典皇家科学院授予这二人奖项的原因是他们在“突破性的试验方法使得测量和操纵单个量子系统成为可能”。 塞尔日·阿罗什和大卫·维因兰德独立地发明并拓展出能够在保持个体粒子的量子力学属性的情况下对其进行测量和操控的方法,而这在之前被认为是不能实现的。 在不破坏单个量子粒子的前提下实现对其直接观测,两位获奖者以这样的方式为量子物理学实验新纪元开辟了一扇大门。对于单个光子或物质粒子来说,经典物理学定律已不再适用,量子物理学开始“接手”。但从环境中分离出单个粒子并非易事,而且一旦粒子融入外在世界,其神秘的量子性质便会消失。因此,许多通过量子物理学推测出来的现象看似荒诞,也不能被直接观测到,研究人员也只能进行一些猜想实验,试图从原理上证明这些荒诞的现象。 通过巧妙的实验方法,阿罗什和维因兰德与研究小组一起成功地实现对量子碎片的测量和控制,颠覆了之前人们认为的其无法被直接观测到的看法。这套新方法允许他们检验、控制并计算粒子。 两位获奖者均在量子光学领域研究光与物质间的基本相互作用,这一领域自1980年代中期以来获得了相当多的成就。他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步。就如传统计算机在上世纪的影响那样,或许量子计算机将在本世纪以同样根本性的方式改变我们的日常生活。极端精准的时钟在他们研究的推动下应运而生,有望成为未来新型时间标准的基础,而其精准度超越现代铯时钟百倍以上。

1918年诺贝尔物理学奖——能量子的发现

1918年诺贝尔物理学奖——能量子的发现 1918年诺贝尔物理学奖授予德国柏林大学的普朗克(Max KarlErnst Ludwig Planck ,1858—1947),以承认他发现能量子对物理学的进展所作的贡献。 1895年前后,普朗克正在德国柏林大学当理论物理学教授,由于鲁本斯(H.Rubens )的介绍,经常参加以基本量度基准为主要任务的德国帝国技术物理研究所(Physikalisch Technische Reichsanstalt ,简称PTR )有关热辐射的讨论。这时PTR 的理论核心人物维恩(W.Wien )因故离开PTR ,PTR 的实验研究成果需要有理论研究工作者的配合,普朗克正好补了这个空缺。 维恩在1893年提出了关于辐射能量分布的定律,即著名的维恩分布定律: T a e b u --=5λ 其中u 表示能量随波长λ分布的函数,也叫能量密度,T 表示绝对温度,a ,b 是两个任意常数。 维恩分布定律发表后引起了物理学界的注意。实验物理学家力图用更精确的实验予以检验;理论物理学家则希望把它纳入热力学的理论体系。普朗克认为维恩的推导过程不大令人信服,假设太多,似乎是凑出来的。于是从1897年起,普朗克就投身于这个问题的研究。他企图用更系统的方法以尽量少的假设从基本理论推出维恩公式。经过二三年的努力,终于在1899年达到了目的。他把电磁理论用于热辐射和谐振子的相互作用,通过熵的计算,得到了维恩分布定律,从而使这个定律获得了普遍的意义。 然而就在这时,PTR 成员的实验结果表明维恩分布定律与实验有偏差。1899年卢梅尔(O.R.Lummer )与普林舍姆(E.Pringsheim )向德国物理学会报告说,他们把空腔加热到800K ~1400K ,所测波长为0.2μm ~6μm ,得到的能量分布曲线基本上与维恩公式相符,但公式中的常数,似乎随温度的升高略有增加。第二年2月,他们再次报告,在长波方向(他们的实验测得8μm )有系统偏差。 根据维恩公式,应有:lnu=ln (bλ-5)T a λ- 从而lnu ~T 1曲线应为一根直线。但是,他们却发现温度越高,偏离得越厉害。 接着,鲁本斯和库尔班(F.Kurlbaum )将长波测量扩展到5.2μm 。他们发现在长波区域辐射能量分布函数(即能量密度)与绝对温度成正比。 普朗克刚刚从经典理论推导出的辐射能量分布定律,看来又需作某些修正。正在这时,瑞利(Lord Rayleigh )从另一途径也提出了能量分布定律。

历届诺贝尔物理学奖得主及成就汇总

若雷斯·阿尔费罗夫 2000 年赫伯特·克勒默杰克·基尔比埃里克·康奈尔2001 年卡尔·威曼沃尔夫冈·克特勒雷蒙德·戴维斯 2002 年小柴昌俊里卡尔多·贾科尼阿列克谢·阿布里科索夫 2003 年维塔利·金兹堡安东尼·莱格特戴维·格罗斯 2004 年戴维·普利策弗朗克·韦尔切克 2005 罗伊·格劳伯俄罗斯德国美国美国美国德国美国日本美国俄罗斯俄罗斯英国美国美国美国美“发展了用于高速电子学和光电子学的半导体异质结构” “在发明集成电路中所做的贡献” “在碱性原子稀薄气体的玻色-爱因斯坦凝聚态方面取得的成就,以及凝聚态物质属性质的早期基础性研究” “在天体物理学领域做出的先驱性贡献,尤其是探测宇宙中微子” “在天体物理学领域做出的先驱性贡献,这些研究导致了宇宙X 射线源的发现” “对超导体和超流体理论做出的先驱性贡献” “发现强相互作用理论中的渐近自由” “对光学相干的量子理论的贡献” 年约翰·霍尔特奥多尔·亨施 2006 年约翰·马瑟乔治·斯穆特艾尔伯·费尔彼得·格林贝格小林诚 2008 年益川敏英南部阳一郎高锟 2009 年威拉德·博伊尔乔治·史密斯安德烈·海姆康斯坦丁·诺沃肖洛夫布莱恩·施密特国美国德国美国美国法国德国日本日本美国英国美国美国荷兰英/ 俄澳大利亚美国“发现对称性破缺的来源,并预测了至少三大类夸克在自然界中的存在” “发现巨磁阻效应” “发现宇宙微波背景辐射的黑体形式和各向异性” “对包括光频梳技术在内的,基于激光的精密光谱学发展做出的贡献,” 2007 年“发现亚原子物理学的自发对称性破缺机制” “在光学通信领域光在纤维中传输方面的突破性成就” “发明半导体成像器件电荷耦合器件” 2010 年“在二维石墨烯材料的开创性实验”[3] 2011 “透过观测遥距超新星而发现宇宙加速膨胀” 亚当·里斯 索尔·珀尔马特塞尔日·阿罗什大卫·维因兰德彼得·希格斯 2013 弗朗索瓦·恩格勒赤崎勇 2014 天野浩中村修二 2015 梶田隆章阿瑟·B·麦克唐纳 2016 戴维·索利斯迈克尔·科斯特利茨邓肯·霍尔丹美国法国美国英国比利时日本日本美国日本加拿大英/美英/美英国他们发现中微子振荡现象,该发现表明中微子拥有质量。发明“高亮度蓝色发光二极管” 对希格斯玻色子的预测[4] “能够量度和操控个体量子系统的突破性实验手法” 2012 发现了物质的拓扑相变和拓扑相。[5]

《诺贝尔奖 物理学奖 百科知识一览表》

《诺贝尔奖· 物理学奖百科知识一览表》 布莱恩·施密特 获奖时间:2011亚当·里斯 获奖时间:2011萨尔·波尔马特 获奖时间:2011安德烈·盖姆 获奖时间:2010康斯坦丁·诺沃肖洛夫 获奖时间:2010高锟 获奖时间:2009乔治·史密斯 获奖时间:2009韦拉德·博伊尔 获奖时间:2009南部阳一郎 获奖时间:2008小林诚 获奖时间:2008益川敏英 获奖时间:2008艾尔伯·费尔 获奖时间:2007皮特·克鲁伯格 获奖时间:2007约翰·马瑟 获奖时间:2006乔治·斯穆特 获奖时间:2006罗伊·格劳伯 获奖时间:2005约翰·霍尔 获奖时间:2005特奥多尔·亨施 获奖时间:2005戴维·格罗斯 获奖时间:2004戴维·普利策

获奖时间:2004弗兰克·维尔泽克 获奖时间:2004阿列克谢·阿布里科索夫获奖时间:2003安东尼·莱格特 获奖时间:2003维塔利·金茨堡 获奖时间:2003雷蒙德·戴维斯 获奖时间:2002里卡尔多·贾科尼 获奖时间:2002小柴昌俊 获奖时间:2002埃里克·康奈尔 获奖时间:2001沃尔夫冈·凯特纳 获奖时间:2001卡尔·威依迈 获奖时间:2001阿尔费罗夫 获奖时间:2000杰克·基尔比 获奖时间:2000赫拉尔杜斯·霍夫特 获奖时间:1999韦尔特曼 获奖时间:1999劳克林 获奖时间:1998霍斯特·路德维希·施特默获奖时间:1998崔琦 获奖时间:1998朱棣文 获奖时间:1997W.D.菲利普斯 获奖时间:1997科昂·塔努吉 获奖时间:1997戴维·莫里斯·李 获奖时间:1996道格拉斯·D·奥谢罗夫

2017年诺贝尔物理学奖

2017年诺贝尔物理学奖 2017年物理学奖,由三位美国的物理学家获得,他们是雷纳·韦斯(Rainer Weiss)(获得奖金的一半)、基普·索恩(Kip S.Thorne)和巴里·巴里什(Brrry C.Barish)(分享另一半奖金)。获奖的成就是发现了引力波。 雷纳·韦斯(Rainer Weiss,1932—),出生于德国,随后和家人从纳粹的魔掌中逃出。他在纽约曼哈顿上西区长大,是一个拥有工匠天赋和街头智慧的孩子,会自己制作并且售卖高保真音响系统。念本科时,韦斯从麻省理工学院退学。此后,他在那里获得终身职位。韦斯为自己赢得了著名物理学家的声誉,并且致力于LIGO研究40余年。这是人类曾经尝试过的最大胆的试验之一。 基普·斯蒂芬·索恩(Kip Stephen Thorne,1940—),出生在美国犹他州的洛根市。父亲是农艺学专家,母亲是经济学家。1962年获得加州理工学院学士学位,1965年获得普林斯顿大学的博士学位。1967年索恩回到加州理工学院任教,三年后晋升为理论物理的教授,是加州理工历史上最为年轻的教授之一。 巴里·克拉克·巴里什(Brrry Clark Barish,1936—),出生在内布拉斯加州的奥马哈。他在南加州长大,高中就读于洛杉矶。1957年获得物理学学士,1962年获得加州大学伯克利分校的实验高能物理学博士学位。1963年加入加州理工学院。巴里什大力促成了美国自然科学基金会国家科学委员会批准资助的LIGO项目,并在项目的建造和交付使用上发挥 1

了重要作用。他还创建了LIGO的科学联盟(LIGO Scientific Collaboration),全球的合作者已经超过1000个。 本年度的诺贝尔物理学奖有一个特殊的意义:百年的现代物理学,今天终于有了一个了断。 现代物理学建立的标志当然是一百年前建立了相对论和量子力学,而相对论理论的建立尽管也有多位物理学家的贡献,但是爱因斯坦的贡献不但傲立群雄,而且即使说是爱因斯坦以一己之力建立的,也不会有太大的问题,尤其是广义相对论的建立更是人类理性思维和科学发展的一个高峰。 而量子力学的建立则完全是一批物理学家的集体贡献,爱因斯坦也对量子力学的建立做出了重要的贡献,比如他于1922年被授予的1921年的诺贝尔物理学奖的颁奖词为:“对理论物理的服务,特别是发现了光电效应的规律。”“光电效应”是光的量子性的直接证据,而且是对原子的量子力学模型的直接验证。事实上,随着量子力学以及基于量子力学的粒子物理标准模型的发展,相关研究在诺贝尔物理学奖历史上屡屡获奖,相信以后还会有。这些诺贝尔物理学奖标志着量子力学走向了成熟,虽然今后还会发展,但其正确性已经毋庸置疑。 与此形成鲜明对照的是,爱因斯坦(为主)建立的广义相对论一百年来虽然已经成为了现代物理学的主要部分,而狭义相对论更是和量子力学一起构成了现代物理学的两个支柱,但是历史上不但爱因斯坦没有因为相对论而获得诺贝尔物理学奖,后来对于丰富广义相对论做出了很多贡献的众多 2

历届诺贝尔化学奖得主

历届诺贝尔化学奖得主简介(1901-2009) 自1901年诺贝尔奖首次颁奖起,至2006年为止,全世界有476人获得诺贝尔奖,其中诺贝尔化学奖得主有162人。在这476位诺贝尔奖得主中,有四位曾两次获奖。 其中,波兰裔法国女物理学家、化学家Marie Sklodowska Curie(玛丽?居礼)(即居礼夫人)获得1903年的诺贝尔物理奖与1911年诺贝尔化学奖 美国物理学家John Bardeen(约翰?巴丁)获得1956年与1972年的诺贝尔物理奖。 在所有得奖科学家中,有三对夫妻共同得奖。 法国物理学家Pierre Curie(皮耶?居礼)和Marie Sklodowska Curie (玛丽?居礼)夫妇获得1903年物理奖。 在所有得奖科学家中,包含有5对父子。共同得到1915年物理奖的是William Henry Bragg & William Lawrence Bragg(布拉格父子);分别得到1906年物理奖和1937年物理奖的是Joseph John Thomoson & George Paget Thomson(汤姆逊父子);分别得到1922年物理奖和1975年物理奖的是Niels Bohr & Aage Niles Bohr(波尔父子);分别得到1924年物理奖和1981年物理奖的是Karl Manne Georg Siegbahn & Kai Manne Borje Siegbahn(赛格巴恩父子)。 在所有得奖科学家中,有10位女性科学家。其中得到物理奖的是1903年得奖的Marie Sklodowska Curie(玛丽?居礼)与1963年得奖的

近十年诺贝尔物理学奖得主及其主要成就

近十年诺贝尔物理学奖得主及其主要成就 2011年诺贝尔物理学奖获奖者为美国加州大学伯克利分校教授索尔·佩尔马特,澳大利亚国立大学教授布莱恩·施密特,以及美国约翰斯·霍普金斯大学教授亚当·里斯。他们的贡献是,通过对超新星的观测证明宇宙在加速膨胀、变冷。 2010年诺贝尔物理学奖获奖者为英国曼彻斯特大学科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫。他们在2004年制成石墨烯材料。石墨烯是目前已知材料中最薄的一种,被普遍认为会最终替代硅,从而引发电子工业的再次革命。 2009年诺贝尔物理学奖获奖者为英国华裔科学家高锟以及美国科学家威拉德·博伊尔和乔治·史密斯。高锟获奖是由于在“有关光在纤维中的传输以用于光学通信方面”作出了突破性成就,而两位美国科学家的主要成就是发明半导体成像器件——电荷耦合器件(CCD)图像传感器。 2008年诺贝尔物理学奖获奖者为美国籍科学家南部阳一郎和日本科学家小林诚、益川敏英。南部阳一郎的贡献是发现了亚原子物理学中的自发对称性破缺机制,而小林诚和益川敏英的贡献是发现了有关对称性破缺的起源。 2007年,法国科学家阿尔贝·费尔和德国科学家彼得·格林贝格尔因发现“巨磁电阻”效应而获诺贝尔物理学奖。 2006年,美国科学家约翰·马瑟和乔治·斯穆特因发现了宇宙微波背景辐射的黑体形式和各向异性而获奖。 2005年,美国科学家罗伊·格劳伯、约翰·霍尔和德国科学家特奥多尔·亨施因为“对光学相干的量子理论的贡献”和对基于激光的精密光谱学发展作出了贡献而获奖。 2004年,诺贝尔物理学奖归属美国科学家戴维·格罗斯、戴维·波利策和弗兰克·维尔切克。他们发现了粒子物理强相互作用理论中的渐近自由现象。 2003年,拥有俄罗斯和美国双重国籍的科学家阿列克谢·阿布里科索夫、俄罗斯科学家维塔利·金茨堡以及拥有英国和美国双重国籍的科学家安东尼·莱格特因在超导体和超流体理论上作出了开创性贡献而获奖。 2002年,美国科学家雷蒙德·戴维斯、日本科学家小柴昌俊和美国科学家里卡尔多·贾科尼获得诺贝尔物理学奖。他们在天体物理学领域作出了先驱性贡献,其中包括在“探测宇宙中微子”和“发现宇宙X射线源”方面取得的成就

2002年诺贝尔物理学奖

记者招待会:2002年诺贝尔物理学奖 2002年10月8号 德国皇家科学院已经决定将2002年诺贝尔物理学奖的一半共同颁发给雷蒙德.戴维斯(美国费城,宾夕法尼亚大学,物理天文系)和小柴昌俊(日本,东京大学,国际基本粒子物理中心)。因为他们对天体物理开创性的贡献,特别是对宇宙中微子的探测。另一半颁给里卡尔多.贾科尼(美国华盛顿特区,联合大学公司)。因为他对天体物理开创性的贡献,引致宇宙X射线源的发现。 两个宇宙新窗口 地球处于宇宙粒子和其他形式射线的连续流量的路径中。今年的诺贝尔物理学奖用这些非常小的宇宙组成部分来增加我们对大尺度的理解:太阳,恒星,星系和超新星。这个新的知识改变了我们看待宇宙的方式。 早在1930年沃尔夫冈.泡利(1945年诺贝尔奖得主)预言了这种叫做中微子的神秘的粒子,但是用了25年才证实了它的存在(被莱茵斯证实,1995年诺贝尔奖得主)。这是因为形成于,太阳和其他恒星中发生的氢转化为氦的聚变过程中的中微子,几乎不与其他物质反 10个中微子经过我们,而我们注意不到。雷蒙德.应,因此很难被探测到。例如,每秒有12 戴维斯建立了一个全新的探测器,一个放置在矿井中的装满600吨液体的巨大的槽。在过去的30年里,他成功的捕获到来自太阳的总数为2000的中微子,而且因而可以证实聚变提供了来自太阳的能量。由小柴昌俊领导的研究小组,用另一个叫做神岗核探测实验的巨大的探测器,证实了戴维斯的结果。在1987年2月23号,他们也探测到了来自一个遥远的超新星 10个中微子中的12个。戴维斯和小柴的工爆炸产生的中微子。他们捕获了经过探测器的16 作引起了没有料想到的发现和一个新的深领域的研究,中微子天文学。 太阳和所有其他恒星在不同的波段发射电磁辐射,可见光和不可见光都有,例如,X射线。为了调查被地球大气吸收了的宇宙X射线辐射,有必要在空间放置仪器。里卡尔多.贾科尼建立了这样的仪器。他第一次探测到了一个我们太阳系之外的X射线源,而且第一个证实了宇宙包含X射线光背景辐射。他也探测到了现在大多数天文学家认为包含黑洞的X 射线源。贾科尼建立了第一个X射线望远镜,提供我们全新的清晰的宇宙图像。他的贡献奠定了X射线天文学的基础。 雷蒙德.戴维斯,1984年(87岁)生于美国华盛顿特区,1942年获得美国康涅狄格州耶鲁大学化学博士学位。现为美国费城宾夕法尼亚大学物理和天文系的名誉教授。 小柴昌俊,1926年(76岁)生于日本本州岛丰桥。1955年获得美国纽约罗切斯特大学博士学位。日本东京大学国际基本粒子物理中心名誉教授。 里卡尔多.贾科尼,1931年(71岁)生于意大利热那亚。1954年获得米兰大学博士学位。美国华盛顿特区联合大学公司的主席。 奖金总额:1000万瑞典克朗。戴维斯和小柴分享一半,贾科尼得到另外的一半。 杨冰(200911161018)译

(完整版)历年诺贝尔物理学奖得主(1901-2016)汇总.doc

历年诺贝尔物理学奖得主(1901-2016) 年份获奖者国籍获奖原因 1901 年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即 X 射线,又称伦琴射线,并伦琴做为辐射量的单位) 1902 年亨得里克·洛仑兹荷兰 “关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰 亨利·贝克勒法国“发现天然放射性” 1903 年皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的玛丽·居里法国共同研究” “对那些重要的气体的密度的测定,以及由这些研 1904 年约翰·威廉·斯特拉斯英国究而发现氩”(对氢气、氧气、氮气等气体密度的 测量,并因测量氮气而发现氩) 1905 年菲利普·爱德华·安 德国“关于阴极射线的研究”东·冯·莱纳德 1906 年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究" 1907 年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究” 1908 年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法” 1909 年古列尔莫·马可尼意大利 “他们对无线电报的发展的贡献”卡尔·费迪南德·布劳恩德国 1910 年范德华荷兰“关于气体和液体的状态方程的研究”1911 年威廉·维恩德国“发现那些影响热辐射的定律” 1912 年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀” 1913 年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成” 1914 年马克斯·冯·劳厄德国“发现晶体中的 X 射线衍射现象” 1915 年威廉·亨利·布拉格英国 “用 X 射线对晶体结构的研究”威廉·劳伦斯·布拉格英国 1917 年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射” 1918 年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展” 1919 年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象” 1920 年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现” 1921 年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现” 1922 年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923 年罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作” 1924 年卡尔·曼内·乔奇·塞格 瑞典“他在 X 射线光谱学领域的发现和研究 [3] 巴恩”

2010年诺贝尔物理学奖成果石墨烯解读

2010年诺贝尔物理学奖成果石墨烯解 读 https://www.sodocs.net/doc/a017332662.html, 2010年10月05日23:13 新华网

瑞典皇家科学院在颁奖词中称,这两位科学家是因为在石墨烯方面的“突破性实验”而获奖的。这种实验可研发新物质,生产创新型电子产品。由于石墨烯是一种透明的、非常好的导体,它可以用来生产透明触摸屏、灯光板、甚至是太阳能电池。 51岁的盖姆和36岁的诺沃肖洛夫虽然都是曼彻斯特大学的教授,而且他们突破性的论文也是2004年在曼彻斯特大学工作时发表的,但他们都出生在俄罗斯。盖姆是荷兰国籍,而诺沃肖洛夫具有俄罗斯和英国双重国籍。 新华网北京10月5日电(记者王艳红)碳是最重要的元素之一,它有着独特的性质,是所有地球生命的基础。纯碳能以截然不同的形式存在,可以是坚硬的钻石,也可以是柔软的石墨。2010年诺贝尔物理学奖所指向的,是碳的另一张奇妙脸孔:石墨烯。 想象有那么一张单层的网,每一个网格都是一个完美的六边形,每一个绳结都是一个碳原子。这张网只有一个原子那么厚,可以说没有高度、只有长宽,是二维而不是三维的。这就是石墨烯,它是二维的碳,人类已知的最薄材料,一种正为物理学和材料学带来许多新发现的东西。 由于这种材料是从石墨中制取的,而且包含烯类物质的基本特征——碳原子之间的双键,所以称为石墨烯。实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。层与层之间附着得很松散,容易滑动,使得石墨非常软、容易剥落。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。

科学家在20世纪40年代就对类似石墨烯的结构进行过理论研究,但在此后很长时间里,制取单层石墨烯的努力一直没有成功,有人认为这样的二维材料是不可能在常温下稳定存在的。2004年10月,发表在美国《科学》杂志上的一篇论文推翻了这种认知。在英国曼彻斯特大学工作的安德烈·海姆和康斯坦丁·诺沃肖洛夫,用普通胶带完成了他们的“魔术”。 他们用胶带从石墨上粘下薄片,这样的薄片仍然包含许多层石墨烯。但反复粘上十到二十次之后,薄片就变得越来越薄,最终产生一些单层石墨烯。这个看上去非常简单、一点儿也不高科技的方法,并不是他们的首创。在此之前就有人试过,但没能辨识出单层石墨烯。 海姆和诺沃肖洛夫把剥离下来的薄片放在氧化硅基板上,光的干涉效应使薄片在显微镜下呈现彩色条纹,就像油膜在水面上产生的效果。利用这种效应,他们观察到了单层石墨烯。就这样,第一种二维晶体材料正式出现了。之后,人们又制备出一些其他二维材料,例如氮化硼和二硫化钼的二维晶体。 石墨烯对物理学基础研究有着特殊意义,它使一些此前只能纸上谈兵的量子效应可以通过实验来验证,例如电子无视障碍、实现幽灵一般的穿越。但更令人感兴趣的,是它那许多“极端”性质的应用前景。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高出百倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。如果用一块面积1平方米的石墨烯做成吊床,可以承受一只猫的重量,而吊床本身重量不足1毫克,只相当于猫的一根胡须。 石墨烯的导电性比铜更好,导热性远超一切其他材料。它几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是氦原子——最小的气体原子也无法穿透。 科学家认为,利用石墨烯制造晶体管,有可能最终替代现有的硅材料,成为未来的超高速计算机的基础。晶体管的尺寸越小,其性能越好。硅材料在10纳米的尺度上已开始不稳定,而石墨烯可以将晶体管尺寸极限向下拓展到1个分子大小。海姆和诺沃肖洛夫已于2008年制造出1个原子厚、10个原子宽的晶体管。 石墨烯还可用于制造透明的触摸显示屏、发光板和太阳能电池板。在塑料里掺入百分之一的石墨烯,就能使塑料具备良好的导电性;加入千分之一的石墨烯,能使塑料的抗热性能提高30摄氏度。在此基础上可以研制出薄、轻、拉伸性好和超强韧新型材料,用于制造汽车、飞机和卫星。由于具备完美结构,石墨烯还能用来制造超灵敏的感应器,即使是最轻微的污染也能察觉。 但这样梦幻般的情景离实际还有距离,其中新型超级计算机这样的东西更是十分遥远。这种二维的碳到底会给人类世界带来什么样的改变,即使是刚刚戴上诺贝尔奖桂冠的研究者们,也无法预知。

相关主题