搜档网
当前位置:搜档网 › 高速铁路的隧道特点(DOC)

高速铁路的隧道特点(DOC)

高速铁路的隧道特点(DOC)
高速铁路的隧道特点(DOC)

高速铁路的隧道的特点

高速铁路的隧道设计是由限界、构造尺寸、使用空间和缓解及消减高速列车进入隧道诱发的空气动力学效应两方面的要求确定的。

研究表明,以上两方面要求中,后者起控制作用。当列车进入隧道时,原来占据着空间的空气被排开。空气的粘性以及气流对隧道壁面和列车表面的摩阻作用使得被排开的空气不能象在隧道外那样及时、顺畅地沿列车两侧和上部流动,列车前方的空气受压缩,随之产生特定的压力变化过程, 引起相应的空气动力学效应并随着行车速度的提高而加剧。

1、由于瞬变压力造成乘员舒适度降低,并对车辆产生危害;

2、微压波引起爆破噪声并危及洞口建筑物;

3、行车阻力加大;

4、空气动力学噪声;

5、列车风加剧。

高速铁路进入隧道产生的空气动力学效应是由多种因素所确定的。行车速度,车头和车尾形状,列车横断面,列车长度,列车外表面形状和粗糙度,车辆的密封性等。隧道净空断面面积,双线单洞还是单线双洞,隧道壁面的粗糙度,洞口及辅助结构物形式,竖井、斜井和横洞,道床类型等。列车在隧道中的交会等。

列车进入隧道引起的压力变化是两部分的叠加:

①列车移动时从挤压、排开空气到留下真空整个过程引起的压力变化;

②列车车头进入隧道产生的压缩波以及车尾进入隧道产生的膨胀波在隧道两洞口之间来回反射产生的压力变化(Mach波)。

当双线隧道中同时有不同方向列车相向行驶时,叠加所产生的情况则更为复杂。列车在隧道中运行时(无相向行驶列车)车上测得的最大压力波动发生在第一个反射波到达列车时。Mach波以声速传播,对于长隧道,来回反射的周期相应较长。同时,在反射的过程中能量有所衰减。而对于短隧道,Mach波反射的周期大为缩短。同时,在反射过程中能量损失也较少,致使压力波动程度加剧。试验表明,压力波动绝对值,并不随隧道长度的减小而减小。因此,对高速铁路中的隧道,有的虽然不长(例如长度在1km左右),其可能引起的行车时的压力波动仍然不能忽视。但是,当隧道长度短到使列车首尾不能同时在其中时。则Math波的叠加不可能发生,压力波动程度当然随之缓解。当隧道长度为1km时,压力波动明显加剧,而当隧道长度进一步增大到3km时,压力波动则并无显著加剧,反而有缓解趋向。列车交会的双线隧道,最不利情况发生在列车交会在隧道中点时。

研究表明:对于压力波动,诸因素中隧道横截面积的影响是最大的。隧道净空断面面积,或者说,隧道阻塞比是最主要的因素。根据计算分析,提出压力波动与隧道阻塞比之间有下列关系。

3 N β kv P 2 max ?? 单一列车在隧道中运行时,N =1.3 ?? O.25。考虑列车交会时,N =2.16 ?? 0.06。式中:max P —3秒钟内压力变化的最大值;v —行车速度;?? —阻塞比;面积隧道内轨顶面以上净空列车横截面积=?? 。竖井(斜井、横洞)的存在会缓解压力波动的程度。竖井位置对减压效果的影响很大,并不是处于任何位置的竖井都能有较好的效果。竖井断面积5~lOm 2 即可,加大竖井的横断面积,并不能收到好的效果。根据Mach 波叠加情况可以理论地得到竖井的最佳位置:) 1 ( 2 M M L X ?? ?? 式中X —竖井距隧道进口距离;L —隧道长度;M —Mach数。

双线隧道列车在隧道中交会引起压力波动的叠加,情况十分复杂。列车交会时,压力波动最大值是单一列车运行情况的2.8倍。实际上,列车交会时所产生的压力波动同列车长度、隧道长度、会车位置、车速等多种因素有关。在车辆密封的情况下,假定车外压力 a P 为常数,车内压力随时间的变化可以表为:

计算结果表明,车辆的密封对车内压力波动的影响可以归结为“缓解”和“滞后”两种效应。值得指出的是,在考虑到列车交会的情况下,就车外压力而言,洞口会车有时会成为最不利情况,然而在列车密封的条件下,洞口会车并非最不利情况。由于“滞后”效应,车内压力来不及“响应”列车就出洞了。

高速铁路隧道设计应通过正确地选择隧道设计参数,将压力波动控制到“允许” 范围内。评定压力波动程度一般采用的参数有:

①“峰对峰”最大值。即最大压力变化的绝对值;

②压力变化率的最大值。

将这两种指标单独使用均不能合理地同人的生理反应和乘员的舒适度相联系。例如,对于变化缓慢的压力过程,即使变化幅度较大,但由于来得及对耳腔压力进行主动(如做吞咽动作)或被动(外界降压时中耳通道将自动开启)调节,不会造成很大不适。当然,对于变化急剧的情况,尽管变化率较大,但只要变化幅度不大,也不会有多大问题。因此,目前较通用的评估参数是相应于某一指定短时间内的压力变化值,例如3S内最大压力变化值或4S 内最大压力变化值。所谓3S或4S大致相当于完成耳腔压力调节所需的时间。行车阻力由机械阻力和空气阻力两部分组成。

机械阻力一般同行车速度成正比:

W bV a D M ) ( ?? ?? 式中a ,b —常数;V —车速;W —列车质量。

而空气阻力则同行车速度二次方成正比。在隧道中,空气阻力问题更为突出。根据现场试验资料,T.HARA,N.NISHIOKA等(1967)提出了行车阻力的下列经验公式:

8 . 9 ] ) ( ) [( 2 ?? ?? ?? ?? ?? V dl c W bV a D 式中W —列车质量(t);V —车速(km/h);l —列车长度(m); D —阻力(N

)。

①隧道长度的影响

研究表明,空气阻力随隧道长度的增加而单调增加,但其增加率越来越小,最后趋于一常数。阻塞比?? 越小,趋于常数所需的隧道长度越短。当0.15 =?? 时,隧道长度超过3km以后,空气阻力已变化不大;而对于0.42 ?? ?? 的隧道在长度超过10km以后仍有较大

的变化。

②阻塞比?? 对空气阻力的影响空气阻力随?? 的增加而单调增加,并且斜率越来越大。当以V=250km/h为例,?? 从0.15增加到0.20时,空气阻力将增加工13%。而当?? 从O.4增加到0.45时,空气阻力将增加16%。

③列车在隧道中交会的影响以S=1OOm 2 、?? =0.1为例,当两列车车体重合时,空气阻力系数将增加23% (车长360m,隧道长3000m)。一般说来会车阻力只对确定机车最大牵引能力时有意义。

④竖井的影响竖井的存在,可降低行车阻力。但这种影响并不很大。以设在隧道中断面积为5m 2 的竖井为例,当?? =0.42时,空气阻力减小7%,当?? =O.15时,空气阻力仅降低1.2%。

微压波是隧道出口微气压波的简称,是高速铁路隧道运营过程中产生的空气动力学问题之一。微压波使得列车高速进入隧道时,在另一侧出口产生突然爆炸声响,对隧道出口附近的环境构成危害。欧洲国家对此研究较少,而日本由于采用的隧道断面较小,微压波问题特别突出。针对这一现象,日本铁道技术研究所等在现场测试、模型实验、理论分析及工程措施等方面进行了全面地研究,并取得了成功的应用。

研究认为,隧道出口的爆炸声响是由列车高速进入隧道产生的压缩波在隧道内传播到达出口时,由出口向外部放射脉冲状压力波而引起的。微压波的大小与列车进洞速度、隧道长度、道床类型及隧道入口形式等有关。

降低隧道微压波的工程措施有以下几种:

①采用特殊隧道入口形式(称为洞口缓冲结构);

②采用道碴道床或具有相同效果的贴附有吸音材料的洞壁;

③连接相邻隧道并在连接部分适当开口,对单一隧道可在埋深浅的地方设窗孔;

④利用斜井、竖井、平行导坑等辅助坑道。

1973年,Ham mitt通过对有关列车隧道空气动力学问题的理论研究,提出了微压波问题的预见。1975年,在日本新干线冈山以西段的试运营过程中首次观察到。此后,随着新干线投入运营和列车速度的提高,在日本的其它地方也相继出现了由微压波产生的洞口气压噪声现象。

①微压波的产生

隧道微压波是列车高速进入隧道产生的压缩波在隧道内以音速传播,当到达隧道的出口时,向外放射的脉冲状压力波。其大小与到达出口的压缩波形态密切相关,在靠近低频段与压缩波波前的压力梯度成正比。

②微压波波形

典型的洞口微压波波形见图[1]。其中U为列车的进洞速度,r为测点到洞口中心的距离。隧道短时,可能出现多个波峰,而对于长隧道来说,由于压缩波的反射波(即稀疏波,亦称膨胀波)波前较为模糊,使得第一个波峰最为显著。

③微压波的大小和道床种类及列车进洞速度的关系

图[1] 微压波波形(r=20m)当隧道较短(如小于1km)时,道碴道床和板式道床几乎没什么差别,微压波的大小基本上与U 3 (列车进洞速度)成正比,即Pmax=KU 3 /r。其中,K为隧道出口地形影响系数。对于长隧道来说,道碴道床隧道的微压波较短隧道要小,基本上也符合U 3 关系。

④微压波和隧道长度的关系图[2]为微压波最大值和隧道长度的关系。比较短的隧道(小于1km)微压波的大小不受隧道长度的影响。较长的道碴道床隧道的微压波最大值随隧道长度的增加减少;相反,板式道床隧道的微压波最大值随隧道长度的增加而增加,到某一隧道长度时达最大值,其后随隧道长度的增加而减小。

⑤微压波最大值的距离衰减根据日本南乡山隧道东口的测量结果。微压波最大值大体上与到隧道出口中心的距离r成反比。⑥微压波频谱分析日本对米神、大仓山、南乡山、加登、尾道、备后、新关门等隧道进行了实际量测分析,图[3]为加登隧道东口微压波的频谱分析结果(隧道长482m,板式道床)。

分析认为,微压波的幅值随频率值的增加而下降,下降梯度大体上与列车速度U成正比。对于短隧道来说,道碴道床和板式道床的差别不大,微压波的幅值随频率的增加而呈线性减小。对于板式道床隧道,U=200km/h时的微压波幅值在0~13Hz范围图内呈线性减小,并在13Hz处骤减,且隧道越长,其减小的梯度越小。这一13Hz的频率与微压波主脉冲后产生的压力变动频率是一致的

图[2] 微压波最大值和隧道长度的关系

图[3] 加登隧道东口微压波频谱分析结果

对于短隧道,可忽视在隧道内传播的压缩波的变形,并可忽略洞口外微压波的指向性。

由上式可知,微压波最大值Pmax与到达隧道出口的压缩波压力对时间微分的最大值成正比。因此,通过减小到达隧道出口的压缩波波前的压力梯度可以降低隧道出口微压波大小。实际上,在长5~10Km的板式道床隧道中,列车以200Km/h速度进洞的情况下,其微压波是很大的,也会产生气压噪声。但列车速度若降低到某一速度时,其微压波压力将变小(较同速度下的短隧道微压波略大),气压噪声也很小或没有。隧道洞口缓冲结构的目的就是将高速列车进入隧道而产生的压缩波波前的压力梯度在传播的最初阶段就降低下来,以产生与降低列车进洞速度相同的效果。

日本针对备后隧道(长8900m,板式道床,断面面积60.4m2)进行了一系列较为完善的全封闭缓冲结构不同截面和不同长度的模型试验,研究了各种条件下的微压波降低效果。

①微压波最大值与缓冲结构长度的关系仅就全封闭缓冲结构来说,若长度大于隧道水力直径,其效果基本上为一定值。

②微压波最大值与缓冲结构断面积的关系

见图[4],由图可知,缓冲结构的截面积约为隧道的1.55倍时,便可使微压波的第一波和第二波均呈较小值。因此,对于没有开口的全封闭缓冲结构,取其截面积为隧道截面积的l.55 倍,长度大于隧道直径即可。开口部分设在缓冲结构的侧面,为长方形。对于全长开口,随着开口面积的增加,微压波第一波减小而第二波增加。如果对不同开口长度条件下的微压波最大值进行比较,则当其断面比=1.62时,几乎没什么差别,但当断面比=1.04 时,1/2长开口较全长开口为小,显示出其具有良好的降低微压波效果。在某一试验条件下,微

压波最大值比在缓冲结构开口率为0时约为0.5,而在开口面积/隧道断面积=0.2且1/2长开

口时为0.3~0.35左右。缓冲结构断面积/隧道断面积

直线型和曲线型多少有些差别,但具有共同的趋势。圆形断面条件下,缓冲结构长度/隧道直径=3.33、缓冲结构开口直径/隧道直径=2.5时的微压波最大值为无缓冲结构时的0.2~0.3倍。

该种缓冲结构形式还用于备后隧道(板式道床,8 9 0 0m)、第二高山隧道(板式道床,3207m)、大野隧道(长5389m,板式道床)等隧道。图[7]、图[8]、图[9]、图[10]、图[11]、为东北、上越新干线使用的几种洞口缓冲结构形式。大部分采用耐久性良好的混凝土结构(或钢结构),其断面积比为1.4。图[7]所示的缓冲结构长15m,侧面开口面积约15m 2(大部分为左右各7.5m 2 );图[8]所示的缓冲结构长12m,侧面开口的面积约10m2(大部分为左右各5m 2)。通过试验量测认为,长15m的缓冲结构开口面积稍稍过大,改为11~12m 2 为好。

上述两种缓冲结构的效果与山阳新干线标准洞口形式的效果相同。图[9]为采用与隧道同一断面的洞口缓冲结构形式(断面比=1),长2 0m,顶部开口,隧道长750m,开口位置任选。微压波最大值比约为0.45,相当于列车进洞速度降为0.77(≈0.45 1/3 )倍的效果。

图[7]隧道标准洞口缓冲构之一

图[10]为一关隧道北口的洞口缓冲结构概况,隧道长9700m,缓冲结构与隧道的断面比=1.4,缓冲结构长15m,侧面开口面积为l5m2。图[11]为长17m的标准洞口缓冲结构形式,图示为第二芹泽隧道的洞口缓冲结构,隧道长775m,断面比1.4。微压波最大值比约为0.42,相当于列车进洞速度降为0.75(≈0.42 1/3 )倍的效果。

隧道洞口缓冲结构并不能解决列车在隧道内高速行走产生的压力变化给乘员带来的不适和压力过大而带来的耳鸣问题。但却可以通过降低列车进洞后第一阶段压缩波的波前梯度而有效地降低出口微压波的大小,消除洞口的爆炸声响,减少微压波给洞口带来的环境危害。缓冲结构的应用应将微压波的大小、隧道的具体长度、断面尺寸、道床类型、辅助坑道的设置、洞口附近房屋等建筑物的性质及其它环境要求、地质地形地貌条件、工程难易程度、造价等进行综合考虑。在有条件的隧道,还应考虑利用其它降低微压波的措施。如采用贴有吸音材料的洞壁等措施。

1964年10月,世界上首条高速铁路日本东海道新干线投入了运营。三十多年来全世界已有10多个国家修建了高速铁路。欧洲的一些国家发展较快,正在形成欧洲高速铁路网。日本也已修建了东海道、山阳、东北及上越等新干线。高速铁路的修建技术日益成熟。高速铁路线上的隧道不同于一般的铁路隧道,当高速列车在隧道中运行时要遇到空气动力学问题,主要表现为空气动力效应所产生的新特点及现象。为了降低及缓解空气动力学效应,除了采用密封车辆及减小车辆横断面积外,必须采取有力的结构工程措施,增大隧道有效净空面积及在洞口增设缓冲结构;另外还有其它辅助措施,如在复线上双孔单线隧道设置一系列横通道;以及在隧道内适当位置修建通风竖井、斜井或横洞。

增大隧道有效净空面积其效果显著。但因增加工程数量,从而提高了造价;在洞口增设缓冲结构、将隧道出入口作成喇叭型、增设混凝土明洞或钢结构的棚洞等,并且在其洞壁上开设通气孔洞或窗口,既可降低洞内瞬变压力,又可减弱微压波产生洞口附近的“爆炸”声。在复线线路上还要确定是修建成单孔双线隧道,还是修建双孔单线隧道。下面给出单孔双线

及双孔单线隧道优缺点的比较。

理论及试验研究表明,影响隧道中压力变化的因素有:列车的速度、头部及尾部形式、横断面面积、长度;车辆外表型式及粗糙度;隧道的有效净空面积大小及突变、长度及洞壁的粗糙度等。而在这些影响因素中列车的速度和阻塞比二者是至关重要的。研究还表明,隧道中最大压力变化与列车速度的平方成正比,同时也与阻塞比的N 次方成正比。因此列车速度确定之后,阻塞比就成为关键的因素。而当列车车型选定以后(列车横断面面积已确定),隧道有效净空面积就又成为决定性因素。

出于安全考虑,新规范已将跨度改为12.9m。

尽管日本采用洞口增设缓冲结构及密封车辆措施来降低空气动力效应,但当列车速度为300km/h时,也产生了扩大隧道有效净空面积为85m2的设想。再从其正在开发的磁悬浮高速铁路,已将阻塞比降低为β =0.12,有效净空面积为74m2。这就表明车辆横断面积相对减小,也就是取得增大有效净空断面的效果。

通过以上分析可以认为:为了降低隧道的空气动力效应,增大隧道有效净空面积是较好的结构工程措施,也是当前世界各国高速铁路发展的总趋势。

在确定隧道横断面有效净空尺寸之前,首先要正确地选择隧道设计参数。高速列车进入隧道时产生的空气动力学效应,与人的生理反应和乘客的舒适度相联系。这就要制定压力波动程度的评估办法及确定相应的阈值,目前较通用的评估参数是相应于某一指定短时间内的压力变化值,如3S或4S内最大压力变化值。

我国拟采用图[12] 列车速度为300km/h 时,西班牙采用的100m2隧道横断面图压力波动的临界值(控制标准)为3.0KPa/3S。

根据压力波动与隧道阻塞比关系公式:

N β kv P 2 max ??

式中N =2.16±0.06(列车交会时);

K =实测数据反分析系数。

可以推算出满足舒适度要求时,阻塞比β 宜取为当v =250km/h时β =0.14 v =350km/h时β =0.11 隧道横断面形式一般为园形(部分或全部)、具有或没有仰拱的马蹄形断

面。

而影响隧道横断面尺寸的因素有:建筑限界;电气化铁路接触网的标准限界及接触网支承点和接触网链形悬挂的安装范围;线路数量:是双线单洞还是单线双洞;线间距;线路轨道横断面;需要保留的空间如安全空间,施工作业工作空间等;空气动力学影响;与线路设备的结构相适应。

根据德国有关规范隧道线路危险区在列车速度为300km/h(>160km/h)时,距线路中心线应为3m。此时工作人员不能在隧道内停留,在线路危险区处要设立安全空间。多线隧道安全空间设于两侧。安全空间的尺寸至少为高2.2m,宽0.8m。这是为了铁路员工而设计的。安全空间设在隧道侧墙一侧,容许宽度受以下因素的影响:

①为保证乘客及工作人员安全,暂时或长期安装的设施—防护通道,把手或防护栏杆;

②专业部门安装建筑设施;

③无线电和信号系统配电柜和电气开关操纵机构。

安全空间地面应在轨面规定高度上,必需平坦,只容许有较小的横向坡度,安全空间的地面与接触网设备的带电部分之间的距离至少为3.95m。

在所有隧道内,必须为每条线路设置直通的救援道路。它设置在安全空间一侧,距线路中心线至少2.2m。此空间高度至少为2.2m,宽度至少为1.6m,后者可保证满足施工作业空间后,还有1.25m的最小宽度。

根据安全方案规定配备救援列车时,救援道路的长度为1000m。而无救援列车时其长度不超过500m。

隧道中还应设一个施工作业工作空间,在暗挖双线隧道内沿隧道环形衬砌的最小厚度为

0.30m,此空间应符合下列要求:

①工程辅助设施;

②隧道衬砌预留的补充加强设施;

③根据要求可转换为施工作业工作空间的建筑设施。

具体地说施工作业工作空间可用来安装将来需要的设备或加强衬砌以及安装降低噪声的护墙板,也可用来满足衬砌未预料的少量的静态长期变形。但不得利用施工作业工作空间来满足隧道建设的工程误差。

德国直线段隧道断面图见图[13]。法国高速列车的速度曾多次创造了世界最高纪录,国内已先后投入运行的有多条高速线路如TGV—PSE,TGV-A,TGV—R及TGV—N等,为了与欧洲大陆联网而生产了TGV欧洲之星,此列车适应了英国列车车低而窄的特点。法国已制定了TGV—A大西洋沿岸高速线上的列车速度与隧道有效净空面积的关系。列车速度(km/h)200 230 270 300及以上隧道有效净空面积(m 2 )46 55 71 100 法国高速铁路双线隧道阻塞比β =0.13~0.15,现行的运营列车速度为270km/h。隧道有效净空面积为71m 2 ,列车横断面积为10m 2 。车辆限界同UIC限界。

图[13] 第二代新线直线段的隧道横断面

日本东海道新干线是世界上最早建成的高速铁路线,其后又陆续修建了山阳、东北及上越等新干线。其单线隧道建筑限界宽为4400mm,高为6450mm。车辆限界宽3400mm高6350mm。建筑限界中在每侧留有500mm,这是为了考虑车体横向摇动偏移值。影响偏移值的主要因素是:车轴横向移动、横摇引起车体的倾斜、蛇形引起车端的偏移及轨道不平顺增大偏移等。建筑限界比车辆限界高100mm。东海道新干线建筑限界与隧道内轮廓间的最小富余量为50mm。基于东海道新干线的经验,考虑施工误差及养护等原因,山阳新干线的最小富余量采用了l00mm。于70年代开通的山阳新干线等双线隧道。线间距由4.2m改为4.3m;隧道有效净空面积由60.5m2加到63.4m2。

高速铁路条件下的隧道灾害,主要表现为火灾、水灾、空气动力学问题、隧道内掉块、侵限和结构失稳。其中隧道内掉块、侵限和结构失稳问题是铁路隧道的共有问题,即隧道病害问题,在非特大灾害条件下(如爆炸、地震、山体滑坡等)一般来说发展较为缓慢,有一定的时间发现和整治,且可通过提高设计标准和施工工程质量来相应提高其抗灾能力,有关隧道病害的监测、检测、状态评估和整治能够独立进行操作;空气动力学问题可以通过对隧道断面和隧道洞口形式等采取一系列构造技术措施来解决;水灾问题在水底隧道中最为突出,危害也大;火灾具有突发性,常常造成灾难性后果。国内外运营隧道中,洞内火灾事故时有发生,其中相当一部分火灾造成了严重的后果,如:日本北陆隧道、日本坂隧道、大清水隧道等,其中北陆隧道列车火灾事故死伤七百多人;德国的Billweder隧道、荷兰的Velsen 隧道、西班牙的Guadarrama 隧道及英国伦敦地铁维多利亚车站隧道等。近年来我国也发生过几起严重的隧道火灾事故。这些隧道内的灾害不仅直接造成生命财产的巨大损失,还造成了停运、恢复整治和善后处理等更大的间接损失。

列车火灾可能在线路的任何地方发生,但以隧道内火灾最难处理,主要表现为以下几方面:

1、着火列车停在隧道内时,乘客避难和救援困难。铁路隧道为长条形,空间狭小,火

灾蔓延速度快,排烟困难,洞内可视性差、路面不平,且救援设备和人员难以接近着火点。

2、固定灭火设备和排烟设备综合配置难度大。

3、列车在隧道内行车时,车厢内换气量比非隧道区段大数倍,因此一旦着火,其火势也比非隧道区段发展迅猛。

4、隧道内火灾发生后,灭火、恢复整治时间长。间接损失远大于洞外火灾。

5、隧道内环境差,固定的火灾监控和自动化消防设施维护困难,很难保证火灾发生时能完好工作。

6、隧道内火灾发生的概率小,且具有位置上的不确定性,在隧道短且较分散的情况下,在全线隧道上维持有效的全自动化监测和消防设施投入大、难度高。

7、客运列车火灾规模小于货运列车。

8、整个安全系统从发现、通报、判断确认、停车到启动消防及救援系统的时间较长。

根据隧道内列车火灾特点,综合分析国外高速铁路隧道列车火灾发生条件及防治措施,高速铁路的隧道安全系统的火灾防治问题应与线路、机车车辆、运输组织、供电及通信信号、车站安全监测、列车工作人员素质等几方面共同解决,最大限度地防止列车在隧道内发生火灾和火灾列车进入隧道,并建立起完善的火灾防止和火灾处置程序和行之有效的管理体制。

1、辅助洞室避车洞主要用于长隧道维修养护人员避车,放置维修养护材料及设备,灭火设备等。不论高速铁路采用何种维修养护体制,都不能完全避开运营时间内进行一些必要的维修养护作业,而避车洞是永久性建筑物,是作业人员和设备的安全待避所,可以为作业人员和行车提供可靠的安全保障。

2、给排水设施给水主要用于消火栓用水,可照有关消防法设置,排水应综合考虑隧道渗漏排水和消防排水的要求设计。洞口应考虑有能满足消防用水要求的水源或专用蓄水池或水井。并保持有足够的水量。

3、通讯联络设备为保证养护维修人员的联络,或与最近车站及控制中心等的联络应沿全线分布设置,并应充分利用车载无线通讯设备。

4、照明设施

5、灭火设施

6、标志牌及报警装置

对于列车上的火灾检知,可以通过列车工作人员及乘客发现并报告。但对车厢外的火灾却难以发现。高速铁路隧道消防措施应以火灾(包括隐患)列车不进入隧道为首要目标,应在隧道集中区段的相临车站设置主要由红外摄象机、高速工业电视、辆数检测器等构成的固定式单向列车火灾检知设备。通过红外线摄象机实时检测列车厢体外表温度,配合辆数检测等确定温度异常点,并通过高速工业电视进行目视确认。所有检测数据传送到通讯检测室,进行车次、部位、基准温度及发热范围等处理,以判断火灾是否发生。一旦检测出火灾,通过判定处理装置确定火灾列车车次、车厢号等并传送到指挥中心,并显示在指挥中心的显示屏上。此外,高速摄象结果也以静止画面传到指挥中心,以目视进行进一步确认。

为了尽早地发现火情,必须准确地掌握通常条件下的列车温度,并以此为基准尽可能低地设定火灾判定基准温度。

①紧急警报“紧急警报”与车次及发热异常位置无关,当检测出列车表面温度有异常升高时立即发出警报。列车在通过火灾检测点时,当检测装置连续三次扫描都检测出列车前进方向上连续三个点的数据都超过基准温度,即时发出警报。

②判定警报“判定警报”是低于“紧急警报”的基准温度的警报。尽可能在列车表面温度在加热状态处于较低温度时而且早期地判定出火灾是非常重要的。

为此,应确定出列车在常规状态下的发热部位(如车下电阻器,闸瓦等位置)和非发热部位各自的温度管理限界。经综合分析后在低于紧急警报温度下进行火灾判定。在一般

可能的发热部位内,储存其预定的发热点,发热范围及最高温度值等,将之与检测出的温度分布进行比较,一旦超出此范围,即判定为异常并发出警报。此外,检测出通常发热点最高温度以上的发热超过一定面积或者是检测出虽然低于最高温度的某一温度值超过某一程度的面积值时,都应判断为火灾。

对于一般情况下不发热的部位,超过其基准温度部分的面积超过基准面积时,应判断为火灾。

在隧道群的相邻车站配备救援列车及专用场地和设备,并能保证救援列车经常处于待动状态。

①车场设施救援列车的编组场以及信号设施;入库线;加油站;动力和照明电源;车场照明设备;通讯设施;其他设施。

②救援列车装备足够的牵引动力(内燃);起吊设备;消防设备;医疗救护设备;通信及指挥系统;自身防护设备;其他设备。机车车辆本身的高热设备器件不接触可燃物;电气设备可靠;可燃物尽可能采用耐燃材料或经过耐燃处理;车辆间连接采用隔燃措施,以阻止火灾向相邻车辆蔓延;隧道用材料难燃化:如采用难燃电缆、埋入式电缆等;对乘客携带易燃品采用更严格的控制。

①早期发现及时报警

a.建立特殊点(如洗漱室、厕所、吸烟点、无人房间、电气设备间等〕巡视制度;

b.对隐蔽空间设置自动化检测和报警装置,并建立判别标准;

c.加强车站火灾自动化检测。

②初期灭火从火灾发展过程来看,初期灭火开始越早效果越好,原则上初期灭火应和疏导旅客避难同时进行。

a.初期灭火的物质条件:包括灭火器材的合理配置,照明设施的安全可靠,对无法直接灭火的地点应有与自动检测装置形成联动的灭火系统;

b.建立初期灭火程序并加强日常演练。当判定火势已扩大,无法实施初期灭火时,应尽快撤离火灾车辆,为下一步防止火灾扩大措施做准备。日本所采用的列车上火灾处置程序及初期灭火界限见表4。

③防止火灾扩大措施在无法进行初期灭火时,人员撤退前应将窗、通风道、门等车辆开口部位关闭,阻断空气向燃烧车辆内补充,防止火、烟、毒气等向相邻车辆蔓延,确保在相邻车内避难人员的安全。列车在隧道内发生火灾时,确保乘客安全是头等大事

①列车措施发生火灾的列车不得在隧道内停车,应将列车拖离洞外有利于乘客避难的位置。当火灾列车停在隧道内时,应在可能的情况下将其拖出洞外。

②通讯联络措施包括车内广播系统、车内电话、列车和车站之间的联络等。用以判

别列车措施、稳定乘客秩序、通报火灾情况、阻止邻近列车靠近,接受指令、待援等。

①从火灾发生到列车停止期间乘客疏导必须和初期灭火同时进行,应尽可能向火灾车辆前方车内疏导避难。若不可能,向后方车辆疏导应尽可能远离火灾车辆,同时应关闭火灾车辆和车辆的所有通道。

②火灾车辆停在隧道内建立一套乘客在车内避难疏导出洞的程序。

③救援为使救援工作尽快进行,必须建立综合救援体制和建立救援程序。

日本是多山国家,新干线中隧道所占比例高。如山阳新干线全长549公里,有隧道142座,隧道总长264公里,占全长的48%;东海道、东北、上越新干线中隧道分别占15%、23%、39%。新干线中,长大隧道(大于5公里)有31座,长隧道群19处。日本还有世界上最长的海底铁路隧道—青函隧道。

①新干线隧道不设置人员避车洞,但在长度大于1000米的隧道中每500米于隧道左右交互设置器材洞,用于线路养护维修及有关安全设备的存放,其尺寸为高×宽×深=2.5米×3米×5米。

②新干线隧道中,设有宽1米以上的作业通道,直线段设置在轨面以下90厘米,曲线段再加上外轨超高量的1.15倍。

③新干线在长170米以上的直线隧道和130~150米以上的曲线隧道设有固定的照明设备,以便于养护作业。在隧道内每隔15米的两侧墙上装备有照明灯,其电源按上、下行线路自成系统,开关设在隧道两出入口处,一般为同时点亮,长大隧道设有分段照明开关。

④在隧道内装备了漏泄同轴电缆,乘务人员可通过无线设备随时与中央调度联系。在器材洞内还有沿线有线电话机,在其位置有常明的显示灯箱。

⑤在长5公里以上的隧道及特殊隧道的每个器材洞内,放置有20个灭火器(其中强化液体10个,粉末10个)。

⑥在隧道侧壁上以500米间隔安装有显示到隧道进出口(或其它出入点)距离及其它有关标识的常明荧光显示牌。

⑦供电设备:为提高供电设备的耐热性能,隧道内的接触线的辅助承力索、接触导线使用了含银线,同时增设了分相断路器,缩小因事故造成停车区范围,最大限度地防止列车停运。断路器的操作是在中央控制室进行遥控,并装备在供电事故时可瞬间切断供电的设备。

⑧列车防护开关:为防止发生异常时其他列车驶进隧道,在每隔250米的维修用通道的墙壁上安装了列车防护开关。

①火灾由于日本隧道占线路的比重大,故而对一般隧道没有将隧道内防火灭火做为重点,而是将重点放在机车车辆及车站设施上。做为世界上最长的海底隧道,由于其特殊性和重要性,拥有大量的最新防灾设施和完善的防灾体系。在吉冈、龙飞两个海底车站配置了紧急情况下用的避难、疏高速铁路培训班教材26 散和处置定点设施,在两定点和隧道两个出口配置了4套固定式火灾检测设备。当火灾检测设备检测到异常温度时,列车将迅速在最近的定点停车,乘客可以从站台通过联络通道进入有确保通风的临时避难所。在所有的避难通道及避难所都配有足够

高速铁路的隧道特点

高速铁路的隧道的特点 高速铁路的隧道设计是由限界、构造尺寸、使用空间和缓解及消减高速列车进入隧道诱发的空气动力学效应两方面的要求确定的。 研究表明,以上两方面要求中,后者起控制作用。当列车进入隧道时,原来占据着空 间的空气被排开。空气的粘性以及气流对隧道壁面和列车表面的摩阻作用使得被排开的空气不能象在隧道外那样及时、顺畅地沿列车两侧和上部流动,列车前方的空气受压缩,随之产 生特定的压力变化过程,引起相应的空气动力学效应并随着行车速度的提高而加剧。 1由于瞬变压力造成乘员舒适度降低,并对车辆产生危害; 2、微压波引起爆破噪声并危及洞口建筑物; 3、行车阻力加大; 4、空气动力学噪声; 5、列车风加剧。 高速铁路进入隧道产生的空气动力学效应是由多种因素所确定的。行车速度,车头和 车尾形状,列车横断面,列车长度,列车外表面形状和粗糙度,车辆的密封性等。隧道净 空断面面积,双线单洞还是单线双洞,隧道壁面的粗糙度,洞口及辅助结构物形式,竖井、斜井和横洞,道床类型等。列车在隧道中的交会等。 列车进入隧道引起的压力变化是两部分的叠加: ①列车移动时从挤压、排开空气到留下真空整个过程引起的压力变化; ②列车车头进入隧道产生的压缩波以及车尾进入隧道产生的膨胀波在隧道两洞口之间来回反射产生的压力变化(Mach波)。 当双线隧道中同时有不同方向列车相向行驶时,叠加所产生的情况则更为复杂。列车 在隧道中运行时(无相向行驶列车)车上测得的最大压力波动发生在第一个反射波到达列车时。Mach波以声速传播,对于长隧道,来回反射的周期相应较长。同时,在反射的过程中能量有所衰减。而对于短隧道,Mach波反射的周期大为缩短。同时,在反射过程中能量损 失也较少,致使压力波动程度加剧。试验表明,压力波动绝对值,并不随隧道长度的减小而减小。因此,对高速铁路中的隧道,有的虽然不长(例如长度在1km左右),其可能引起 的行车时的压力波动仍然不能忽视。但是,当隧道长度短到使列车首尾不能同时在其中时。则Math波的叠加不可能发生,压力波动程度当然随之缓解。当隧道长度为1km时,压力 波动明显加剧,而当隧道长度进一步增大到3km时,压力波动则并无显著加剧,反而有缓 解趋向。列车交会的双线隧道,最不利情况发生在列车交会在隧道中点时。 研究表明:对于压力波动,诸因素中隧道横截面积的影响是最大的。隧道净空断面面积, 或者说,隧道阻塞比是最主要的因素。根据计算分析,提出压力波动与隧道阻塞比之间有下列关系。 3 N 3 kv P 2 max ??单一列车在隧道中运行时,N =1 .3 ?? 0.25。考虑列车交会时,N =2.16 ?? 0.06。式中:max P —3秒钟内压力变化的最大值;v —行车速度;??一阻塞比;面积隧道内轨顶面以上净空列车横截面积 =??。竖井(斜井、横洞)的存在会缓解压力波动的程度。竖井位置对减压效果的影响很大,并不是处于任何位置的竖井都能有较好的 效果。竖井断面积5?IOm 2即可,加大竖井的横断面积,并不能收到好的效果。根据Mach 波叠加情况可以理论地得到竖井的最佳位置:)1 ( 2 M M L X ?? ?? 式中X —竖井距隧道进口距离;L —隧道长度;M —Mach数。 双线隧道列车在隧道中交会引起压力波动的叠加,情况十分复杂。列车交会时,压力波动最大值是单一列车运行情况的2.8倍。实际上,列车交会时所产生的压力波动同列车长 度、隧道长度、会车位置、车速等多种因素有关。在车辆密封的情况下,假定车外压力a P 为常数,车内压力随时间的变化可以表为:

高速铁路隧道工程衬砌标准化施工

隧道衬砌标准化施工措施 1.仰拱施工 (1)仰拱开挖 洞身仰拱开挖时,采用控制周边眼外插角度的办法,确保开挖平顺,严禁仰拱欠挖;爆破之后要求基底清理干净,必须无虚渣、无积水。 (2)五线上墙 为有效控制水平施工缝位置、仰拱钢筋和盲管位置,在边墙初支表面上测量放样“五线”(即:仰拱混凝土顶面标高线、仰拱钢筋搭接上下线、纵向和环向盲管线),并用红线明显标记(包括接地钢筋位置),为仰拱及后续防排水及衬砌施工提供控制依据。仰拱钢筋安装时分别自施工缝截面环向延伸固定长度,且仰拱内外环向钢筋在隧道环向、纵向均长短相间布置。环向盲管线根据设计要求,一般地段每组台车设置一道;岩溶发育地段需加密设置。如图 1.1 所示。 图 1.1 仰拱五线上墙 (3)仰拱钢筋预弯及定位 采用自制仰拱钢筋预弯机对仰拱钢筋进行预弯,利用液压千斤顶调节弧度大小,保证成型质量。如图1.2 所示。 图 1.2 仰拱钢筋预弯平台

安装仰拱钢筋时由测量定位(共九条:中间 1条,两侧位置各 4 条),确保钢筋间间距、排距和弧的准确。 仰拱钢筋安装时必须使用钢筋卡,使钢筋间距均匀。钢筋卡距可用角钢刻槽或钢管焊接卡具,相邻槽中心间距为设计钢筋间距。钢筋卡长度一般取6m,可根据施工方便设置长度。如图1.3 所示。 图 1.3 仰拱钢筋定位 (4)仰拱弧模与端模安装 通过轻质曲面钢模板,与仰拱端头钢模连接,整体采用地锚加固的方式施工,实现仰拱与仰拱填充的分层浇筑。端模与腹模连接,确保仰拱尺寸准确;通过整体曲面腹模,确保仰拱设计弧面和曲率;通过分窗进料振捣,保证仰拱混凝土密实度和强度;通过使用上、下钢端模,实现了仰拱环向中埋式止水带的准确定位。如图 1.4 所示。 图 1.4 弧模与端模 (5)纵、环向排水管安装 纵向排水盲管采用土工布包裹;盲管中间不得有凹陷、扭曲等,以防泥砂淤积堵塞;纵向排水盲 管按设计规定的排水坡度安装,并用钢筋卡固定,严格按照设计尺寸控制埋设高度。 (6)混凝土浇筑 混凝土浇筑过程,必须保证仰拱与拱墙小边墙一次性整体浇筑,确保边墙混凝土完整性,保证混 凝土浇筑质量良好。仰拱填充必须在仰拱衬砌浇筑完成之后分次浇筑,确保两者厚度、强度符合设计要求。 2 防排水安装

中国隧道工程的建设和发展历程

中国隧道工程的建设和发展历程 从1874年我国开始修建第一条上海至吴淞的窄轨铁路起,至1911年清王朝被推翻为止的37年中,我国共建成了9100公里的铁路。在这段时期所修建的10条总长4600公里的铁路干线上,共修建了总长42公里的230余座隧道。 我国在1898~1904年修建了长度为3078米的兴安岭隧道,这是当时亚洲最长的宽轨铁路隧道。这一时期最具代表性的隧道工程是由我国杰出工程师詹天佑亲自规划和督造的京张铁路八达岭隧道,全长1091米,工期仅用了18个月,于1908年建成。这也是我国自行修建的第一座越岭铁路隧道。 自1911年10月清王朝覆灭,到1949年10月中华人民共和国成立的38年中,我国共在40余条总长度约7000公里的铁路干线和支线上修建了总长度约100公里的370余座铁路隧道。其中有当时我国最长的滨绥铁路第二线上长度为3840米的杜草隧道,建于1939~1941年,所穿过的地层为花岗岩,采用上下导坑法施工,混凝土衬砌。 1949年新中国成立后,我国的铁路建设进入了新的发展时期。在其后半个世纪的时间里,我国隧道建设大致可分为4个阶段,每个阶段均有显著的技术进步和突破。 起步:50年代至60年代初,是新中国第一代隧道建设工程。该阶段采用钻爆法施工,以人工和小型机械凿岩、装载为主,临时支护采用原木支架和扇形支撑。隧道施工基本无通风,由于技术水平落后,人工伤亡事故时有发生。

该阶段的主要标志性工程有位于川黔铁路上的凉风垭隧道,该隧道长度4270米,于1959年6月贯通。该隧道首次采用平行导坑和巷道式通风,为长隧道施工积累了很宝贵的经验。 稳定发展:60年代至80年代初,是新中国第二代隧道建设工程。 该阶段代表性工程有位于京原铁路上的驿马岭隧道,全长7032米,1967年2月开工,1969年10月竣工,也是这一时期修建的最长的隧道。这一时期施工机具的装备有了较大的改善,普遍采用了带风动支架的凿岩机、风动或电动装载机、混凝土搅拌机、空压机和通风机等。在成昆铁路的隧道施工中还采用了门架式凿岩台车和槽式运渣列车。 在隧道支护方面,采用了锚杆喷射混凝土技术,这是隧道施工技术的重要里程碑。由于主动控制了地层环境,较好地解决了施工安全问题。 经过3年国民经济调整,1964年重点加强西南大三线建设,川黔、贵昆、成昆三线全面复工。这些铁路隧道比例大,开工隧道数量猛增,迎来了隧道建设的大发展。 成昆铁路工程浩大,举世瞩目,全线共有425座隧道,总延长344.7公里,占线路长度的31.6%,其中2公里以上的34座,3公里以上的9座,成为控制工期的关键工程。沙木拉达隧道全长6379米,线路标高2244.14米,为成昆铁路最长与最高的隧道。关村坝隧道全长6107米,为成昆铁路第二长隧道,是北段控制铺轨的大门,为集中力量攻坚的重点工程之一,快速施工成为本隧道的主题,施工中创造了多项新纪录。岩脚寨隧道位于贵昆铁路安顺至六枝间,全长2715米,隧道横穿贵州普定郎岱煤田的大煤山,共穿过7层煤层,厚度最大达8.92米,含三级瓦斯。这也是我国第一次穿越大量瓦斯的隧道。

高速铁路隧道技术发展现状存在问题及其展望

读书报告 高速铁路隧道技术 发展现状存在问题及其展望

目录 一、我国遂道及地下工程的发展现状 (1) 1.1 交通隧道 (1) 1.2 水利水电隧洞 (2) 1.3 地下工程 (2) 二、我国隧道及地下工程的主要开挖方法及新技术 (2) 三、当前国内铁路隧道施工主要存在技术问题 (3) 3.1 爆破精细控制技术 (3) 3.2 改进开挖技术 (3) 3.3 机制砂喷混凝土湿喷工艺 (4) 3.4 仰拱与掌子面进度的协调性 (4) 3.5 隧道沟槽施工工艺 (4) 3.6 通风及空气净化技术 (5) 四、贵广铁路建设实例 (6) 五、我国隧道及地下工程的发展前景 (7) 5.1 隧道发展前景 (7) 六、高速铁路隧道的研究几个热点问题 (8) 6.1 高速铁路隧道的空气动力学效应 (8) 6.2 高速铁路隧道的瞬变压力 (9) 6.3 高速铁路隧道的微压波 (9)

高速铁路隧道技术发展现状,存在问题及其展望 自1978年我国改革开放以来,我国在交通、水利水电、市政等基础设施领域取得了令人瞩目的成就,特别是近十年来,更取得了突飞猛进的发展,同时在设计和施工技术水平上也有了很大提高。但是由于我国东西高差大、地势复杂,隧道工程是铁路工程中不可缺少的重要项目,例如最近刚开通的兰新高铁,隧道比例达到60%以上。我国大力发展高速铁路,列车运行速度的提高势必造成列车振动荷载进一步加大,从而对隧道结构的动力稳定性提了更高的要求。伴随着铁路的出现和发展,铁路隧道也逐渐发展起来,但受制于技术条件的限制,在很长的时间内,铁路隧道的规模都很有限,直到20 世纪,随着人类科技水平和技术装备的进步,才开始出现了一些大型隧道,世界铁路隧道的世界记录也不断被更新。我国高速铁路已进入实质性的建设阶段,全国各铁路干线列车提速正在进行之中。 一、我国遂道及地下工程的发展现状 1.1 交通隧道 交通隧道主要包括铁路隧道、公路隧道及城市地铁工程,铁路隧道目前在数量、长度、设计及施工技术上在我国处于领先地位,截至1997年,在我国的铁路线上已建成并正式交付运营的隧道大约5200座,总长度2457.89km,平均占铁路网总长度的4.7‰。目前我国已建成铁路中隧道占线路长度在30%以上的就有襄渝线34.3%,成昆线31.6%,在建铁路中隧道占线路长度比例最大的达到50.42%(西康线)。目前已建成的最长隧道是西康线的秦岭单线隧道,长18.4km,其它较长的还有衡广铁路复线上的大瑶山双线隧道,长14.295km,于1987年建成。南昆线上的米花岭隧道,长9.383km。地铁工程目前仅有京、津、沪、穗四市约80km正在运营,而在建工程则很多,目前除上述四城市仍在继续扩建地铁外,南京、重庆、青岛、沈阳、深圳、成都等约20个大中城市进行了地铁和轻轨交通系统规划,部分项目正在全面施工。我国公路隧道在80年代前,因公路等级较低,同时限于设计、施工及短期投资大等多种原因,很少设计长大隧道,且数量(总长度)上也不多,但改革开放以后,为了实现截弯、降坡、提速、提高运营安全及实现长期运营收益提高等,相继修建了一批长大公路隧道,如辽宁的八盘岭双线公路隧道(长1600m),吉林的小盘岭公路、,速公路建设的大规模展开和设计、施工总体水平的提高,公路隧道工程在总量、单体长度上有了突飞猛进的发展,隧道单体长度记录不断被刷新。目前已提高到4km长度以上的水平,如川藏公路上的二郎山隧道全长4160m,目前我国海拔最高,2000年4月18日峻工通车的重庆铁山坪路隧道双线全长5424m,是目前我国最长的大跨度公路隧道,北京至八达岭高速公路上的潭峪沟公路隧道主隧道全长3455m,单向三车道,是目前国内最宽的公路隧道。

高速铁路隧道帽檐斜切式洞门施工技术

高速铁路隧道帽檐斜切式洞门施工技术 祝俊甲中铁十二局第四工程有限公司陕西西安 摘要:随着人们环保意识的提高和隧道施工技术的进步,特别是高速铁路隧道的修建,隧道洞门型式有了较大的突破和创新,洞门既要满足结构安全稳定、环保美观的要求,又要满足减缓微气压波影响的要求;帽檐斜切式洞门能最大限度地减小列车高速运行时产生的微气压波对列车的损害和不良影响,所以帽檐斜切式洞门成为高速铁路隧道洞门的首选型式;但帽檐斜切式洞门的帽檐施工技术复杂,立模定位困难,施工难度大。 关键词:帽檐、斜切式、隧道、洞门 1、引言 洞门是隧道进出口的咽喉,以往传统的洞门型式对地表破换较大,不利于目前所倡导的环境保护的要求,高速铁路的发展不仅要求洞门的型式要考虑结构的稳定也要注意洞门的美观大方与周围环境相协调。帽檐斜切式洞门是一种新型的高速铁路隧道洞门构造,线条流畅、整洁美观,且能有效地缓解洞口处的空气动力效应,具有良好的整体稳定性;帽檐斜切式洞门洞口不需设置特殊的缓冲结构就能满足列车运营舒适度的要求,且不需为洞门进行额外刷方,洞口刷方量少,,适用性广,可在多种地形和地质情况下适用。所以帽檐斜切式洞门成为高速铁路洞门的首选型式,但帽檐斜切式洞门帽檐模板的定位、加固相当困难是隧道洞门技术最复杂施工难度最大的洞门之一。 2

帽檐斜切式洞门全长15米,主要由帽檐、12m斜切段及3m斜切延伸段组成,斜切面与仰坡坡度1:1.25,帽檐模板由内模、外模及端模组成,内、外模均由两条椭圆轮廓线组成,内模由轮廓线A、C组成,外模由轮廓线B、D组成。3、施工步骤 帽檐斜切式洞门的施工主要分两步进行,一是斜切延伸段及斜切段的施工;二是帽檐施工。 3.1、斜切延伸段及斜切段的施工 斜切段及斜切延伸段的施工内模采用衬砌台车,外模及端模均采用竹胶板,以10*10cm方木为肋通过环向钢筋及圆木、钢管以两侧边坡为支撑点进行加固,斜切延伸段及斜切段全长15m,若衬砌台车长度不足15m时,靠洞口斜切段内模也采用竹胶板弯制,但必须与衬砌台车同弧度弯制。 斜切段及延伸段施工时台车定位的准确性直接影响帽檐轮廓线C、D的形成,所以衬砌台车定位后必须复测其定位的准确性,经调整无误后将轮廓线C的各坐标点直接放样至衬砌台车模板上。然后以轮廓线C为参照计算出轮廓线D的相对位置,待轮廓线C、D位置确定后按设计要求绑扎钢筋,钢筋绑扎时必须注意斜切面及外模预留钢筋以便帽檐施工时与帽檐钢筋相连及帽檐外模的加固。钢筋绑扎完毕后对轮廓线C、D进行精确放样,根据放样确定的轮廓线C、D安装外模及端模,外模需设置与衬砌台车相垂直的加固钢筋及环向钢筋,并将垂直钢筋与衬砌主筋及外模环向钢筋焊接牢固。为了便于混凝土的浇筑及振捣在端模安装时每隔一定距离预留混凝土灌注口。 混凝土采用一次性整体浇筑,浇筑是必须注意从两侧预留口对称浇筑混凝土以防衬砌台车变形,并通过衬砌台车窗口及预留口进行振捣。 待混凝土达到设计强度后将外模及斜切面模板拆除,衬砌台车保持不动以便帽檐施工时帽檐模板的安装及加固。 3.2、帽檐施工 3.2.1、帽檐模板选择 由于帽檐的四条轮廓线全为坐标控制,若使用钢模存在较大困难,一是模板加工困难,轮廓线把握不准。二是钢模安装困难,很难与洞门的斜切面紧密相连。所以模板选择质量好,无膨胀的竹胶板以10*10cm方木为肋并采用圆木及钢支撑进行加固。

隧道设计中洞门选型及刷坡步骤要点

隧道设计中洞门选型及刷坡步骤要点 1.洞口环框 当洞口石质坚硬稳定(Ⅰ~Ⅱ级围墙),且地势陡峻无排水要求时,可仅修建洞口环框,以起到加固洞口和减少洞口雨后滴水的作用。 2.端墙式(一字式)洞门 端墙式洞门适用于地形开阔、石质较稳定(Ⅱ~Ⅲ级围岩)的地区,由端墙和洞门顶和排水沟组成。端墙的作用是抵抗山体纵向推力及支持洞口正面上的仰坡,保持其稳定。洞门顶排水沟用来将仰坡流下来的地表水汇集后排走。 3.翼墙式(八字墙)洞门 当洞门地质较差(Ⅳ级及以上围岩),山体纵向推力较大时,可以在端墙式洞门的单侧或双侧设置翼墙。翼墙在正面起到抵抗山体纵向推力,增加洞门的抗滑及抗倾覆能力的作用。两侧面保护路堑边坡,起挡土墙的作用。翼墙顶面与仰坡的延长面相一致,其上设置水沟,将洞门顶水沟汇集的地表水引至路堑测沟内排走。 4.柱式洞门 当地势陡峭(Ⅳ级围岩),仰坡有下滑的可能性,又受地质或地形条件的限制,不能设置翼墙时,可在端墙中设置2个(或4个)断面较大的柱墩,以增加端墙的稳定性。 5.台阶式洞门 当洞门位于傍山侧坡地区,洞门一侧边仰坡较高时,为了提高靠山侧仰坡起坡点,减少仰坡高度,将端墙顶部改为逐渐升高的台阶形式,以适应地形的特点,减少洞门圬工及仰坡开挖数量,也能起到美化洞门的作用。 6斜交式洞门 当隧道洞口线路与地面等高线斜交时,为了缩短隧道长度,减少挖方数量,可采用平行等高线与线性成斜交的洞口。 7.喇叭口式洞口 高速铁路隧道,为减缓高速列车的空气动力学效应,对单线隧道,一般设喇叭口洞口缓冲段,同时兼做隧道洞门。

刷坡要点 隧道洞门立面图一般有三道高程线: 1为洞口位置地面高程;2为洞口位置往后1m(挡墙位置);3为洞口位置往后2m(洞顶水沟底中心处地面高程)。

高速铁路隧道简介教材

高速铁路隧道简介 一、高速铁路隧道概况 根据2014年1月1日起实施的《铁路安全管理条例》规定,高速铁路是指设计开行时速250公里以上(含预留),并且初期运营时速200公里以上的客运列车专线铁路。 1、高速铁路隧道的特点 与一般铁路隧道不同,高速铁路隧道的特点体现在空气动力学特性方面。当列车高速进入隧道时,由于隧道的边壁限制了隧道内空气的侧向流动和向上流动,使得列车前方的空气受压缩,气压升高。随着列车继续前进,在车后留下空间,致使空气向此空间补充,气压随之降低。因此列车通过隧道时,隧道内某一点的空气压力将会产生从上升到下降即从压缩到膨胀这样一个瞬变过程。另外,列车头部进入隧道时,强烈冲击隧道中的静止空气柱,形成压力脉冲,并以声速向隧道出口方向运动,在出口突然释放,一部分散布到隧道出口,产生微气压波,另一部分发生反射,由正压变为负压,同样以声速沿列车运行相反的方向运动,遇到列车后,空气阻力在大气压力附近发生波动,使旅客的耳朵发生明显不适。微气压波也可能产生空气动力学噪声,对隧道出口的建筑物产生影响。 2、我国高速铁路隧道分布 表1 我国典型高速铁路隧道分布情况

表2 部分客运专线特长隧道表 二、高速铁路隧道衬砌断面 1、直线隧道净空 高速铁路因其时速标准不同,隧道断面形式各异,衬砌内轮廓净空有效面积也不同,如表3所示。

表3 我国高铁隧道内净空面积 序号类别标准单线双线 1 200km/h客专近期客货共线53.06m283.7m2 2 200km/h客专近期双箱运输56.2m289.64m2 3 250km/h近期客货共线58m290.16m2 4 250km/h近期双箱运输58.08m293.76m2 5 350km/h客运专线70m2100m2 图1 200km/h客货共线铁路单线隧道内轮廓(单位:cm) 图2 200km/h客货共线铁路双线隧道内轮廓(单位:cm)

高速铁路隧道工程B10731 10732答案.

隧道工程试卷B答案 一、选择题 (20分) 1、山岭隧道的洞门形式主要有:()。 A.环框式。 B.端墙式。 C.翼墙式。 D.柱式。(ABCD) 2、台阶法按上台阶超前长度分为()。 A.高台阶法 B.长台阶法 C.短台阶法 D.微台阶法 BCD。 3、光面爆破的技术要求有()。 A.选择合理的周边孔间距 B.控制周边孔药量 C.周边孔采用不耦合装药结构 D.采用毫秒雷管微差顺序起爆,应使周边爆破时产生临空面。 ABCD 4、拱圈混凝土浇筑顺序应从两侧拱脚向拱顶()进行。 A.上下。 B.对称。 C.前后。 D.交错。 答案B 5、喷射混凝土的工艺有()。 A.干喷。 B.潮喷。 C.湿喷。 D.混合喷。 6、地表下沉量测一般是在()情况下才有意义。 A.深埋隧道。 B.地表水多。 C.软弱岩层。 D.浅埋隧道。 答案D。 7、超前围岩预注浆堵水时,宜用()。 A.水泥浆液。 B.水玻璃浆液。 C.水泥水玻璃浆液。 D.PM型浆液。 AC。 8、隧道施工防排水工作的原则是()。 A.进洞前先做好地表排水系统。 B.不断完善防排水措施。 C.选择不妨碍施工的防排水措施。 D.按防、截、排、堵相结合来综合治理。答案D。 二、填空题(10分)

1、采用喷射混凝土封闭洞口仰坡土体坡面,可起到()、()作用。 避免雨水冲杀、避免浸湿软化。 2、钻孔作业前应做出下列工作;()、()、(),经检查符合设计后方可钻孔。 定出开挖断面中线和水平线、定出断面轮廓、、标出炮孔位置 3、锚杆作用机理有()、()、()。 悬吊作用、组合梁作用、整体加固作用。 4、衬砌的施工缝常用()、()止水。 橡胶止水带、塑料止水带。 三、判断题 (10分) 1、岩石的抗压强度大于30MPa,围岩就稳定。( F ) 2、周边孔同段的雷管起爆时差应尽可能大。( F ) 3、局部锚杆应该规则布置。( F ) 4、树脂粘结的锚杆就是全长粘结型锚杆。( F ) 5、用回弹仪得到的是混凝土的表面硬度,求不出混凝土的抗压强度( F ) 四、简答题(20分) 1、隧道衬砌的组成及作用。 答:隧道衬砌由拱部、边墙和仰拱组成。拱部主要支撑隧道上面的荷载,边墙主要抵抗水平方向的围岩压力,仰拱主要承受地层向上的压力。拱墙组成闭合的结构称为衬砌环,它能改善衬砌的内力分布,有效地抵抗围岩压力和限制围岩变形。 2、隧道控制爆破有那几种形式,相互区别是什么? 光面爆破和预裂爆破;区别是起爆顺序不同,光面爆破是一种控制岩体开挖轮廓的爆破技术,是通过一系列措施对开挖工程周边部位实行正确的钻眼和爆破,并使周边眼最后起爆的爆破方法。预裂爆破是由光面爆破演变而来的,其目的同光面爆破,不同处是周边眼在整个爆破循环中要最先起爆,也就是在岩体中,沿着周边炮眼之间要先爆出一道裂缝,减少对保留区围岩产生的破坏。 3、代表炸药性能的主要参数是什么?并解释其含义。 答:(1) 炸药威力 ( 作功能力 ):炸药爆炸作功所具有的能力。

高速铁路隧道毕业设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

浅谈高速铁路隧道喇叭口倒切式洞门施工技术

浅谈高速铁路隧道喇叭口倒切式洞门施工技术 摘要:高速铁路隧道的洞门形式多种多样,各种洞门适用于不同的隧道形式,本文主要介绍了10m喇叭口倒切开孔式缓冲结构隧道洞门的施工方法,该类洞门主要适用于洞口场地狭窄或桥隧相接以及边仰坡有落石掉块可能的地段,本文主要总结了10m喇叭口倒切式开孔缓冲结构隧道洞门的倒切段轮廓线的控制方法,以期为类似工程的施工提供借鉴。 关键词:铁路隧道喇叭口倒切空间轮廓 0 引言 我国大多数高铁线路中有大量的隧道、高架桥(丘陵地区)或高架结构(平原微丘地区),因此高速铁路中隧道比重显著增加。隧道采用的洞门形式也随着洞口地形、地质条件及空气动力学影响的不同而多样化,一般有帽檐斜切式、喇叭口倒切式、双侧挡墙式隧道门、挡翼墙式明洞门以及单压式明洞门等多种隧道门,徐墩隧道进口属于桥隧相接形式且洞口场地狭窄,因此洞门设计为10m喇叭口倒切式开孔缓冲结构。 1 概况 新建合福铁路客运专线闽赣段Ⅵ标徐墩隧道地处福建省东北部低山丘林区,自然坡度一般为20~25°,植被发育,多为松树林。进口位于山坡半坡,出口坡度较缓,进出口地面标高分别为134.3、133.1,隧道设计范围为DK636+050.8~DK636+431,全长380.2米。隧址区地下水为基岩裂隙水,进出口段地下水较发育,地下水无化学侵蚀性,碳化环境作用等级为T2。徐墩隧道位于低纬度带,气候温和、雨量充沛,属亚热带季风气候,年平均气温最高24.57℃,最低15.2℃。 2 隧道门设计与展示 徐墩隧道进口设计采用10m喇叭口倒切式开孔缓冲结构隧道门,该隧道门适用于洞口场地狭窄或桥隧相接、边仰坡有落石掉块可能的地段,该洞门结构由1节开孔段与喇叭口倒切段组成,开孔段在隧道顶部设置开孔,开孔大小为3m (纵向)×3.2m(横向)。洞门结构沿隧道中轴面(即图一所示Y-Z面)对称。10m喇叭口倒切式开孔缓冲结构洞门如图1所示。 图1 10m喇叭口倒切式开孔缓冲结构洞门展示图 3 喇叭口倒切式开孔缓冲结构的施工步骤

(完整word版)中国隧道发展历程

中国隧道工程的建设和发展历程 发布者:中国土木工程学会发布时间:2010-3-12 阅读:231次 从1874年我国开始修建第一条上海至吴淞的窄轨铁路起,至1911年清王朝被推翻为止的37年中,我国共建成了9100公里的铁路。在这段时期所修建的10条总长4600公里的铁路干线上,共修建了总长42公里的230余座隧道。 我国在1898~1904年修建了长度为3078米的兴安岭隧道,这是当时亚洲最长的宽轨铁路隧道。这一时期最具代表性的隧道工程是由我国杰出工程师詹天佑亲自规划和督造的京张铁路八达岭隧道,全长1091米,工期仅用了18个月,于1908年建成。这也是我国自行修建的第一座越岭铁路隧道。 自1911年10月清王朝覆灭,到1949年10月中华人民共和国成立的38年中,我国共在40余条总长度约7000公里的铁路干线和支线上修建了总长度约100公里的370余座铁路隧道。其中有当时我国最长的滨绥铁路第二线上长度为3840米的杜草隧道,建于1939~1941年,所穿过的地层为花岗岩,采用上下导坑法施工,混凝土衬砌。 1949年新中国成立后,我国的铁路建设进入了新的发展时期。在其后半个世纪的时间里,我国隧道建设大致可分为4个阶段,每个阶段均有显著的技术进步和突破。 起步: 50年代至60年代初,是新中国第一代隧道建设工程。该阶段采用钻爆法施工,以人工和小型机械凿岩、装载为主,临时支护采用原木支架和扇形支撑。隧道施工基本无通风,由于技术水平落后,人工伤亡事故时有发生。 该阶段的主要标志性工程有位于川黔铁路上的凉风垭隧道,该隧道长度4270米,于1959年6月贯通。该隧道首次采用平行导坑和巷道式通风,为长隧道施工积累了很宝贵的经验。 稳定发展:60年代至80年代初,是新中国第二代隧道建设工程。 该阶段代表性工程有位于京原铁路上的驿马岭隧道,全长7032米,1967年2月开工,1969年10月竣工,也是这一时期修建的最长的隧道。这一时期施工机具的装备有了较大的改善,普遍采用了带风动支架的凿岩机、风动或电动装载机、混凝土搅拌机、空压机和通风机等。在成昆铁路的隧道施工中还采用了门架式凿岩台车和槽式运渣列车。 在隧道支护方面,采用了锚杆喷射混凝土技术,这是隧道施工技术的重要里程碑。由于主动控制了地层环境,较好地解决了施工安全问题。 经过3年国民经济调整,1964年重点加强西南大三线建设,川黔、贵昆、成昆三线全面复工。这些铁路隧道比例大,开工隧道数量猛增,迎来了隧道建设的大发展。

隧道设计中洞门选型及刷坡步骤

隧道洞门类型及适用条件 1.洞口环框 当洞口石质坚硬稳定(Ⅰ~Ⅱ级围墙),且地势陡峻无排水要求时,可仅修建洞口环框,以起到加固洞口和减少洞口雨后滴水的作用。 2.端墙式(一字式)洞门 端墙式洞门适用于地形开阔、石质较稳定(Ⅱ~Ⅲ级围岩)的地区,由端墙和洞门顶和排水沟组成。端墙的作用是抵抗山体纵向推力及支持洞口正面上的仰坡,保持其稳定。洞门顶排水沟用来将仰坡流下来的地表水汇集后排走。 3.翼墙式(八字墙)洞门 当洞门地质较差(Ⅳ级及以上围岩),山体纵向推力较大时,可以在端墙式洞门的单侧或双侧设置翼墙。翼墙在正面起到抵抗山体纵向推力,增加洞门的抗滑及抗倾覆能力的作用。两侧面保护路堑边坡,起挡土墙的作用。翼墙顶面与仰坡的延长面相一致,其上设置水沟,将洞门顶水沟汇集的地表水引至路堑测沟内排走。 4.柱式洞门 当地势陡峭(Ⅳ级围岩),仰坡有下滑的可能性,又受地质或地形条件的限制,不能设置翼墙时,可在端墙中设置2个(或4个)断面较大的柱墩,以增加端墙的稳定性。 5.台阶式洞门 当洞门位于傍山侧坡地区,洞门一侧边仰坡较高时,为了提高靠山侧仰坡起坡点,减少仰坡高度,将端墙顶部改为逐渐升高的台阶形式,以适应地形的特点,减少洞门圬工及仰坡开挖数量,也能起到美化洞门的作用。 6斜交式洞门 当隧道洞口线路与地面等高线斜交时,为了缩短隧道长度,减少挖方数量,可采用平行等高线与线性成斜交的洞口。 7.喇叭口式洞口 高速铁路隧道,为减缓高速列车的空气动力学效应,对单线隧道,一般设喇叭口洞口缓冲段,同时兼做隧道洞门。

刷坡要点 隧道洞门立面图一般有三道高程线: 1为洞口位置地面高程;2为洞口位置往后1m(挡墙位置);3为洞口位置往后2m(洞顶水沟底中心处地面高程)。

高速铁路隧道开挖专项施工方案

目录 第一章编制依据 (1) 第二章编制范围 (1) 第三章工程概况 (1) 第四章主要施工方案及施工方法 (1) 4.1施工方案 (1) 4.2施工方法 (1) 4.2.1明洞段开挖方法 (2) 4.2.2台阶法 (2) 4.2.3.隧道围岩分级、开挖方法及衬砌支护形式 (3) 第五章施工进度安排 (5) 第六章爆破设计 (6) 6.1爆破方案 (6)

6.2钻爆设计 (6) 6.2.1光爆基本参数 (6) 6.2.2掏槽方式 (7) 6.2.3周边眼 (7) 6.2.4掘进眼 (7) 6.2.5装药结构及堵塞方式 (8) 6.2.6炮眼布置 (8) 6.3爆破设计的优化及爆孔布置 (12) 第七章劳动力和机械设备配置 (12) 7.1劳动力配置 (12) 7.2机械配置 (13) 第八章质量保证措施 (14) 第九章安全、文明施工 (15)

第一章编制依据 1、新建贵阳枢纽小碧经清镇东至白云联络线《摆龙村一号隧道设计图》; 2、新建贵阳枢纽小碧经清镇东至白云联络线第三册《隧道附图洞门及洞口工程》; 3、《高速铁路隧道工程施工技术指南》铁建设(2010)241号; 4、《高速铁路隧道工程施工质量验收标准》(TB10753-2010); 5、《铁路混凝土工程施工质量验收标准》(TB10424-2010); 6、《铁路工程基本作业施工安全技术规程》TB10301-2009; 7、《铁路隧道工程施工安全技术规程》TB10304-2009; 8、《爆破安全规程》GB6722-2011; 9、新建贵阳枢纽小碧经清镇东至白云联络线站前4标《实施性施工组织设计》 第二章编制范围 新建贵阳枢纽小碧经镇东至白云联络线站前Ⅳ标(D1K64+770~D1K65+275)摆龙一号隧道。 第三章工程概况 摆龙村一号隧道位于贵阳市金华新区金华镇摆龙村境内,全长505米,隧道进出口里程分别为D1K64+770、D1K65+275。该隧道为时速200km Ⅰ级铁路双线隧道,隧道内线间距为4.6m。洞内采用重型轨道碎石道床,铺设Ⅲ型轨枕(2.6m)及60kg/m钢轨,轨道结构高度766mm。 隧区岩溶中等至强烈发育,隧道进出口右侧边坡顺层且洞身右侧围岩顺层偏压。洞身与梨木山断层平行,相距30~80m,洞身位于地下水垂直渗流带内,地下水对混凝土无侵蚀性。 第四章主要施工方案及施工方法 4.1施工方案 根据设计要求,隧道除明洞段为明挖之外,隧道暗挖段采用锚喷构筑法施工、光面爆破开挖。暗挖段根据围岩类别的不同分别采用IV级围岩采用台阶法,V级围岩采用台阶法+临时横撑。 4.2施工方法

新高速铁路隧道工程施工技术指南—4.施工准备

4 施工准备 4.1 施工调查 4.1.1 施工调查前应查阅设计文件和相关资料,定制调查大纲。调查结束后根据调查情况编写书面的施工调查报告。 4.1.2 施工调查应包括下列内容: 1 地理环境、气象、水文水质情况。 2 辅助坑道、洞口位置及相邻工程情况。 3 施工运输道路、水源、供电、通信、施工场地、征地拆迁情况、弃渣场地基容纳能力等。 4 原材料及半成品的品种、质量、价格及供应能力等、爆破器材的供应情况、供货渠道及管理方式等。 5 交通运能、运价、装卸费率等。 6 可供利用的劳动力资源状况,包括工费、就业情况等。 7 生活供应、医疗、卫生、防疫、民俗及居民点的社会治安情况等。 8 生态、环境保护的一般规定和特殊要求。 9 对隧道施工有直接和间接影响的其他问题 4.1.3 施工调查报告除应包括施工调查的主要内容外,还应包括下列内容: 1 工程概况,包括工程环境、工程地质、水文地质、工程规模、数量、特点。 2 临时设施方案,包括临时房屋、材料厂、施工便道及码头、电力及通讯干线等的选择、规模和标准。 3 砂、石等当地材料的供应方案。 4 生产生活供水、供电方案,施工通讯方案。 5 施工建议方案。 6 当地风俗习惯及注意事项。 7 环保要求及注意事项,可能对环境造成的影响。 8 施工调查中发现的设计有关问题和优化设计建议。 9 尚待进一步调查落实的问题。 4.2 设计文件现场核对 4.2.1 隧道工程施工前,应重点对设计文件中的拆迁工程、工程设计方案、工程措施、大型临时工程等进行现场核对,并做好核对记录。 4.2.2 设计文件核对应包括下列内容: 1 设计文件相互间的一致性、系统性,是否存在差、错、漏、碰。重点是各设计专业接口工程的相互衔接。 2 隧道平面及纵断面参数计算是否正确。 3 设计工程数量计算是否正确,超前地质预报设计内容是否完整。

《高速铁路隧道工程施工质量验收标准》TB 10753-2018更改

3、基本规定 第 ,可调整进场检验频次、试验数量 ,属于同一工程项目同期施工的多个单位工程,对同一厂家生产的同批次原材构配件、半成品、设备等可进行统一验收。 不得有严重缺陷,不合格点不得集中。增加第4条 3.3.3 增加第3条涉及安全和主要使用功能的抽样检验结果应符合相应 规定。 ,委外进行实体检测或抽样检测。 4、原材料、构配件、半成品 新增第4章将原材料单独进行解释说明,原材料技术要求按照相关产品技术要求 进行规定,不在单独进行规定。 支护材料4.1.1 混凝土、钢筋所用原材符合10424 可扩大检验批一倍,出现不合格,不得在扩大。 4.1.3 实行工厂化生产,半成品、构配件等可采用出厂检验合格证作为质 量证明文件 进行分别标识、分区存放,工厂化生产的半成品宜采用信息码进行编码溯源。 706、11263 4.2.4 管棚、超前小导管、注浆管符合8162。 防水材料增加VA含量检验。 4.3.2 排水板检测符合3354。 18173.3。 2000m一批。 ,按进场批次和产品标准确定批次容量。 4.4构配件和半成品 4.4.1 管棚、超前小导管、锚杆(管)、钢架、钢筋网片等半成品检验符 合相应设计要求。,管棚50根检查3根,超前小导管、锚杆(管) 100根检查3根,钢筋网片100片检查3片。 ,数量符合10424. ,盖板尺寸、强度符合设计要求。不大于1000块为1批每批3块。 4.4.5 管片螺栓符合设计要求,按进场批次和产品标准确定批次容量。 4.4.6 排水管沟的规格和强度等符合设计要求,同规格同类型不大于100 节为1批,每批1节。 4.4.7 水泥基钢筋保护层垫块强度不小于混凝土强度,尺寸满足钢筋保护 层厚度要求,不大于5000块为1批每批5块。 ,不大于2000米为一批,每批3根。 5加固处理 ,检验方法表5.2.5 数量按照总数的2%,且不少于3根。 5.3.3 预注浆加固效果应符合设计要求每循环不少于3孔。

浅谈高速铁路隧道掉块问题处理及预防

浅谈高速铁路隧道掉块问题处理及预防 摘要:近年来国家大力发展高速铁路基础设施建设,目前我国高速铁路运营里程已达1.6万公里,占世界的60%以上,“四纵四横”快速铁路网主骨架已初具规模,极大地方便了民众的出行。由于高速铁路运行速度快的特点,决定了高铁线路的曲线半径往往较大、坡率较缓,所以在高铁线路中桥隧所占比重会很高。随着今年来新建高铁线路相继开通运营,陆续出现了一些质量缺陷问题,可能对高速铁路运营安全产生影响,其中以隧道衬砌掉块影响最大,本文主要是对隧道衬砌掉块原因进行分析,提出相应的整治措施,并为今后隧道施工如何避免产生掉块提出预防措施。 关键词:高速铁路、隧道掉块、处理措施、预防措施 1 掉块的原因 由于高速铁路动车组列车运行速度非常快(通常为300KM/H),如此高速的列车进入隧道时会在隧道内产生强大的正气动压力,平均值可达1000Pa左右(峰值压力可达近6000Pa),同时当高速列车通过隧道后,会在车尾行车强大的负气动压力(强度与正气动压力相当),正负气动压力交替作用会使隧道衬砌已有的裂缝的应力强度因子突然增大,引发衬砌发生失稳断裂而形成掉块,可能砸中列车、接触网线路或其他设施设备,给高速铁路运营安全带来隐患。 2 掉块的形式 根据已经开通运营的一些高铁线路发生的掉块现象来看,主要的掉块形式有以下几个方面: 2.1 隧道二衬表面的杂物未清理干净。 隧道二衬表面在施工过程中或后续缺陷整治过程中的可能会遗留一些杂物,比如:铁丝、钢筋头、渗水处理遗留的针头等等,如果在线路开通运营前未清理干净这些杂物,在高速列车经过时可能会发生掉落,影响高铁运营安全。 2.2 隧道二衬表面存在修补现象。 隧道二衬混凝土在施工过程中可能由于混凝土离析、坍落度过小、捣鼓不到位、拆模过早等原因造成衬砌表面蜂窝麻面、伤损的现象,如果在后续处理过程中作业队未按照专门修补方案修补而仅仅采用砂浆涂抹的简单处理方式,经过一定时间后涂抹的砂浆非常容易脱落下来,从而发生掉块现象,这是运营过程中发现的最常见的掉块形式。 2.3 隧道二衬施工缝处存在松散的混凝土。 二衬施工缝处存在的松散混凝土块行形成原因可能有以下几个方面: (1)模板与前一模混凝土存在错台,容易在模板搭接处形成混凝土薄层; (2)端头模板漏浆,造成漏浆处附近混凝土蜂窝麻面,粗骨料松散; (3)新旧混凝土交接由于处理不当可能会形成空洞、蜂窝麻面等现象,如果在后期验收整改中未处理干净,在气流的反复作用下容易发生脱落掉块。 (4)中埋式止水带预埋位置偏差过大,局部甚至出现止水带外露的现象,从而造成止水带外混凝土厚度较薄,在外力作用下容易发生脱落。 2.4 隧道二衬存在闭环裂纹。 隧道二衬的闭环裂纹一般存在于二衬的施工缝地带,原因主要有以下几个方面: (1)混凝土浇筑后未及时进行养生,混凝土水化热引起的温度裂纹; (2)端模拆除时间过早引起混凝土伤损开裂;

高速铁路设计规范条文(8隧道)

8 隧道 8.1 一般规定 8.1.1 隧道设计必须考虑列车进入隧道诱发的空气动力学效应对行车、旅客舒适度、隧道结构和环境等方面的不利影响。 8.1.2 隧道衬砌内轮廓应符合建筑限界、设备安装、使用空间、结构受力和缓解空气动力学效应等要求。 8.1.3 隧道结构应满足耐久性要求,主体结构设计使用年限应为100年。 8.1.4 隧道主体工程完工后,应对其特殊岩土及不良地质地段基底的变形进行观测。 8.1.5 隧道辅助坑道的设置应综合考虑施工、防灾救援疏散和缓解空气动力学效应等功能的要求。 8.1.6 隧道结构防水等级应达到一级标准。 8.2 衬砌内轮廓 8.2.1 隧道衬砌内轮廓的确定应考虑下列因素: 1 隧道建筑限界; 2 股道数及线间距; 3 隧道设备空间; 4 空气动力学效应; 5 轨道结构形式及其运营维护方式。 8.2.2 隧道净空有效面积应符合下列规定: 1 设计行车速度目标值为300、350km/h时,双线隧道不应小于100 m2,单线隧道不应小于70 m2。 2 设计行车速度目标值为250km/h时,双线隧道不应小于90 m2,单线隧道不应小于58 m2。 8.2.3 曲线上的隧道衬砌内轮廓可不加宽。

8.2.4 隧道内应设置救援通道和安全空间,并符合下列规定: 1 救援通道 1)隧道内应设置贯通的救援通道。单线隧道单侧设置,双线隧道双侧设置,救援通道距线路中线不应小于2.3m。 2)救援通道的宽度不宜小于1.5m,在装设专业设施处可适当减少;高度不应小于2.2m。 3)救援通道走行面不应低于轨面,走行面应平整、铺设稳固; 2 安全空间 1)安全空间应设在距线路中线3.0m以外,单线隧道在救援通道一侧设置,多线隧道在双侧设置; 2)安全空间的宽度不应小于0.8m,高度不应小于2.2m。 8.2.5 双线、单线隧道衬砌内轮廓如图8.2.5-1~4所示。 图8.2.5-1 时速250km/h双线隧道内轮廓(单位:cm) 图8.2.5-2 时速300、350km/h双线隧道内轮廓(单位:cm)

高速铁路设计规范条文(8隧道)

8隧道 8.1 一般规定 8.1.1隧道设计必须考虑列车进入隧道诱发的空气动力学效应对行车、旅客舒适度、隧道结构和环境等方面的不利影响。 8.1.2隧道衬砌内轮廓应符合建筑限界、设备安装、使用空间、结构受力和缓解空气动力学效应等要求。 8.1.3隧道结构应满足耐久性要求,主体结构设计使用年限应为100年。 8.1.4隧道主体工程完工后,应对其特殊岩土及不良地质地段基底的变形进行观测。 8.1.5隧道辅助坑道的设置应综合考虑施工、防灾救援疏散和缓解空气动力学效应等功能的要求。 8.1.6隧道结构防水等级应达到一级标准。 8.2衬砌内轮廓 8.2.1隧道衬砌内轮廓的确定应考虑下列因素: 1隧道建筑限界; 2股道数及线间距; 3隧道设备空间; 4空气动力学效应; 5轨道结构形式及其运营维护方式。 8.2.2隧道净空有效面积应符合下列规定: 1设计行车速度目标值为300、350kEh时,双线隧道不应小于100成单线隧道不应小于70 m2。 2设计行车速度目标值为250km^h时,双线隧道不应小于90 m2,单线隧道不应小于58 m2。 8.2.3曲线上的隧道衬砌内轮廓可不加宽。

8.2.4隧道内应设置救援通道和安全空间,并符合下列规定: 1救援通道 1)隧道内应设置贯通的救援通道。单线隧道单侧设置,双线隧道双侧 设置,救援通道距线路中线不应小于 2.3m。 2)救援通道的宽度不宜小于1.5m,在装设专业设施处可适当减少;高度不应小于2.2m。 3)救援通道走行面不应低于轨面,走行面应平整、铺设稳固; 2 安全空间 1)安全空间应设在距线路中线 3.0m以外,单线隧道在救援通道一侧设置,多线隧道在双侧设置; 2)安全空间的宽度不应小于0.8m,高度不应小于2.2m。 8.2.5双线、单线隧道衬砌内轮廓如图8.2.5-1?4所示。 线| '隧|线 路|道路 中I ■中|中 线I线线 1内轨顶面三, UM

相关主题