搜档网
当前位置:搜档网 › 弹性力学 第十一章 弹性力学的变分原理

弹性力学 第十一章 弹性力学的变分原理

弹性力学 第十一章 弹性力学的变分原理
弹性力学 第十一章 弹性力学的变分原理

第十一章弹性力学的变分原理知识点

静力可能的应力

弹性体的功能关系

功的互等定理

弹性体的总势能

虚应力

应变余能函数

应力变分方程

最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移

虚位移

虚功原理

最小势能原理

瑞利-里茨(Rayleigh-Ritz)法

伽辽金(Гапёркин)法

最小余能原理

平面问题最小余能近似解

基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析

一、内容介绍

由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。

变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。

本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹

性力学问题。最后,将介绍有限元方法的基本概念。

本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。

二、重点

1、几何可能的位移和静力可能的应力;

2、弹性体的虚功原理;

3、

最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理

的基本概念。

§11.1 弹性变形体的功能原理

学习思路:

本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。

首先建立静力可能的应力和几何可能的位移概念;静力可能的应力

和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。

建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。

学习要点:

1、静力可能的应力;

2、几何可能的位移;

3、弹性体的功能关系;

4、真实应力和位移分量表达的功能关系。

1、静力可能的应力

假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为Sσ 。如图所示

显然S=S u+Sσ

假设有一组应力分量σij在弹性体内部满足平衡微分方程

在面力已知的边界Sσ,满足面力边界条件

这一组应力分量称为静力可能的应力。静力可能的应力未必是真实的应力,因为真实的应力还必须满足应力表达的变形协调方程,但是真实的应力分量必然是静力可能的应力。

为了区别于真实的应力分量,我们用表示静力可能的应力分量。

2、几何可能的位移

假设有一组位移分量u i和与其对应的应变分量εij,它们在弹性体内部满足几何方程

在位移已知的边界S u上,满足位移边界条件

这一组位移称为几何可能的位移。几何可能的位移未必是真实的位移,因为真实的位移还必须在弹性体内部满足位移表示的平衡微分方程;在面力已知的边界Sσ上,必须满足以位移表示的面力边界条件。但是,真实的位移必然是几何可能的。

为了区别于真实的位移,用表示几何可能的位移。

几何可能的位移产生的应变分量记作。

3、弹性体的功能关系

对于上述的静力可能的应力、几何可能的位移以及其对应的应变分量,设F b i和F s i分别表示物体单位体积的体力和单位面积的面力(面力也包括在位移边界S u的约束反力)。则不难证明,有以下恒等式

证明:

由于和满足几何方程,而且应力是对称的,所以

将上式代入等式的右边,并且利用高斯积分公式,可得

由于满足面力边界条件,上式的第一个积分为

由于满足平衡微分方程,所以第二个积分为

将上述结果回代,可以证明公式为恒等式。

4、真实应力和位移分量表达的功能关系

公式揭示了弹性体的功能关系。

功能关系可以描述为:对于弹性体,外力在任意一组几何可能位移上所做的功,等于任意一组静力可能应力在上述几何可能位移对应的应变分量上所做的功。

这里需要强调指出的是:对于功能关系的证明,没有涉及材料的性质,因此

适用于任何材料。当然,证明时使用了小变形假设,因此必须是满足小变形条件。

其次,功能关系中,静力可能的应力、几何可能的位移以及其对应的应变分量,可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。

假如静力可能的应力和几何可能的应变分量满足材料本构方程时,则

对应的静力可能的应力和几何可能的位移以及其对应的应变分量均成为真实的应力,位移和应变分量。对于真实的应力,位移和应变分量,功能关系为

显然这是应变能表达式。不过在应变能公式中,假设外力,即体力和面力是由零缓慢地增加到最后的数值的,因此应变能关系式中有1/2。而在功能关系公式的推导中,并没有这一加载限制。

功能关系是弹性力学中的一个普遍的能量关系,这一原理将用于推导其它的弹性力学变分原理。

§11.2 变形体的虚功原理

学习思路:

本节讨论的重点是弹性体的虚功原理。

首先定义虚位移概念,通过将几何可能的位移定义为真实位移与虚位移的和,可以确定虚位移是位移边界条件所容许的位移微小改变量。对于虚位移所产生的虚应变,记作δεij。

根据弹性体的功能关系,可以得到虚功方程表达式δW =δU。

虚功方程的意义为:如果弹性体是处于静力平衡状态的,外力在虚位移上所做的虚功,等于真实应力分量在对应的虚应变上所做的虚功,即虚应变能。这就是虚功原理。

虚功原理等价于平衡微分方程和面力边界条件,它满足了静力平衡的要求。

学习要点:

1、虚位移与虚应变;

2、虚功原理;

3、虚功原理的意义。

1、虚位移与虚应变

功是指力与力作用点处沿力方向位移的乘积。显然,功包括力和位移两个基本量。如果力或者应力在其自身引起的真实位移或者应变上作功,这种功称为实功;如果力或者应力在其他某种原因引起的微小位移或者应变上作功,这种功称为虚功。

设几何可能的位移为

这里u i为真实位移,δ u i称为虚位移。虚位移是位移边界条件所容许的位移的微小改变量。由于几何可能的位移在边界S u上,应该满足位移边界条件,因此,边界S u,有

δ u i=0

将几何可能位移公式代入几何方程

显然,上式右边的第一项是真实应变,而第二项是虚位移所产生的虚应变,记作δεij。因此,上式可以写作

几何可能的位移对应的应变可以用真实应变与虚位移所产生的虚应变之和表示。

2、虚功原理

如果用虚位移表达的几何可能位移、和真实应力作为静力可

能应力代入功能关系表达式,注意到

真实应力和位移是满足功能关系的,因此可以得到用虚位移δ u i和虚应变δεij表达的虚功方程

上式中应力分量为实际应力。注意到在位移边界S u上,虚位移是恒等于零的,所以在上述面积分中仅需要在面力边界Sσ上完成。

就力学意义而言,虚功原理表达式的等号的左边为外力在虚位移中所做的功,称为外力虚功δ W;右边为应力分量在虚位移对应的虚应变上产生的应变能,称为虚应变能δ U。即

δ W =δU

根据上述分析,可以得出结论:如果弹性体是处于静力平衡状态的,对于满足变形连续条件的虚位移及其虚应变而言,外力在虚位移上所做的虚功,等于真实应力分量在对应的虚应变上所做的虚功,即虚应变能。这就是虚功原理。

3、虚功原理的意义

对于虚功方程,其右边的积分可以写作

上式在推导中应用了在位移边界S u上,δ u i=0的边界条件。现在将上式回代到虚功方程,整理可得

因为虚位移δ u i是任意的,因此上式的成立,要求在弹性体内

在位移已知边界S u上,有

显然,虚功原理等价于平衡微分方程和面力边界条件,它满足了静力平衡的要求。应该指出:虚功原理的推导并没有涉及任何材料性质,因此适用于任何材料。当然,由于使用了小变形假设,即线性的几何方程,因此虚功原理必须是在小变形条件下适用于任何材料。除此以外应力和应变分量之间不需要满足任何关系。

§11.3 功的互等定理

学习思路:

本节讨论功的互等定理。定理的证明比较简单,将功能方程应用于同一弹性体的两种不同的受力和变形状态,则可以得到功的互等定理。它是弹性体功能原理的另一种应用形式。

功的互等定理可以描述为:作用在弹性体上的第一种状态的外力,包括体力和面力,在第二种状态外力对应的位移上所做的功为例,等于第二种状态的外力在第一种状态对应的位移上所做的功。

功的互等定理是一个十分重要的力学概念。它的应用可以帮助我们推导和理解有关的有关的力学公式和概念,同时也可以直接用于求解某些弹性力学问题。

学习要点:

1、功的互等定理

1、功的互等定理

如果将功能方程工科应用于同一弹性体

的两种不同的受力和变形状态,则可以得到功的互等定理。

假设第一种状态的体力为,在面力边界S 上的面力为,在位移已知的

边界S u的位移为,弹性体内部的应力,应变和位移分别为;

第二种状态的体力,面力,应力,应变和位移分别为,,

。由于两种状态的应力和应变分量都是真实解,所以它们当然也就是静力可能的和几何可能的。

现在把第一种状态的应力作为静力可能的应力,而把第二种状态的位移和应变作为几何可能的位移和应变。将上述两种状态的应力和位移分别代入功能方程,有

同理,把第二种状态的应力取为静力可能的应力,而把第一种状态的位移和应变作为几何可能的位移和应变分别代入功能方程,有

对于上述公式的右边,由于

所以

上式称为功的互等定理。功的互等定理可以叙述为:作用在弹性体上的第一种状态的外力,包括体力和面力,在第二种状态对应的位移上所做的功等于第二种状态的外力在第一种状态对应的位移上所做的功。

功的互等定理是一个十分重要的力学概念。主要用于推导有关的力学公式,也可以直接用于求解力学问题。

§11.4 位移变分方程--最小势能原理

学习要点:

本节讨论最小势能原理。首先根据虚功原理推导应变能的一阶变分表达式,然后根据任意几何可能位移场与真实位移场的总势能的关系,得到真实位移场的总势能取最小值的结论。

最小势能原理用数学方程描述:总势能的一阶变分为零,而且二阶变分大于零。

最小势能原理等价于以位移表示的平衡微分方程和以位移表示的面力边界条件,所以,对于一些按实际情况简化后的弹性力学问题,可以通过最小势能原理推导出其对应的平衡微分方程和面力边界条件。本节通过例题对此作了说明。

推导中设应变能密度函数是应变分量的函数,因此最小势能原理是位移解法在变分原理中的应用。

进入本节内容学习之前,应该首先学习有关泛函和变分的基础知识。

学习思路:

1、总势能;

2、总势能的变分;

3、最小势能原理;

4、最小势能

原理推导弯曲问题的平衡微分方程和面力边界条件;5、最小势

能原理推导扭转问题的平衡微分方程和面力边界条件。

1、总势能

下面根据虚功方程推导仅应用于弹性体的最小势能原理。

设应变能密度函数是应变分量的函数,则应变能密度函数的一阶变分为

上式推导中,应用了格林公式,将上式代入虚功方程,则

上式表示外力虚功等于弹性体应变能的一阶变分。定义外力势能为

注意到虚位移与真实的应力无关,因此在虚位移过程中外力保持不变,即变分与外力无关。而且积分和变分两种运算次序可以交换的,所以外力势能的一阶变分可以写作

回代可得

其中E t 称为总势能,它是应变分量的泛函。由于应变分量通过几何方程可以用位移分量表示,所以总势能又是位移分量的泛函。

公式表明,在所有几何可能的位移中,真实位移将使弹性体总势能的一阶变分为零,因此真实位移使总势能取驻值。

2、总势能的变分

以下证明:对于弹性体的稳定平衡状态,总势能将取最小值。

将几何可能位移对应的应变代入总势能表达式,可以得到几何可能位移对应的总势能

将上式减去真实应变分量的总势能,可得

将按泰勒级数展开,并略去二阶以上的小量,有

回代可得

由于总势能的一阶变分为零,因此

3、最小势能原理

总势能的二阶变分为

由于

由于应变能密度函数为正定函数,即只有在所有的应变分量全部为零时其才可能为零,否则总是大于零的,因此

所以

以上证明了在所有的可能位移场中,真实位移场的总势能取最小值。所以这一原理称为最小势能原理。数学描述即总势能的一阶变分为零,而且二阶变分是正定的(大于零)。

必须强调指出的是,真实位移与其他的可能位移之间的差别在于是否满足静力平衡条件,所以说最小势能原理是用变分形式表达的平衡条件。

通过总势能的一阶变分为零,可以推导出平衡微分方程和面力边界条件,这和虚功原理是相同的,即最小势能原理也等价于平衡微分方程和面力边界条件。

虚功原理和最小势能原理之间的差别在于:虚功原理不涉及本构关系,适用于任何材料,只要满足小变形条件;最小势能原理除了小变形条件之外,还需要满足应变能密度函数表达的本构关系,因此仅限于线性和非线性弹性体。

最后,将最小势能原理完整的叙述为:在所有几何可能位移中,真实位移使得总势能取最小值。该方法是以位移函数作为基本未知量求解弹性力学问题的。当然,选择的位移函数必须是在位移已知的边界上满足位移边界条件,对于面力边界是不需要考虑的,因为面力边界条件是会自动满足的。

4、最小势能原理推导弯曲问题的平衡微分方程和面力边界条件

例2:图示直梁,分布载荷q(x)作用在轴线所在的铅垂平面内。用最小势能原理推导问题的平衡微分方程和面力边界条件。

解: 该梁为超静定结构。在梁的端面,施加适当的约束使梁不能产生刚体位移,施加适当的剪力和弯矩,使梁保持平衡。

设w(x)表示梁的挠度, 表示梁轴线变形后的曲率半径,则梁的应变能为

由于,并且注意到对于小变形问题,所以上式可以写作

本问题的面力边界为梁的上下表面,作用分布载荷q(x),则外力功为

梁的总势能为

对上式作一阶变分并且令其为零,有

整理可得

因此

上述关系式的第1式即问题的平衡方程,第2,3和4式为梁边界条件。

以上根据最小势能原理推导出梁的弯曲问题对应的平衡微分方程和面力边界条件。

5、最小势能原理推导扭转问题的平衡微分方程和面力边界条件。

例3:应用最小势能原理推导柱体扭转问题的基本方程和边界条件。

解:对于柱体扭转的位移解法,位移分量用扭转翘曲函数表示为

与上述位移分量对应的应力分量为

由于其他的应力分量全部为零,所以柱体的应变能为

由于柱体的侧表面不受外力的作用,不存在外力功的问题。在端面上,作用有扭矩T,产生扭矩的是x和y方向的面力F s x和F s y,而z方向的面力F s z为零。根据柱体扭转的位移表达式,本问题的虚位移为

δ u=0, δ v=0, δw=?δΦ

因此,柱体所有表面的外力虚功均为零。根据最小势能原理

所以

利用高斯积分公式,上式简化为

由于 是任意的,所以上式成立的条件为

显然,这和第九章中导出的扭转函数所要满足的平衡微分方程和面力边界条件是相同的。

§11.5 最小势能原理的应用

学习要点:

最小势能原理是弹性力学问题近似解法的基础。这一原理要应用于实际问题,必须有对应的求解方法。

首先建立以级数形式表达的位移试函数,选择的位移试函数必须满足位移边界条件,它是几何可能的。根据位移试函数可以确定应变分量以及总势能E t的表达式。注意到总势能E t原为位移的泛函,写作成为待定系数A m,B m和C m的二次函数。这样就把求解泛函的驻值问题,转化成为求解函数的极值问题。

根据上述原则推导的近似解法称为瑞利-里茨法。

如果选择的位移试函数不仅满足位移边界条件,而且满足面力边界条件,则求解公式将进一步简化。称为伽辽金法

最后举例说明瑞利-里茨法和伽辽金法的应用。

学习思路:

1、位移试函数;

2、瑞利-里茨法;

3、伽辽金法;

4、简支梁弯曲问

题;5、矩形板;6、扭转问题。

1、位移试函数

最小势能原理的主要用途并非推导平衡微分方程和面力边界条件,它是弹性力学问题近似解法的基础。如果要使得某个原理要应用于实际问题,必须有对应

的求解方法。本节介绍基于最小势能原理的两种近似解法:瑞利-里茨(Rayleigh-Ritz)法和伽辽金(Гапёркин)法。

根据最小势能原理,如果能够列出所有的几何可能位移,那么使总势能П1取最小值的那一组位移就是真实位移。问题是列出所有几何可能的位移是非常困难的,甚至是不可能的。

因此,对于实际问题的计算,只能凭借经验和直觉缩小寻找范围,在这个范围内的一族几何可能的位移中,找到一组位移使得总势能E t 最小。

虽然这一组位移一般的说并不是真实的,但是可以肯定,它是在这个缩小的给定范围内部,与真实位移最为接近的一组位移,由此解答可以作为近似解。

从上述思想出发,在一般情况下,可以将位移分量选择为如下的形式

其中,A m,B m和C m均为任意的常数;u0,v0和w0以及u m,v m和w m都是坐标的已知函数,并且在位移边界S u上,有

这样构造的位移试函数,不论系数A m,B m和C m取何值,总是满足位移边界条件的。而且对于连续函数,必然满足几何方程。因此满足几何可能位移的条件。

2、瑞利-里茨法

现在的问题是将要如何选择待定系数A m,B m和C m,使得总势能П1在位移表达式表示的这一族位移中取最小值。

为此,将位移表达式代入几何方程求得应变分量,然后代入总势能П1的表达式,注意到应变能密度函数是应变分量的齐二次函数,因此总势能П1表达式的第一个积分成为待定系数A m,B m和C m的齐二次函数,而第二和第三个积分为A m,B m和C m的一次函数。于是,总势能E t 原本是自变函数的泛函,现在成为待定系数A m,B m和C m的二次函数。

这样就把求解泛函的极值问题,转化成为求解函数的极值问题。总势能E t 取极值的条件为

总势能E t 取极值的条件又可以写作

上述公式是一组以A m,B m和C m(m=1,2,3…)为未知数的线性非齐次代数方程组,求解方程可得待定系数,回代就可以得到近似位移解答。这一方法称为瑞利—里茨法。

3、伽辽金法

下面讨论伽辽金(Гапёркин)法。注意到应变能的一阶变分可以写作

将上式回代最小势能原理,整理可得

如果选择的位移试函数不仅在位移边界上满足位移边界条件,而且在面力边界上满足面力边界条件,即位移试函数满足全部的边界条件,则上式可以进一步简化为

上式展开可以写作

将位移函数表达式代入几何方程求得应变分量,再根据物理方程求出应力分量代入上式,并且注意到

将上述结果代入虚功方程,可得

由于δA m,δB m和δC m 彼此独立而且是完全任意的,所以上式成立的条件为

由于应力分量为A m,B m和C m的线性函数,所以上述公式为A m,B m和C m 的线性非齐次代数方程组。解出待定系数代入公式就得到位移函数的近似解答,这种方法称为伽辽金法。

4、简支梁弯曲问题

例4:两端简支的等截面梁,受均匀分布载荷q作用如图所示。试求解梁的挠度w(x)。

解:首先使用瑞利—里茨法求解。

为了满足梁的位移边界条件,即简支梁两端的约束条件: 在x=0和l 处,w=0,取位移试函数,即挠曲线方程为

问题的总势能为

根据,所以

所以

回代到位移公式,可得

挠曲线表达式是无穷级数,它给出了本问题的精确解答。这个级数收敛很快,只要取少数几项就可以得到足够的精度。最大挠度在梁的中点,即处,因此

如果取一项,有。这一结果与精确值十分接近。

由于上述位移试函数表示的挠曲线方程在求二阶导数后仍为正弦函数,所以二阶导数在x=0 和x=l处仍旧为零。

本问题的静力边界条件是梁的绞支处弯矩为0,所以该表达式也满足面力边界条件,因此这一试函数也可以应用于伽辽金法求解。注意到

将位移试函数公式代入上式并且积分,可以得到与瑞利—里茨法相同的结果。

5、矩形板

例5:图示矩形薄板,四边固定,受有平行于板面的体力作用。设坐标轴如图所示,试用瑞利—里茨法求解。

解:设位移试函数为

上式中m和n为正整数,在边界x=0,a,和y=0,b上,u=v=0,所以试函数满足位移边界条件。

由于问题属于平面应力问题,所以

因此

理论力学:虚位移原理及分析力学基础

13.虚位移原理及分析力学基础 自由质点系:运动状态(轨迹、速度等)只取决于作用力和运动的起始条件的质点系。 非自由质点系:运动状态受到某些预先给定的限制(运动的起始条件也要满足这些限制条件)的质点系。 约束:非自由质点系所受到的预先给定的限制。 约束方程:用解析表达式表示的限制条件。 几何约束:只限制质点或质点系在空间位置的约束。 运动约束:对于质点或质点系不仅有位移方面的限制,还有速度或角速度方面的限制的约束。 定常约束:约束方程中不显含时间的约束。 非定常约束:约束方程中显含时间的约束。 完整约束:约束方程不包含质点速度,或者包含质点速度但是它可以积分,转换为有限形式的约束。 非完整约束:约束方程包含质点速度、且不可积分不能转换为有限形式的约束。 双面约束:不仅能限制质点在某一方向的运动,还能限制其在相反方向的运动的约束。 单面约束:只能限制质点沿某一方向运动的约束。 自由度数:在具有完整约束的质点系中,唯一地确定系统在空间的位形或构形的独立坐标的数目数。 广义坐标:用来确定质点系位置的独立参数。 虚位移:在给定位置上,质点或质点系在约束所容许的条件下可能发生的任何无限小位移,称为质点或质点系的虚位移。 虚功:作用于质点上的力在该质点的虚位移中所作的元功,用δW 表示。若用F ,δr 分别代表力和虚位移,则虚功的表达式为F W δδ=?F r 。 理想约束:约束力虚功之和等于零的约束。

虚位移原理:具有理想约束的质点系,在给定位置保持平衡的必要和充分条件是,所有作用于该质点系上的主动力在任何虚位移中所作的虚功之和等于零。 作用于质点系上的主动力对应于广义坐标q h 的广义力: 1 n i Qh i i h r F F q ? ? = =? ∑。 平衡稳定性:在保守系统中,(1)受到微小的扰动而偏离平衡位置后,它能返回到原平衡位置,这种平衡状态称为稳定平衡;(2)受到微小的扰动后,再也不能回到原平衡位置,这种平衡状态称为不稳定平衡;(3)不论在哪个位置,总是平衡的,这种平衡状态称为随遇平衡。 动力学普遍方程:在具有理想约束的质点系中,在任一瞬时,作用于各质点上的主动力和虚加的惯性力在任意虚位移上所作虚功之和等于零。

弹性力学教学大纲

课程编号:05z8514 弹性力学Theory of Elasticity 学分学时:3/48 先修课程: 高等数学;线性代数;理论力学;材料力学 一、课程教学目标 《弹性力学》是航空、航天结构强度和力学专业的重要专业基础课程,是固体力学的一个分支。主要研究弹性体受外力作用或温度改变等原因而产生的应力、位移和变形。弹性力学的任务是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。本课程的主要研究对象为非杆状结构,如板、壳以及其它实体结构。通过本课程的学习可为进一步学习力学类和相关工程类的后续课程打下坚实的力学基础。 二、教学内容及基本要求 1. 绪论(2学时) 弹性力学的发展史;研究内容;基本假设;矢量、张量基本知识。 2. 应力理论(4学时) 内力和应力;斜面应力公式;应力分量转换公式;主应力、应力不变量;最大剪应力;应力偏量;平衡微分方程。 3. 应变理论(4学时) 位移和变形;几何方程;转动张量;主应变和应变不变量;变形协调方程;位移场的单值条件;由应变求位移。 4. 本构关系(2学时) 热力学定律与应变能;本构关系;具有弹性对称面的弹性材料的本构关系;各向同性弹性材料的弹性常数;各向同性弹性材料的应变能密度 5. 弹性理论的建立与一般原理(4学时) 弹性力学基本方程和边界条件;位移解法和拉梅方程;应力解法与变形协调方程;叠加原理;解的唯一性原理;圣维南原理。 6.柱形杆问题(4学时) 圣维南问题;柱形扭转问题的基本解法;反逆法与半逆法,扭转问题解例;薄膜比拟;*柱形杆的一般弯曲。 7.平面问题(12学时) 平面问题及其分类;平面问题的基本解法;应力函数的性质;直角坐标解例(矩形梁的纯弯曲、简支梁受均布载荷和任意分布载荷);极坐标中的平面问题基本方程;轴对称问题(均匀圆筒或圆环、纯弯的曲梁、压力隧洞);非轴对称问题(小圆孔应力集中、楔体问题);关于解和解法的讨论。 8. 空间问题(2学时) 基本方程及求解方法;空间轴对称和球对称问题的基本方程;半空间体受重力及均布压力;半空间体在边界上受法向集中力;空心球受内压作用问题。 9.能量原理与变分法(6学时) 弹性体的变形比能与形变势能;变分法;位移变分方程;位移变分法;位移变分法应用于平面问题;应力变分方程与极小余能原理;应力变分法;应力变分法应用于平面问题;应力变分法应用于扭转问题。 10.复变函数解法或薄板弯曲(4学时)

弹性力学学习心得

弹性力学学习心得 孙敬龙S4 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编着的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17

世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从 1822~1828年间,在?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表

达朗贝尔原理及虚位移原理知识点总结

达朗贝尔原理 知识总结 1.质点的惯性力。 ?设质点的质量为m ,加速度为,则质点的惯性力定义为 2.质点的达朗贝尔原理。 ?质点的达朗贝尔原理:质点上除了作用有主动力和约束力外,如 果假想地认为还作用有该质点的惯性力,则这些力在形式上形成一个平衡力系,即 3.质点系的达朗贝尔原理。 ?质点系的达朗贝尔原理:在质点系中每个质点上都假想地加上各自的惯 性力,则质点系的所以外力和惯性力,在形式上形成一个平衡力系,可以表示为 4.刚体惯性力系的简化结果 (1)刚体平移,惯性力系向质心C 简化,主矢与主矩为 (2)刚体绕定轴转动,惯性力系向转轴上一点O 简化,主矢与主矩为 其中

如果刚体有质量对称平面,且此平面与转轴z 垂直,则惯性力系向此质量对称平面与转轴z 的交点O 简化,主矢与主矩为 (3)刚体作平面运动,若此刚体有一质量对称平面且此平面作同一平面运动,惯性力系向质心C简化,主矢和主矩为 式中为过质心且与质量对称平面垂直的轴的转动惯量。 5.消除动约束力的条件。 刚体绕定轴转动,消除动约束力的条件是,此转轴是中心惯性主轴(转轴过质心且对此轴的惯性积为零);质心在转轴上,刚体可以在任意位置静止不动,称为静平衡;转轴为中心惯性主轴,不出现轴承动约束力,成为动平衡。 常见问题 问题一在惯性系中,惯性力是假想的(虚加的),达朗贝尔原理也是数学形式上的,物体一般并不是真的处于平衡。 问题二惯性力系一般都是向定点或者质心简化,因此这时惯性力系的主矩,而向其它的点简化,一般上是不成立的。如果一定要向某一任意点A简化,那么要先向定点或质心简化,之后将其移至A点(注意力在平移时将会有附加力偶)。惯性力系的主失是与简化中心无关的。 问题三用达朗贝尔原理解题时,加上惯性力系后就完全转化成静力学问题,其求解方法与精力学完全相同。 问题四物体系问题。每个物体都有惯性力系,因此每个物体的惯性力系向质心(或定点)简化都得到一个力与一个力偶。 虚位移原理 知识点总结 1.虚位移·虚功·理想约束。 在某瞬时,质点系在约束允许的条件下,人所假想的任何无限小位移称为虚位移。虚位移可以是线位移,也可以是角位移。 力在虚位移中所作的功称为虚功。

弹性力学的变分原理

第十一章弹性力学的变分原理 一.内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二.重点 1. 几何可能的位移和静力可能的应力; 2. 弹性体的虚功原理; 3. 最小势能原理及其应用; 4. 最小余能原理及其应用; 5. 有限元原理的基本概念。 知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力

应变余能函数 应力变分方程 最小余能原理的近似解法 扭转问题最小余能近似解 有限元原理与变分原理 有限元原理的基本概念 有限元整体分析 几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法 基于最小余能原理的近似计算方法 有限元单元分析 附录3 变分原理 泛函是指某一个量,它的值依赖于其它一个或者几个函数。因此泛函也称为函数的函数。 变分法的基本问题是求解泛函的极值。

弹性力学学习心得

弹性力学学习心得 孙敬龙S201201024 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编著的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从1822~1828年间,在A.L?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利——里兹法,为直接求

理论力学(14.7)--虚位移原理-思考题答案

第十四章 虚位移原理 答 案 14-1 (1)若认为B处虚位移正确,则A,C处虚位移有错:A处位移应垂直于 O1A向左上方,C处虚位移应垂直向下。若认为C处虚位移正确,则B,A处虚位移有错:B处虚位移应反向,A处虚位移应垂直于O1A向右下方。C处虚位移可沿力的作用线,A处虚位移不能沿力的作用线。 (2)三处虚位移均有错,此种情况下虚位移均不能沿力的作用线。杆 AB,DE若运动应作定轴转动,B,D点的虚位移应垂直于杆AB,DE;杆BC,DE作平面运动,应按刚体平面运动的方法确定点C虚位移。 14-2 (1)可用几何法,虚速度法与坐标(解析)法;对此例几何法与虚速度法比坐标(解析)法简单,几何法与虚速度法难易程度相同。 (2)可用几何法,虚速度法与坐标(解析)法。几何法与虚速度法相似,比较简单。用坐标法也不难,但要注意δθ的正负号。

(3)同(2) (4)用几何法或虚速度法比较简单,可以用坐标法,但比较难。 (5)同(4) 14-3 (1)不需要。 (2)需要。内力投影,取矩之和为零,但内力作功之和可以不为零。 14-4 弹性力作功可用坐标法计算,也可用弹性力作功公式略去高阶小量计算;摩擦力在此虚位移中作正功。 14-5 在平面力系所在的刚体平面内建立一任意的平面直角坐标系,在此刚体平面内任选一点作为基点,写出此平面图形的运动方程。设任一力 的作用点为(x i, y i),且把此坐标以平面图形运动方程表示,设此点产生虚位移,把力 投影到坐标轴上,且写出此点直角坐标的变分,用解析法形式的虚位移表达式,把力的投影与直角坐标变分代入,运算整理之后便可得。

也可以在平面力系所在的刚体平面内任选一点O(简化中心),把平面力系向此点简化得一主矢与主矩,把主矢以 表示,分别给刚体以虚位移 ,由虚位移原理也可得平衡方程。

弹性力学

弹性力学 人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。 弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。 弹性力学的发展简史 同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。 在17世纪末第二个时期开始时,人们主要研究粱的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。 第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。 1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力

学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。 在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利──里兹法,为直接求解泛函极值问题开辟了道路,推动了力学、物理、工程中近似计算的蓬勃发展。 从20世纪20年代起,弹性力学在发展经典理论的同时,广泛地探讨了许多复杂的问题,出现了许多边缘分支:各向异性和非均匀体的理论,非线性板壳理论和非线性弹性力学,考虑温度影响的热弹性力学,研究固体同气体和液体相互作用的气动弹性力学和水弹性理论以及粘弹性理论等。磁弹性和微结构弹性理论也开始建立起来。此外,还建立了弹性力学广义变分原理。这些新领域的发展,丰富了弹性力学的内容,促进了有关工程技术的发展。 弹性力学的基本内容 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。

弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟) 一、填空题(每小题4分) 1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, M dxdy D =?? 2?的物理意义是 杆端截面上剪应力对转轴的矩等于杆 截面内的扭矩M 。 4.平面问题的应力函数解法中,Airy 应力函数?在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。 5.弹性力学平衡微分方程、几何方程的张量表示为: 0,=+i j ij X σ ,)(2 1,,i j j i ij u u +=ε。 二、简述题(每小题6分) 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理。 2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数?的分离变量形式。 题二(2)图 (a )???=++= )(),(),(222θθ??f r r cy bxy ax y x (b )? ??=+++= )(),(),(3 3223θθ??f r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。试求薄板面积的改变量S ?。

(完整版)弹性力学第十一章弹性力学的变分原理

第十一章弹性力学的变分原理知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力 应变余能函数 应力变分方程 最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析 一、内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹

性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二、重点 1、几何可能的位移和静力可能的应力; 2、弹性体的虚功原理; 3、 最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理 的基本概念。 §11.1 弹性变形体的功能原理 学习思路: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 首先建立静力可能的应力和几何可能的位移概念;静力可能的应力 和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 学习要点: 1、静力可能的应力; 2、几何可能的位移; 3、弹性体的功能关系; 4、真实应力和位移分量表达的功能关系。 1、静力可能的应力 假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为Sσ 。如图所示

清华大学版理论力学课后习题答案大全_____第12章虚位移原理及其应用习题解

解:如图(a ),应用虚位移原理: F 1 ?術 F 2 ? 8r 2 = 0 书鹵 / 、 8r 1 8r 2 tan P 如图(b ): 8 廿y ; 8 厂乔 8r i 能的任意角度B 下处于平衡时,求 M 1和M 2之间的关系 第12章 虚位移原理及其应用 12-1图示结构由8根无重杆铰接成三个相同的菱形。 试求平衡时, 解:应用解析法,如图(a ),设0D = y A = 2l sin v ; y^ 61 sin v S y A =21 cos :心; 溉=61 COST 心 应用虚位移原理: F 2 S y B - R ? S y A =0 6F 2 —2R =0 ; F i =3F 2 习题12-1图 F 2之值。已知:AC = BC 12-2图示的平面机构中, D 点作用一水平力F t ,求保持机构平衡时主动力 =EC = DE = FC = DF = l 。 解:应用解析法,如图所示: y A =lcos ) ; x D =3lsin v S y A - -l sin^ 心;S x D =3I COS ^ & 应用虚 位移原理: —F 2 ? S y A - F I 8x^0 F 2sin J - 3F t cos ^ - 0 ; F 2 = 3F t cot^ 12-3图示楔形机构处于平衡状态,尖劈角为 小关系 习题12-3 B 和3不计楔块自重与摩擦。求竖向力 F 1与F 2的大 F i F 2| (a ) (b) F i 8i - F 2 12-4图示摇杆机构位于水平面上,已知 OO i = OA 。机构上受到力偶矩 M 1和M 2的作用。机构在可

最新弹性力学基础知识归纳

一.填空题 1.最小势能原理等价于平衡微分方程和应力边界条件 2.一组可能的应力分量应满足平衡微分方程和相容方程。二.简答题 1.简述圣维南原理并说明它在弹性力学中的作用。 如果把物体一小部分边界上的面力变换为分布不同但是静 力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。 作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单 的分布的面力。 (2)将次要的位移边界条件做应力边界条件处理。 2.写出弹性力学的平面问题的基本方程。应用这些方程时, 应注意什么问题? (1).平衡微分方程:决定应力分量的问题是超静定的。 (2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。 (3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。但是形变分量完全确定时,位移分量不完全确定。 3.按照边界条件的不同,弹性力学分为哪几类边界问题? 应力边界条件,位移边界条件和混合边界条件。 4.弹性体任意一点的应力状态由几个分量决定?如何确定他 们的正负号?

由六个分量决定。在确定方向的时候,正面上的应力沿正方向为正,负方向为负。负面上的应力沿负方向为正,正方向为负。 5.什么叫平面应力问题和平面应变问题?举出工程实例。平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。例如工程中的深梁和平板坝的平板支墩。平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。例如 6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。 (1)完全弹性假定。 (2)均匀性假定。 (3)连续性假定。 (4)各向同性假定。 (5)小变形假定。 满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。一般混凝土构件和一般土质地基可以看做为理想弹性体。 7.什么是差分法?写出基本差分公式? 差分法是把基本方程和边界条件近似地看改用差分方程(代

弹性力学的广义变分原理

弹性力学的广义变分原理 摘要:研究了在弹性力学的三类变量广义变分原理中,变量三个变量是否独立,是否包含了应力应变关系。指出了在应用广义变分原理时应满足下列条件:泛函 中的应变能用应变表示、应变余能用应力表示:在用广义变分原理求实际问题的 近似解时。三类变量的试探函数可以独立选择,但各类变量之间应不违背力学基 本关系。为了解除应力应变关系的变分约束,我们提出了一个高阶拉格朗日乘子法。用这个高阶拉氏乘子法,我们从胡鹭原理和海赖原理分别导出了前所未知的 更普遍的广义变分原理。我们也证明了在这两类变分原理之间,有等价定理和相 关的等价关系存在。 关键词:弹性力学;广义变分原理 前言:弹性力学广义变分原理是弹性力学最小势能原理和弹性力学最小余能 原理的推广,其特点是,变分式中各量都可有独立的变分,并且事前不受任何限制。 1.广义变分原理Ⅰ 1.1广义函数及其构造。 弹性力学最小势能原理和弹性力学最小余能原理的推广,其特点是,变分式 中各量都可有独立的变分,并且事前不受任何限制。在弹性力学空间问题中,最 一般的广义变分原理可叙述为:弹性力学空间问题的解必须满足弹性体的广义势 能变分为零的条件,该条件又称为驻值条件,即 方程,包括应变-位移关系,应力-应变关系、平衡方程和边界条件。上述变分原理的独立变量有位移、应变、应力三类,因此称为三类变量广义变分原理。它 是中国力学家胡海昌于1954年首先提出的,日本的鹫津久一郎于1955年也独立 地得到这一原理,所以又称胡-鹫津原理。 弹性力学广义变分原理有一种稍弱的形式,即二类变量广义变分原理,又称 为赫林格-瑞斯纳原理。它由E.赫林格于1914年和E.瑞斯纳于1950年分别独 立提出,其数学表达式为: 在有限元法和工程弹性理论中,广义变分原理有广泛的应用。例如,在板壳 弯曲的有限元计算中,用它处理变形的不协调性,可得到较好的结果。对于解决 几何非线性问题,胡-鹫津原理是一个有力的工具。在工程弹性理论中,广义变分原理可用于推导各种近似理论;在弹性振动和稳定理论中,可用于求固有频率和 临界载荷,并能获得较好的结果。 用拉氏乘子法建立广义变分原理的广义泛雨的方法,这样就使构造广义泛雨 的方法建立在严格的数学方法的基础上,使深入分析广义变分原理及促使它们进 一步发展建立了理论基础。利用变分问题描述弹性力学问题,各类广义变分原理 实质上是旅于势能密度与余能密度的数学形式的展础上,在各种变分约束条件, 变分条件和一般约束条件下的匹配问题。由于已知的广义变分原理中的广义泛雨,都是基于势能声度和余能密度基础上构造的,这样应力应变的关系式对广义泛雨 万而言是一般约束条件,因此无法利用(线性)拉氏乘子法解除一般约束条件, 所以实质上为二类内变雨数的广义变分原理。 1.2广义函数的规一化。 考虑到历史的原因,我们称势能极值原理与余能极值原理为标准型变分原理. 对各类广义变分原理而言,当把变分条件还原为变分约束条件时,通过自变雨数

弹性力学第十一章弹性力学的变分原理

第十一章 弹性力学的变分原理 几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨 (Rayleigh-Ritz) 法 伽辽金(Γa∏epκuH )法 最小余能原理 平面问题最小余能近似解 基于最小 势能原理的近似计算方法 基于最小余能原理的近似计算方法 有限元单元分析 一、内容介绍 由于偏微分方程边值问题的求解在数学上的困 难,因此对于弹性力学问题, 只能采用半逆解方法得到个别问题解答。 一般问题的求解是十分困难的, 甚至是 不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基 本方程的定解问题, 转换为求解泛函的极值或者驻值问题, 这样就将基本方程由 偏微分方程的边值问题转换为线性代数方程组。 变分原理不仅是弹性力学近似解 法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理, 并且应用变分原理求解弹 性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习 附录3或者查阅参考资料。 知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力 应变余能函数 应力变分方 程 最小余能原理的近似解 法 扭转问题最小余能近似解 有限元原理与变分原理 有限元原理的基本概念 有 限元整体分析

、重点 1几何可能的位移和静力可能的应力;2、弹性体的虚功原理;3、最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理的基本概念。 §11.1弹性变形体的功能原理 学习思路: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使 得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 (Tt UJ C 首先建立静力可能的应力「:,和几何可能的位移’概念;静力可能的应力 和几何可能的位移;可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 学习要点: 1、静力可能的应力; 2、几何可能的位移; 3、弹性体的功能关系; 4、真实应力和位移分量表达的功能关系。 1、静力可能的应力 假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为S O如图所示

理论力学(机械工业出版社)第四章虚位移原理习题解答

习 题 4-1 如图4-19所示,在曲柄式压榨机的销钉B 上作用水平力F ,此力位于平面ABC 内,作用线平分∠ABC 。设 AB =BC ,∠ABC =θ2,各处摩擦及杆重不计,试求物体所受的压 力。 图4-19 0δ)90cos(δδN =--?=∑C B F s F s F W θ )90cos(δ)902cos(δθθ-?=?-C B s s θθsin δ2sin δC B s s = 虚位移原理 0δ)90cos(δδN =--?=∑C B F s F s F W θ 0δsin δN =-C B s F s F θ θ θθθtan 2 )2sin(sin sin δδ2N F F s s F F C B === 4-2 如图4-20所示,在压缩机的手轮上作用一力偶,其矩为M 。手轮轴的两端各有螺距同为h ,但方向相反的螺纹。螺纹上各套有一个螺母A 和B ,这两个螺母分别与长为l 的杆相铰接,四杆形成棱形框,如图所示,此棱形框的点D 固定不动,而点C 连接在压缩机的水平压板上。试求当棱形

框的顶角等于2f 时,压缩机对被压物体的压力。 图4-20 ??cos δ)290cos(δC A s s =-? C A s s δsin δ2=? 而 θ?δπ 2c o s δP s A = ?θ?θ?tan δπ sin δcos π22 δP P s C == 虚位移原理 0δδδN =-=∑C F s F M W θ 0tan δπ δN =?-?θθP F M ?cot π N P M F = 4-3 试求图4-21所示各式滑轮在平衡时F 的值,摩擦力及绳索质量不计。 图4-21 虚位移原理 0δδδ=+-=∑A B F s G s F W (a) A B s s δ2δ= 2 G F = (b) A B s s δ8δ= 8 G F = (c) A B s s δ6δ= 6 G F = (d) A B s s δ5δ= 5 G F =

清华大学版理论力学课后习题答案大全_____第12章虚位移原理及其应用习题解

第12章 虚位移原理及其应用 12-1 图示结构由8根无重杆铰接成三个相同的菱形。试求平衡时,主动力F 1与F 2的大小关系。 解:应用解析法,如图(a ),设OD = l θsin 2l y A =;θsin 6l y B = θθδcos 2δl y A =;θθδcos 6δl y B = 应用虚位移原理:0δδ12=?-?A B y F y F 02612=-F F ;213F F = 12-2图示的平面机构中,D 点作用一水平力F 1,求保持机构平衡时主动力F 2之值。已知:AC = BC = EC = DE = FC = DF = l 。 解:应用解析法,如图所示: θcos l y A =;θsin 3l x D = θθδsin δl y A -=;θθδcos 3 δl x D = 应用虚位移原理:0δδ12=?-?-D A x F y F 0cos 3sin 12=-θθF F ;θcot 312F F = 12-3 图示楔形机构处于平衡状态,尖劈角为θ和β,不计楔块自重与摩擦。求竖向力F 1与F 2的大小关系。 解:如图(a ),应用虚位移原理:0δδ2211=?+? r F r F 如图(b ): β θt a n δδt a n δ2 a 1r r r == ;12 δtan tan δr r θ β = 0δtan tan δ1211=? -?r θβF r F ;θ β tan tan 21?=F F 12-4 图示摇杆机构位于水平面上,已知OO 1 = OA 。机构上受到力偶矩M 1和M 2的作用。机构在可能的任意角度θ下处于平衡时,求M 1和M 2之间的关系。 习题12-1图 (a ) 习题12-2解图 习题12-3 (a ) r a (b )

弹性力学总结

弹性力学关于应力变分法问题 一、起源及发展 1687年,Newton 在《自然哲学的数学原理》中提出第一个变分问题——定轴转动阻力最小的旋转曲面形状问题; 1696年,Bernoulli 提出了著名的最速降线问题;到18世纪,经过Euler ,Lagrange 等人的努力,逐渐形成变分法。 古典变分法的基本容是确定泛函的极值和极值点,它为许多数学、物理、科技、工程问题提供了强有力地数学工具。现代理论证明,微分方程(组)中的变分法是把微分方程(组)化归为其对应泛函的临界点(即化为变分问题),以证明其解的存在性及解的个数。讨论对应泛函临界点的存在性及其个数的基本方法是Morse 理论与极小极论(Minimax Theory )。变分法有着深刻的物理背景,某种意义上,自然界一切物质运动均可以用某种形式的数理方程表示,一般数理方程又与一定的泛函相对应,所以一切物质运动规律都遵从“变分原理”。 由于弹性力学变分解法,实质上就是数学中的变分法应用于解弹性力学问题,虽然在讨论的近似解法中使用变分计算均甚简单(类似微分),但“变分”的概念却极为重要,它关系到我们队一系列力学变分原理中“虚”的概念的建立与理解。以下,就应力变分法进行讨论。 二、定义及应用 (1)、应力变分方程 设有任一弹性体,在外力的作用下处于平衡。命ij σ为实际存在的应变分量,它们满足平衡微分方程和应力边界条件,也满足相容方程,其相应的位移还满足位移边界条件。现在,假想体力和应变边界条件上给定的面力不变而应力分量发 生了微小的改变ij δσ,即所谓虚应力或应力的变分,使应力分量成为ij ij δσσ+ 假定他们只满足平衡微分方程和应力边界条件。 既然两组应力分量都满足同样体力和面力作用下的平衡微分方程和应力边界条件,应力分量的变化必然满足无体力时的平衡微分方程。即

弹性力学的基本理论及其在实际中的应用

《弹性力学》读书报告 弹性力学是固体力学学科的分支。其基本任务是研究弹性体由于外力载荷或者温度改变,物体内部所产生的位移、变形和应力分布等,为解决工程结构的强度,刚度和稳定性问题作准备,但是并不直接作强度和刚度分析。 一.弹性力学的作用 弹性力学研究弹性体在荷载等外来因素作用下所产生的应力、应变、位移和稳定性。切应力的成对性发展为极性物质弹性力学;把协调方程(保证物体变形后连续,各应变分量必须满足的关系)发展为非协调弹性力学;推广胡克定律,除机械运动本身外,还考虑其他运动形式和各种材科的物理方程称为本构方程。对于弹性体的某一点的本构方程,除考虑该点本身外还要考虑弹性体其他点对该点的影响,发展为非局部弹性力学等 二.弹性力学在常用坐标系下的基本方程 现在就解析法简要介绍弹性力学的基本方程: 1.平衡微分方程 用张量形式描述 2. 几何方程 用张量形式描述 变形协调方程

3.本构方程-广义胡克定律 用应力表示的本构方程 [][][][][][]()/(1)/()/(1)/()/(1)////x x y z E v x v E y y x z E v y v E z z x y E v z v E xy xy G yz yz G xz xz G εσσσσεσσσσεσσσσγτγτγτ=-+=+-Θ=-+=+-Θ=-+=+-Θ=== 用应变表示的本构方程 4.边界条件: 如果物体表面的面力F s x ,F s y ,F s z 为已知,则边界条件应为:

称为面力边界条件,用张量符号表示为 如果物体表面的位移已知,则边界条件应为 称为位移边界条件。除了面力边界条件和位移边界条件,还有混合边界条件。 如上所述,弹性力学的基本未知量为三个位移分量,六个应力分量和六个应变分量,共计十五个未知量。基本方程为三个平衡微分方程,六个几何方程和六个物理方程,也是十五个基本方程。 三.弹性力学基本的解决问题的方法: 弹性力学的研究方法主要有数学方法和实验方法,以及二者结合的方法。 数学方法基本上是根据弹性力学的基本方程,对岩体在某种假设的前提下进行弹性分析,从而得出岩体的各种力学参数。数学方法是偏微分方程的边值问题,求解的方法有解析法和近似解法。 (1)解析法,即直接求解偏微分方程边值问题,这在数学上难度极大,因此仅适用于个别特殊边界条件问题。 (2)数值解法是采用计算机处理的近似解法。近年来,随着现代科学技术的发展,特别是计算机技术的迅速发展和广泛应用,使得有限元方法首先在弹性力学应用领域发展起来。有限元方法将计算数学与工程分析相结合,极大地扩展和延伸了弹性力学理论与方法,取得了当代力学理论应用的高度成就。 四.弹性力学在实际应用中解决问题的实际方法: 1. 应力函数法 该方法主要是用应力作为基本变量求弹性力学的平面问题,在体力为常量时,归结为在给定的边界条件下求解平衡方程 //0//0 x x yx y Fx xy x y y Fy σττσ??+??+=??+??+= 和调和方程:▽2(σx+σy )=0 转化成齐此方程,用数学方法求出各项参数。 直接求解弹性力学问题往往时很困难的,有时可以使用逆解法和半逆解法。

相关主题