搜档网
当前位置:搜档网 › 带电粒子在复合场中运动分析及例题

带电粒子在复合场中运动分析及例题

带电粒子在复合场中运动分析及例题
带电粒子在复合场中运动分析及例题

专题带电粒子在复合场中的运动

考点梳理

一、复合场

1.复合场的分类

(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.

(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.

二、带电粒子在复合场中的运动形式

1.静止或匀速直线运动

当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运

动.

2.匀速圆周运动

当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.

3.较复杂的曲线运动

当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.

4.分阶段运动

带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.

【规律总结】

带电粒子在复合场中运动的应用实例

1.质谱仪

所示,由粒子源、加速电场、偏转磁场和照相底片等构成.5构造:如图

(1).

5

图12.

v qU=m(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式2粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式2v.

=mq v B r 由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷.22UB2qr12mUq =,m=,r=. 22m2UBq r B2.回旋加速器

(1)构造:如图6所示,D、D是半圆形金属盒,D形盒的缝隙处21

形盒处于匀强磁场中.接交流电源,D原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆(2)形盒缝隙,两盒间的电势差一D周运动的过程中一次一次地经过2v m,得=v B次一次地反向,粒子就会被一次一次地加速.由q r222rBq6

D形盒图=,可见粒子获得的最大动能由磁感应强度B和E km m2 r决定,与加速电压无关.半径) (匀速圆周运动特别提醒这两个实例都应用了带电粒子在电场中加速、在磁场中偏转的原理.互相E和磁感应强度B(.速度选择器如图7所示)(1)平行板中电场强度3

垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.B,带电粒子能够沿直线匀速通过速度选择器的条件是(2)qE=q v E7

.图即v=B

4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能.中的B是发电机正极.根据左手定则,如图(2)8 v,磁场的L(3)磁流体发电机两极板间的距离为,等离子体速度为U8

B=q v得两极板间能达到的最大电势图qB磁感应强度为,则由qE=L.

=BL v差U ,用非磁性材95.电磁流量计工作原理:如图所示,圆形导管直径为d

(料制成,导电液体在管中向左流动,导电液体中的自由电荷正、负间出现电势差,形成电b、a,在洛伦兹力的作用下横向偏转,)离子.

场,当自由电荷所受的电场力和洛伦兹力平衡时,a、b间的电势差就图9

UU保持稳定,即:q v B=qE=q,所以v=,因此液体流量Q=S v=dBd2πdπdUU·=.

BBd44

【考点】

考点一带电粒子在叠加场中的运动

1.带电粒子在叠加场中无约束情况下的运动情况分类

(1)磁场力、重力并存

①若重力和洛伦兹力平衡,则带电体做匀速直线运动.

②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.

(2)电场力、磁场力并存(不计重力的微观粒子)

①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.

②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.

(3)电场力、磁场力、重力并存

①若三力平衡,一定做匀速直线运动.

②若重力与电场力平衡,一定做匀速圆周运动.

③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.

2.带电粒子在叠加场中有约束情况下的运动

带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.带电粒子(带电体)在叠加场中运动的分析方法

1.弄清叠加场的组成.

2.进行受力分析.

3.确定带电粒子的运动状态,注意运动情况和受力情况的结合.

4.画出粒子运动轨迹,灵活选择不同的运动规律.

(1)当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.

(2)当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解.

(3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.

(4)对于临界问题,注意挖掘隐含条件.

5.记住三点:(1)受力分析是基础;

(2)运动过程分析是关键;

根据不同的运动过程及物理模型,选择合适的定理列方程求解.(3).

考点二带电粒子在组合场中的运动

1.近几年各省市的高考题在这里的命题情景大都是组合场模型,或是一个电场与一个磁场相邻,或是两个或多个磁场相邻.

2.解题时要弄清楚场的性质、场的方向、强弱、范围等.

3.要进行正确的受力分析,确定带电粒子的运动状态.

4.分析带电粒子的运动过程,画出运动轨迹是解题的关键.

方法点拨

解决带电粒子在组合场中运动问题的思路方法

专题三.带电粒子在交变电场和交变磁场中的运动模型问题的分析

【典型选择题】

1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场(图中

点运B点沿直线向A所示的直线斜向下由1,带电小球沿如图)未画出

动,B的匀强磁场,则下列说法正确的是此空间同时存在由A指向)

(1 A.小球一定带正电图.小球可能做匀速直线运动B .带电小球一定做匀加速直线运动

C .运动过程中,小球的机械能增大D

如图2所示,一带电小球在一正交电2.[带电粒子在复合场中的匀速圆周运动] 场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面) (向里,则下列说法正确的是2 A.小球一定带正电图B.小球一定带负电C.小球的绕行方向为顺时针D.改变小球的速度大小,小球将不做圆周运动

所示是质谱仪的工作原理示意图.带电粒[质谱仪原理的理解]如图33.子被加速电场加速后,进入速度选择器.速度选择器内相互正交的上有可让粒子通过E.平板S匀强磁场和匀强电场的强度分别为B和.平板S下方有磁感应强度为A的狭缝P和记录粒子位置的胶片A21) 的匀强磁场.下列表述正确的是(B03 A.质谱仪是分析同位素的重要工具图B.速度选择器中的磁场方

曲线运动经典例题

《曲线运动》经典例题 1、关于曲线运动,下列说法中正确的是(AC) A. 曲线运动一定是变速运动 B. 变速运动一定是曲线运动 C. 曲线运动可能是匀变速运动 D. 变加速运动一定是曲线运动 【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。变速运动可能是速度的方向不变而大小变化,则可能是直线运动。当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。 2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点(A) A.一定做匀变速运动B.一定做直线运动 C.一定做非匀变速运动D.一定做曲线运动 【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。 3、关于运动的合成,下列说法中正确的是(C) A. 合运动的速度一定比分运动的速度大 B. 两个匀速直线运动的合运动不一定是匀速直线运动 C. 两个匀变速直线运动的合运动不一定是匀变速直线运动 D. 合运动的两个分运动的时间不一定相等 【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。如果在一直线上,合运动是匀变速直线运动;反之,是匀变速曲线运动。根据运动的同时性,合运动的两个分运动是同时的。 4、质量m=0.2kg的物体在光滑水平面上运动,其分速度v x和v y随时间变化的图线如图所示,求: (1)物体所受的合力。 (2)物体的初速度。 (3)判断物体运动的性质。 (4)4s末物体的速度和位移。 【解析】根据分速度v x和v y随时间变化的图线可知,物体在x 轴上的分运动是匀加速直线运动,在y轴上的分运动是匀速直线 运动。从两图线中求出物体的加速度与速度的分量,然后再合成。 (1) 由图象可知,物体在x轴上分运动的加速度大小a x=1m/s2,在y轴上分运动的加速度为0,故物体的合加速度大小为a=1m/s2,方向沿x轴的正方向。则物体所受的合力 F=ma=0.2×1N=0.2N,方向沿x轴的正方向。 (2) 由图象知,可得两分运动的初速度大小为 v x0=0,v y0=4m/s,故物体的初速度

带电粒子在复合场中的运动典型例题汇编

专题八带电粒子在复合场中的运动 考纲解读 1.能分析计算带电粒子在复合场中的运动.2.能够解决速度选择器、磁流体发电机、质谱仪等磁场的实际应用问题 1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场(图中未画出),带电小球沿 如图1所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,则 下列说确的是() A.小球一定带正电B.小球可能做匀速直线运动 C.带电小球一定做匀加速直线运动;D.运动过程中,小球的机械能增大;图1 2.[带电粒子在复合场中的匀速圆周运动]如图2所示,一带电小球在一正交电场、磁场区域里做匀 速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说确的是() A.小球一定带正电B.小球一定带负电; C.小球的绕行方向为顺时针;D.改变小球的速度大小,小球将不做圆周运动图2 考点梳理 一、复合场 1.复合场的分类 (1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域,并不重叠或相邻或在同一区域,电场、磁场交替出现. 2.三种场的比较 项目 名称 力的特点功和能的特点 重力场大小:G=mg 方向:竖直向下 重力做功与路径无关 重力做功改变物体的重力势能 静电场大小:F=qE 方向:a.正电荷受力方向与场强方向相同 b.负电荷受力方向与场强方向相反 电场力做功与路径无关 W=qU 电场力做功改变电势能 磁场洛伦兹力F=q v B 方向可用左手定则判断 洛伦兹力不做功,不改变带电粒子 的动能 二、带电粒子在复合场中的运动形式 1.静止或匀速直线运动 当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. 2.匀速圆周运动 当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面做匀速圆周运动. 3.较复杂的曲线运动 当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 4.分阶段运动 带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.

《圆周运动的实例分析》教案设计

教学设计 高一年级物理《圆周运动的实例分析》 子 洲 中 学 艾娜

高一年级物理《圆周运动的实例分析》教学设计 一、教材依据 本节课是沪科版高中物理必修2第二章《研究圆周运动》的第3节《圆周运动的实例分析》。 二、设计思路 (一)、指导思想 ①突出科学的探究性和物理学科的趣味性; ②体现了以学生为主体的学习观念;注重了循序渐进性原则和学生的认知规律,使学生从感性认识自然过渡到理性认识。 (二)、设计理念 本节对学生来说是比较感兴趣的,要使学生顺利掌握本节内容。引导学生在日常生活经验的基础上通过观察和主动探究和归纳,就成为教学中必须解决的关键问题。所以在本节课的设计中,结合新课改的要求,利用“六步教学法”:教师主导——提出问题;学生探求——发现问题;主体互动——研究问题;课堂整理——解决问题;课堂练习——巩固提高;反思小结——信息反馈,为学生准备了导学提纲,重视创设问题的情境和指导学生探究实验,引导学生分析实验现象,归纳总结出实验结论。 (三)教材分析 本节是《研究圆周运动》这一章的核心,它既是圆周运的向心力与向心加速度的具体应用,也是牛顿运动定律在曲线运动中的升华,它也将为学习后续的万有引定律应用、带电粒子在磁场中运动等内容作知识与方法上的准备。 本节通过对自行车、交通工具等具体事例的分析,理解圆周运动规律分析和解决物理问题的方法。在本节教学内容中,圆周运动与人们日常生活、生产技术有着密切的联系,本节教材从生活场景走向物理学习,又从物理学习走向社会应用,体现了物理与生活、社会的密切联系。 (四)学情分析 本人任教的学生基础较好、动手能力较强,对物理学科特别是紧密联系生活的内容特感兴趣。而且学生已经学完向心力和向心加速度理论知识,将会在极大的好奇心中学习本节内容,只是缺乏对实际圆周运动的深度分析,还没有能将其上升至理论高度。 三、教学目标 (一)知识与技能

高中物理曲线运动经典题型总结-(1)word版本

专题 曲线运动 一、运动的合成和分解 【题型总结】 1.合力与轨迹的关系 如图所示为一个做匀变速曲线运动质点的轨迹示意图,已知在B 点的速度与加速度相互垂直,且质点的运动方向是从A 到E ,则下列说法中正确的是( ) A .D 点的速率比C 点的速率大 B .A 点的加速度与速度的夹角小于90° C .A 点的加速度比D 点的加速度大 D .从A 到D 加速度与速度的夹角先增大后减小 2.运动的合成和分解 例:一人骑自行车向东行驶,当车速为4m /s 时,他感到风从正南方向吹来,当车速增加到7m /s 时。他感到风从东南方向(东偏南45o)吹来,则风对地的速度大小为( ) A. 7m/s B. 6m /s C. 5m /s D. 4 m /s 3.绳(杆)拉物类问题 例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ角,且重物下滑的速率为v 时,小车的速度为多少? 练习1:一根绕过定滑轮的长绳吊起一重物B ,如图所示,设汽车和重物的速度的大小分别为B A v v ,,则( ) A 、 B A v v = B 、B A v v ? C 、B A v v ? D 、重物B 的速度逐渐增大 4.渡河问题 例1:在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( ) 例2:某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为( ) (A) (B) (C) (D) 【巩固练习】 1、 一个劈形物体M ,各面都光滑,放在固定的斜面上,上表面水平,在上表面放一个 光滑小球m ,劈形物体由静止开始释放,则小球在碰到斜面前的运动轨迹是( ) m

竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析 竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。 一、两类模型——轻绳类和轻杆类 1.轻绳类。运动质点在一轻绳的作用下绕中心点作变速圆周运动。由于绳子只能提供拉力而不能提供支持力,质点在最高点所受的合力不能为零,合力的最小值是物体的重力。所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点 的向心力全部由质点的重力来提供,这时有,式中的是小球通过最高点的 最小速度,叫临界速度;(2)质点能通过最高点的条件是;(3)当质点的速度小于这一值时,质点运动不到最高点高作抛体运动了;(4)在只有重力做功的情况下,质点在最低点的速度不得小于,质点才能运动过最高点;(5)过最高点的最小向心加速度。 2.轻杆类。运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡 状态。所以质点过最高点的最小速度为零,(1)当时,轻杆对质点有竖直向上的支持 力,其大小等于质点的重力,即;(2)当时,;(3)当,质点的重力不足以提供向心力,杆对质点有指向圆心的拉力;且拉力随速度的增大而增大;(4)当时,质点的重力大于其所需的向心力,轻杆对质点的竖直向上的支持力,支持力随的增大而减小,;(5)质点在只有重力做功的情况下,最低点的速度,才能运动到最高点。过最高点的最小向心加速度。

高中物理运动学经典习题30道 带答案

一.选择题(共28小题) 1.(2014?陆丰市校级学业考试)某一做匀加速直线运动的物体,加速度是2m/s2,下列关于该物体加速度的理解 D 9.(2015?沈阳校级模拟)一物体从H高处自由下落,经时间t落地,则当它下落时,离地的高度为() D 者抓住,直尺下落的距离h,受测者的反应时间为t,则下列结论正确的是()

∝ ∝ 光照射下,可观察到一个下落的水滴,缓缓调节水滴下落的时间间隔到适当情况,可以看到一种奇特的现象,水滴似乎不再下落,而是像固定在图中的A、B、C、D四个位置不动,一般要出现这种现象,照明光源应该满足(g=10m/s2)() 地时的速度之比是 15.(2013秋?忻府区校级期末)一观察者发现,每隔一定时间有一滴水自8m高的屋檐落下,而且看到第五滴水 D

17.(2014秋?成都期末)如图所示,将一小球从竖直砖墙的某位置由静止释放.用频闪照相机在同一底片上多次曝光,得到了图中1、2、3…所示的小球运动过程中每次曝光的位置.已知连续两次曝光的时间间隔均为T,每块砖的厚度均为d.根据图中的信息,下列判断正确的是() 小球下落的加速度为 的速度为 :2 D: 2 D O点向上抛小球又落至原处的时间为T2在小球运动过程中经过比O点高H的P点,小球离开P点至又回到P 23.(2014春?金山区校级期末)一只气球以10m/s的速度匀速上升,某时刻在气球正下方距气球6m处有一小石 2

v0v0D 27.(2013?洪泽县校级模拟)一个从地面竖直上抛的物体,它两次经过同一较低a点的时间间隔为T a,两次经 g(T a2﹣T b2)g(T a2﹣T b2)g(T a2﹣T b2)D g(T a﹣T b) 28.(2013秋?平江县校级月考)在以速度V上升的电梯内竖直向上抛出一球,电梯内观者看见小球经t秒后到 h=

曲线运动典型例题

一、选择题 1、一石英钟的分针和时针的长度之比为 3:2,均可看作是匀速转动,则()A.分针和时针转一圈的时间之比为 1:60 B.分针和时针的针尖转动的线速度之比为 40:1 C.分针和时针转动的角速度之比为 12:1 D.分针和时针转动的周期之比为 1:6 2、有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的内侧壁高速行驶,做匀速圆周运动.如图所示中虚线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h.下列说法中正确的是() A.h越高,摩托车对侧壁的压力将越大 B.h越高,摩托车做圆周运动的线速度将越大 C.h越高,摩托车做圆周运动的周期将越大 D.h越高,摩托车做圆周运动的向心力将越大 3、A、B两小球都在水平面上做匀速圆周运动,A球的轨道半径是B球的轨道半径的2倍,A的转速为30 r/min,B的转速为 r/min,则两球的向心加速度之比为:()

A.1:1 B.6:1 C.4:1 D.2:1 4、两个质量相同的小球a、b用长度不等的细线拴在天花板上的同一点并在空中同一水平面内做匀速圆周运动,如图所示,则a、b两小球具有相同的 A.角速度 B.线速度 C.向心力 D.向心加速度 5、关于平抛运动和匀速圆周运动,下列说法中正确的是() A.平抛运动是匀变速曲线运动 B.平抛运动速度随时间的变化是不均匀的 C.匀速圆周运动是线速度不变的圆周运动 D.做匀速圆周运动的物体所受外力的合力做功不为零 6、在水平面上转弯的摩托车,如图所示,提供向心力是 A.重力和支持力的合力 B.静摩擦力C.滑动摩擦力 D.重力、支持力、牵引力的合力

7、如图所示,在粗糙水平板上放一个物体,使水平板和物体一起在竖直平面内沿逆时针方向做匀速圆周运动,ab为水平直径,cd为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则() A.物块始终受到三个力作用B.只有在a、b、c、d 四点,物块受到合外力才指向圆心 C.从a到b,物体所受的摩擦力先减小后增大D.从b到a,物块处于失重状态 8、如图所示,拖拉机后轮的半径是前轮半径的两倍,A和B是前轮和后轮边缘上的点,若车行进时轮与路面没有滑动,则) A. A点和B点的线速度大小之比为1:2 B.前轮和后轮的角速度之比为2:1 C.两轮转动的周期相等 D. A点和B点的向心加速度相等 9、用一根细线一端系一可视为质点的小球,另一端固定在一光滑锥顶上,如图所示,设小球在水平面内作匀速圆周运动的角速度为ω,线的张力为T,则T随ω2变化的图象是( )

粒子在复合场中的运动

带电粒子在复合场中的运动 一、复合场的概念 1.重力是否考虑:研究对象的重力是否要考虑,应根据题目的条件而定;一般情况下微观粒子重力不考虑,宏观物体的重力要考虑; 2.电场力的大小及方向要会判断 3.洛仑兹力的大小及方向要会判断 二、复合场中的运动分类 1.复合场分立在不同区域――应熟悉在各种场中的运动及相应解题方法 (1)在电场中常考的运动:加(减)速直线――动能定理;类平抛――速度、位移的合成与分解。(2)在磁场中常考的运动:匀速圆周运动――定圆心、画轨迹、找几何关系列方程求解 例1. 在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M 点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示,不计粒子重力,求 (1)M、N两点间的电势差U MN; (2)粒子在磁场中运动的轨道半径r; (3)粒子从M点运动到P点的总时间t. 2.复合场叠加在同一区域 (1)当研究对象所受合外力为0时,静止或者匀速直线运动 (2)当研究对象所受合外力与v共线时,匀变速直线运动 例2.如图,两虚线之间的空间内存在着正交或平行的匀强电场E和匀强磁场B,有一个带正电的小球(电量为+q,质量为m)从正交或平行的电磁复合场上方的某一高度自由落下。那么小球可能沿直线通过下列哪个复合场() 重要结论1:在含有磁场的区域,研究对象做直线运动,则一定为匀速直线运动. (3)当研究对象所受合处力与v不共线时,曲线运动。(圆周运动或者复杂曲线) (圆周)例3. 如图所示,带电液滴从h高处自由落下,进入一个匀强电场与匀强磁场互相垂 直的区域,磁场方向垂直纸面,电场强度为E,磁感应强度为B.已知液滴在此区域中做匀 速圆周运动,则圆周运动的半径R=__________________ 重要结论2:在三个场都存在的时候,若研究对象做匀速圆周运动,则电场力一定与重力大小相等方(复杂曲线)例4.在空间有相互垂直的场强为E的匀强电场和磁感强度为B的匀强磁 场,如图所示,一质量为m电荷量为e的电子从原点静止释放,不计重力。求电子在 y轴方向前进的最大距离Y m。 重要结论3:当合外力大小和方向均变化,且与初速度方向不在一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线。常用配速法对轨迹进行分解。

运动学计算题及问题详解

运动学 1.曲柄滑道机构,曲柄长r ,倾角 = 60°。在图示瞬时, = 60°,曲柄角速度为 ,角加速度为。试求此时滑道 BCDE 的速度和加速度。 2.在图示曲柄滑道机构中,曲柄 OA = 40 cm ,绕O 轴转动,带动滑 杆CB 上下运动。在 = 30°时, = 0.5 rad/s , = 0.25 rad/s 2。试求此瞬时滑杆 CB 的速度和加速度。 3.图示系统中,开槽刚体B 以等速v 作直线平动,通过滑块A 带动杆OA 绕O 轴转动。已知: = 45°,OA = L 。试求杆OA 位于铅垂位置时的角速度和角加速度。

4.图示曲柄滑道机构,OA = R,通过滑块A带动BC作往复运动。当= 60°时,杆OA的角速度为,角加速度为。试求此瞬时滑块A相对滑槽BC的速度及滑槽BC的加速度。 5.在图示机构中,杆AB借助滑套B带动直角杆CDE运动。已知:杆AB长为L,在图示= 30°瞬时,角速度为,角加速度为。试求:该瞬时直角杆CDE的速度和加速度。 6.图示机构中,曲柄OA长为R,通过滑块A使导杆BC和DE在固定平行滑道内上下滑动,当° 时,杆OA的角速度为,角加速度为。试求该瞬时点B的速度与加速度。 7.图示系统当楔块以匀速v 向左运

实用文档 动时,迫使杆OA 绕点O 转动。若杆OA 长为L , °。试求当杆OA 与水平线成角 °时,杆OA 的角速度与角加速度。 8.在图示机构中,曲柄长OA = 40 cm ,绕O 轴逆钟向转动,带动导杆BCD 沿铅垂方向运动。当OA 与水平线夹角 °时, 、2。试求此瞬时导杆BCD 的速度和加速度。 9.在图示平面机构中,已知:OO 1 = CD ,OC = O 1 D = r , °在图示位置 °时,杆OC 的角速度为,角加速度为。试求此瞬时杆AB 的速度和加速度(杆AB 垂直于OO )。

带电粒子在复合场中的运动分析及例题

专题带电粒子在复合场中的运动 考点梳理 一、复合场 1.复合场的分类 (1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁 场交替出现. 二、带电粒子在复合场中的运动形式 1.静止或匀速直线运动 当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. 2.匀速圆周运动 当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动. 3.较复杂的曲线运动 当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 4.分阶段运动 带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.

【规律总结】 带电粒子在复合场中运动的应用实例 1. 质谱仪 (1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成. 图5 (2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =1 2 m v 2. 粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式q v B =m v 2r . 由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 2 . 2. 回旋加速器 (1)构造:如图6所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处 接交流电源,D 形盒处于匀强磁场中. (2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周 运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一 次地反向,粒子就会被一次一次地加速.由q v B =m v 2 r ,得 E km =q 2B 2r 2 2m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒 图6 半径r 决定,与加速电压无关. 特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动) 的原理. 3. 速度选择器(如图7所示)(1)平行板中电场强度E 和磁感应强度B 互相 垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度 选择器. (2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =q v B , 即v =E B . 图7 4. 磁流体发电机 (1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图8中的B 是发电机正极. (3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的 磁感应强度为B ,则由qE =q U L =q v B 得两极板间能达到的最大电势 图8

高中物理《运动学》练习题

高中物理《运动学》练习题 一、选择题 1.下列说法中正确的是() A .匀速运动就是匀速直线运动 B .对于匀速直线运动来说,路程就是位移 C .物体的位移越大,平均速度一定越大 D .物体在某段时间内的平均速度越大,在其间任一时刻的瞬时速度也一定越大 2.关于速度的说法正确的是() A .速度与位移成正比 B .平均速率等于平均速度的大小 C .匀速直线运动任何一段时间内的平均速度等于任一点的瞬时速度 D .瞬时速度就是运动物体在一段较短时间内的平均速度 3.物体沿一条直线运动,下列说法正确的是() A .物体在某时刻的速度为3m/s ,则物体在1s 内一定走3m B .物体在某1s 内的平均速度是3m/s ,则物体在这1s 内的位移一定是3m C .物体在某段时间内的平均速度是3m/s ,则物体在1s 内的位移一定是3m D .物体在发生某段位移过程中的平均速度是3m/s ,则物体在这段位移的一半时的速度一定是3m/s 4.关于平均速度的下列说法中,物理含义正确的是() A .汽车在出发后10s 内的平均速度是5m/s B .汽车在某段时间内的平均速度是5m/s ,表示汽车在这段时间的每1s 内的位移都是5m C .汽车经过两路标之间的平均速度是5m/s D .汽车在某段时间内的平均速度都等于它的初速度与末速度之和的一半 5.火车以76km/h 的速度经过某一段路,子弹以600m /s 的速度从枪口射出,则() A .76km/h 是平均速度 B .76km/h 是瞬时速度 C .600m/s 是瞬时速度 D .600m/s 是平均速度 6.某人沿直线做单方向运动,由A 到B 的速度为1v ,由B 到C 的速度为2v ,若BC AB =,则这全过程的平均速度是() A .2/)(21v v - B .2/)(21v v + C .)/()(2121v v v v +- D .)/(22121v v v v + 7.如图是A 、B 两物体运动的速度图象,则下列说法正确的是() A .物体A 的运动是以10m/s 的速度匀速运动 B .物体B 的运动是先以5m /s 的速度与A 同方向 C .物体B 在最初3s 内位移是10m D .物体B 在最初3s 内路程是10m 8.有一质点从t =0开始由原点出发,其运动的速度—时间图象如图所示,则() A .1=t s 时,质点离原点的距离最大 B .2=t s 时,质点离原点的距离最大 C .2=t s 时,质点回到原点 D .4=t s 时,质点回到原点 9.如图所示,能正确表示物体做匀速直线运动的图象是() 10.质点做匀加速直线运动,加速度大小为2 m/s 2,在质点做匀加速运动的过程中,下列说法正确的是()

物理必修2第五章曲线运动经典分类例题

第五章曲线运动经典分类例题 §5.1 曲线运动基础 一、知识讲解 二、【典型例题】 知识点1、力和运动的关系 1、曲线运动的定义: 2、合外力决定运动的速度: 】 3、合外力和速度是否共线决定运动的轨迹: 4、物体做曲线运动的条件: 习题 1、关于曲线运动的速度,下列说法正确的是:() A、速度的大小与方向都在时刻变化 ) B、速度的大小不断发生变化,速度的方向不一定发生变化 C、速度的方向不断发生变化,速度的大小不一定发生变化 D、质点在某一点的速度方向是在曲线的这一点的切线方向 2、下列叙述正确的是:() A、物体在恒力作用下不可能作曲线运动 B、物体在变力作用下不可能作直线运动 C、物体在变力或恒力作用下都有可能作曲线运动 D、物体在变力或恒力作用下都可能作直线运动 ^ 3、下列关于力和运动关系的说法中,正确的上:() A.物体做曲线运动,一定受到了力的作用 B.物体做匀速运动,一定没有力作用在物体上 C.物体运动状态变化,一定受到了力的作用 D.物体受到摩擦力作用,运动状态一定会发生改变 4、下列曲线运动的说法中正确的是:() A、速率不变的曲线运动是没有加速度的 B、曲线运动一定是变速运动 C、变速运动一定是曲线运动 D、曲线运动一定有加速度,且一定是匀加速曲线运动; 5、物体受到的合外力方向与运动方向关系,正确说法是:() A、相同时物体做加速直线运动 B、成锐角时物体做加速曲线运动 C、成钝角时物体做加速曲线运动 D、如果一垂直,物体则做速率不变的曲线运动6.某质点作曲线运动时:() A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间内位移的大小总是大于路程

带电粒子在复合场中运动的经典例题解析

2015年带电粒子在复合场中运动的经典例题 1、(15分)如图所示,MN、PQ是平行金属板,板长为L,两板间距离为d,在PQ板的上 方有垂直纸面向里的匀强磁场。一个电荷量为q、质量为m的带负电粒子以速度v0从MN板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场。不计粒子重力。试求: (1)两金属板间所加电压U的大小; (2)匀强磁场的磁感应强度B的大小; (3)在图中画出粒子再次进入电场的运动轨迹,并标出粒子再次从电场中飞出的位置与速度方向。 B 2.(16分)如图,在x oy平面内,MN和x轴之间有平行于y轴的匀强电场和垂直于x oy 平面的匀强磁场,y轴上离坐标原点4 L的A点处有一电子枪,可以沿+x方向射出速度为v0的电子(质量为m,电量为e)。如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保留磁场,电子将从x轴上距坐标原点3L的C点离开磁场.不计重力的影响,求: (1)磁感应强度B和电场强度E的大小和方向; (2)如果撤去磁场,只保留电场,电子将从D点(图中未标出)离开电场,求D点的坐标;(3)电子通过D点时的动能。 3.(12分)如图所示,在y>0的空间中,存在沿y轴正方向的匀强电场E;在y<0的空间中,存在沿y轴负方向的匀强电场,场强大小也为E,一电子(电量为-e,质量为m)在y 轴上的P(0,d)点以沿x轴正方向的初速度v0开始运动,不计电子重力,求: (1)电子第一次经过x轴的坐标值

(2)电子在y方向上运动的周期 (3)电子运动的轨迹与x轴的各个交点中,任意两个相邻交点间的距离 (4)在图上画出电子在一个周期内的大致运动轨迹 4.(16分)如图所示,一个质量为m=2.0×10-11kg,电荷量q=+1.0×10-5C的带电微粒(重力忽略不计),从静止开始经U=100V电压加速后,水平进入两平行金属板间的偏转电场中。金属板长L=20cm,两板间距d=103cm。求:⑴微粒进入偏转电场时的速度v是多大?⑵若微粒射出电场过程的偏转角为θ=30°,并接着进入一个方向垂直与纸面向里的匀强磁场区,则两金属板间的电压U2是多大?⑶若该匀强磁场的宽度为D=103cm,为使微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少多大? 5、如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中) 解析:如图所示,带电粒子从S点出发,在两筒之间的电场作用下加速,沿径向穿过狭缝a而进入磁场区,在洛伦兹力作用下做匀速圆周运动。粒子再回到S点的条件是能沿径向穿过狭缝d.只要穿过了d,粒子就会在电场力作用下先减速,再反向加速,经d重新进入磁场区,然后粒子以同样方式经过c、b,再回到S点。设粒子进入磁场区的速度大小为V,根据动能定理,有

圆周运动实例分析

圆周运动实例分析 广州南沙东涌中学 一.教学目标 1.知识与技能 1.能定量分析汽车转弯时的向心力由谁提供。 2.能定量分析汽车过拱形桥最高点和凹形桥最低点的压力问题。 3.会用牛顿第二定律分析生活中较简单的圆周运动问题。 2.过程与方法 通过对圆周运动的实例分析,渗透理论联系实际的观点,提高分析和解决问题的能力。 3.情感、态度与价值观 养成应用实践能力和思维创新意识;运用生活中的几个事例,激发学习兴趣、求知欲和探索动机;通过对实例的分析,建立具体问题具体分析的科学观念。 二.学情分析 学生已经学习过了圆周运动以及向心力的基本知识,并且生活中有很多圆周运动,学生在生活经验中已具备一些有关圆周运动的感性认识,但他们还不是很清楚物体做圆周运动的向心力应该由谁来充当,,也不能理性的分析和解释各种实际的圆周运动的情况。教学中要充分利用学生已有知识经验,使学生积极主动地参与教学过程。 三.重点难点 会用牛顿第二定律分析生活中较简单的圆周运动问题 四.教学过程 活动1【导入】引入新课 向同学们提出以下问题:1.物体做圆周运动受到的合外力是否为0? 2.向心力它是恒力还是变力以及向心力的公式? 3.生活中有哪些运动是圆周运动?引出本节课《圆周运动实例分析》 活动2【讲授】讲授新课 本节课主要有两个知识点:(1)汽车转弯问题(2)汽车过拱形桥问题 (1)汽车转弯的问题 1.汽车在水平路面转弯: 汽车在水平面转弯时,向心力由哪个力来提供?为什么汽车转弯时,要减速慢行? 通过PPT呈现汽车转弯时的图片,引导学生找出汽车转弯时的向心力由静摩擦力提供,通过分析可知,汽车转弯时 ,车速越大,所需向心力越大,因此,转弯时,必须减速慢行。 例题讲解; 例1.在一段半径为R的圆弧形水平弯道上,已知地面对汽车轮胎的最大静摩擦力等于车重的μ倍 ,则汽车转弯时的 安全速度是多少?

运动学知识点及例题(详细)

第一章 运动的描述 匀变速直线运动 专题一:运动的描述 1.质点 (1)定义:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。(把物体看作有质量的点) (2)物体看做质点的条件: 1)物体中各点的运动情况完全相同(物体做平动) 2)物体的大小(线度)<<它通过的距离 (3).质点具有相对性,而不具有绝对性。 (4)质点是理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体) 2.参考系 (1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。 对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果可能不同的。 ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。 ③参考系可以是运动的,也可以是静止的,但被选作参考系的物体,假定它是静止的。通常取地面作为参照系 ④比较两物体运动时,要选同一参考系。 3.位置、位移和路程 (1)位置是空间某个点,在x 轴上对应的是一个点 (2)位移是表示质点位置变化的物理量。是矢量,在x 轴上是有向线段,大小等于物体的初位置到末位置的直线距离,与路径无关。 (3)路程是质点运动轨迹的长度,是标量,其大小与运动路径有关。 一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单向直线运动时,路程等于位移的大小,但不能说位移等于路程,因为一个矢量和一个标量不能比较。图1-1中质点轨迹ACB 的长度是路程,AB 是位移S 。 (4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O 点起走了50m 路,我们就说不出终了位置在何处。 4、时刻和时间 时刻:指的是某一瞬时.在时间轴上是一个点.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上是线段.对应的是位移、路程、冲量、功等过程量. A B A B C 图1-1

高中物理曲线运动经典习题30道-带答案

一.选择题(共25小题) 1.(2015春?苏州校级月考)如图所示,在水平地面上做匀速直线运动的汽车,通过定滑轮用绳子吊起一个物体,若汽车和被吊物体在同一时刻的速度分别为v1和v2,则下面说法正确的是() A.物体做匀速运动,且v2=v1B.物体做加速运动,且v2>v1 C.物体做加速运动,且v2<v1D.物体做减速运动,且v2<v1 2.(2015春?潍坊校级月考)如图所示,沿竖直杆以速度v为速下滑的物体A,通过轻质细绳拉光滑水平面上的物体B,细绳与竖直杆间的夹角为θ,则以下说法正确的是() A.物体B向右做匀速运动B.物体B向右做加速运动 C.物体B向右做减速运动D.物体B向右做匀加速运动 3.(2014?蓟县校级二模)如图所示,绕过定滑轮的细绳一端拴在小车上,另一端吊一物体A,A的重力为G,若小车沿水平地面向右匀速运动,则() A.物体A做加速运动,细绳拉力小于G B.物体A做加速运动,细绳拉力大于G C.物体A做减速运动,细绳拉力大于G D.物体A做减速运动,细绳拉力小于G 4.(2014秋?鸡西期末)如图所示,用绳跨过定滑轮牵引小船,设水的阻力不变,则在小船匀速靠岸的过程中() A.绳子的拉力不断增大B.绳子的拉力不变 C.船所受浮力增大D.船所受浮力变小 5.(2014春?邵阳县校级期末)人用绳子通过动滑轮拉A,A穿在光滑的竖直杆上,当以速度v0匀速地拉绳使物体A到达如图所示位置时,绳与竖直杆的夹角为θ,求A物体实际运动的速度是() A.v0sinθB.C.v0cosθD. 6.(2013秋?海曙区校级期末)如图中,套在竖直细杆上的环A由跨过定滑轮的不可伸长的轻绳与重物B相连.由于B的质量较大,故在释放B后,A将沿杆上升,当A环上升至与定滑轮的连线处于水平位置时,其上升速度V1≠0,若这时B的速度为V2,则()

带电粒子在复合场中运动的17个经典例题

经典习题 1、(15分)如图所示,MN、PQ是平行金属板,板长为L,两板间距离为d,在PQ板的上 方有垂直纸面向里的匀强磁场。一个电荷量为q、质量为m的带负电粒子以速度v0从MN板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场。不计粒子重力。试求: (1)两金属板间所加电压U的大小; (2)匀强磁场的磁感应强度B的大小; (3)在图中画出粒子再次进入电场的运动轨迹,并标出粒子再次从电场中飞出的位置与速度方向。 B 2.(16分)如图,在x oy平面内,MN和x轴之间有平行于y轴的匀强电场和垂直于x oy 平面的匀强磁场,y轴上离坐标原点4 L的A点处有一电子枪,可以沿+x方向射出速度为v0的电子(质量为m,电量为e)。如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保留磁场,电子将从x轴上距坐标原点3L的C点离开磁场.不计重力的影响,求: (1)磁感应强度B和电场强度E的大小和方向; (2)如果撤去磁场,只保留电场,电子将从D点(图中未标出)离开电场,求D点的坐标;(3)电子通过D点时的动能。 3.(12分)如图所示,在y>0的空间中,存在沿y轴正方向的匀强电场E;在y<0的空间中,存在沿y轴负方向的匀强电场,场强大小也为E,一电子(电量为-e,质量为m)在y 轴上的P(0,d)点以沿x轴正方向的初速度v0开始运动,不计电子重力,求: (1)电子第一次经过x轴的坐标值

(2)电子在y方向上运动的周期 (3)电子运动的轨迹与x轴的各个交点中,任意两个相邻交点间的距离 (4)在图上画出电子在一个周期内的大致运动轨迹 4.(16分)如图所示,一个质量为m=2.0×10-11kg,电荷量q=+1.0×10-5C的带电微粒(重力忽略不计),从静止开始经U=100V电压加速后,水平进入两平行金属板间的偏转电场中。金属板长L=20cm,两板间距d=103cm。求:⑴微粒进入偏转电场时的速度v是多大?⑵若微粒射出电场过程的偏转角为θ=30°,并接着进入一个方向垂直与纸面向里的匀强磁场区,则两金属板间的电压U2是多大?⑶若该匀强磁场的宽度为D=103cm,为使微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少多大? 5、如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中) 解析:如图所示,带电粒子从S点出发,在两筒之间的电场作用下加速,沿径向穿过狭缝a而进入磁场区,在洛伦兹力作用下做匀速圆周运动。粒子再回到S点的条件是能沿径向穿过狭缝d.只要穿过了d,粒子就会在电场力作用下先减速,再反向加速,经d重新进入磁场区,然后粒子以同样方式经过c、b,再回到S点。设粒子进入磁场区的速度大小为V,根据动能定理,有

运动疗法学》复习题

《运动疗法学》复习题 一、名词解释 1、抗阻力运动:在治疗师用手或利用器械对人体施加阻力的情况下,由患者主动地进行抗阻力的活动. 2、助力运动:通常由徒手、健肢或通过滑轮装置等对患肢的主动运动施加辅助力量,兼有主动运动和被动运动的特点. 3、肩肱节律:肩关节的运动时各关节间的协调运动,肩肱关节运动时肩胸连接处随之运动,此协调运动称为肩肱节律. 4、体位转移:是指人体从一种姿势转移到另一种姿势的过.程. 5、牵伸技术:是指拉长挛缩或缩短软组织的治疗方法,其目的是增加组织的伸展性和ROM. 6、关节松动技术:关节松动术是治疗师在关节的生理运动和附属运动范围内完成的一种被动关节运动. 7、关节的附属运动:是关节在解剖结构允许范围内进行的运动,它不能主动完成,可以通过他人或对侧肢体帮助完成 8、关节的生理运动:是关节在生理范围内的运动,主动和被动都可以完成,是关节活动评定的主要内容,可以完成所有的关节运动形式,如屈、伸、内收、外展、内旋、外旋 9、治疗平面:是一个垂直于一条由旋转轴至关节凹面中心线的平面 10、肌力:是指肌肉收缩时产生的最大力量 11、肌肉耐力:肌肉耐力是指有关肌肉维持进行某项特定人任务(作业)的能力.其大小可以用从开始直到出现疲劳时以收缩的总次数或所经历的时间来衡量. 12、离心性收缩:当肌肉收缩时肌力小于阻力(外力),使原先缩短的肌肉被动地延长,肌肉的止点和起点相互远离 13、向心性收缩:当肌肉收缩时肌力大于阻力(外力),肌肉的长度缩短,肌肉的止点和起点相互靠近 14、牵引疗法:是应用作用力和反作用力的原理,并将这一对方向相反的力量作用于脊柱或四肢关节,达到分离关节面、牵伸周围软组织和改变骨结构之间角度或列线等目的的一种康复治疗方法 15、平衡:是指人体无论处在何种姿势,如静止,运动或受到外力作用的状态下,能自动调整姿势并维持稳定的一种能力. 16、支撑面:支撑面是指人体在各种体位时能稳定的支持身体的重量所依靠的接触面. 17、步行:它是一个复杂的生理过程,人体通过中枢命令,身体平衡和协调控制,涉及足,髋,膝,躯干,颈,臂的肌肉和关节的协调运动,来共同完成正常的步行行为. 18、步态:是指人体步行时的姿势,包括步行和跑两种状态. 19、社区性步行:是指可以借助踝-足矫形器,手杖或甚至不用,可以在室外和所在社区内行走。 20、反射性抑制:是专门抑制异常运动和异常的姿势反射而设计的一些运动模式. 21、Raimiste现象:在仰卧位,健侧下肢抗阻力外展或内收时,患者髋关节可出现相同动作,下肢的这种联合反应。 22、技巧性活动 23、PNF:采取刺激人体组织的各种感受器-本体感觉,来激活共和募集最大量的运动单位参与活动,同时激发其潜力来促进神经肌肉的恢复这种方法简称本体促进法. 24、运动再学习:它以生物力学、运动科学、神经科学和认知心理学等为理论基础,以作业与功能为导向,在强调患者主观参与和认知重要性的前提下,按照科学的运动学习方法对患者进行再教育以恢复其运动功能的一套完整的方法。 25、心功能康复:指应用多种协同的,有目!的各种干预措.施包括康复评估,运动训练,指导饮食,指导生活习惯,规律服药,定期监测各项指标和接受健康教育等使患者改善生活质量,回归正常社会生活,预防心血管疾病事件发生。 26、有氧运动:有氧运动是指人体在氧气充分供应的情况下进行的体育锻炼。 27、引导式教育:引导式教育是通过教育(教学)的方式使功能障碍者的异常功能得到改善或恢复正常,尤其是通过其特有的“节律性意向”,诱导儿童以积极的态度主动参与教学过程,让儿童能在相互学习情况下相互激励,克服困难,完成教学任务,达到全面康复的目标。 28、MDT(麦肯基力学诊疗技术):是针对人体脊柱和四肢疼痛和/或活动受限的力学原因进行分析和诊断,并应用恰当的力学方法进行治疗的独特的体系 29、强制性运动疗法:在生活环境中限制脑损伤患者使用健侧上肢,强制性反复使用患侧上肢。 30、运动想象疗法:是指为了提高运动功能而进行的反复运动想象,没有任何运动输出,根据运动记忆在大脑中激活某一活动的特定区域,从而达到提高运动功能的目的。 二、简答题 1、简述改善关节活动范围的常用技术和方法?1)防止关节周周软组织挛缩造成的关节功能障碍2)防止神经肌肉性挛缩造成的关节活动障碍3)防止软组织粘连形成的关节活动障碍 (1).主动运动:用主动运动恢复关节活动,动作宜平稳缓慢,尽可能达到最大幅度,然后稍加维持,以引起轻度疼痛感为度;(2)被动运动;由治疗师或患者自己用健肢协助进行.其对挛缩组织的牵张,活动到最大幅度也宜作短时间维持,应根据疼痛感觉控制用力程度,切忌施行暴力,以免引起新的损伤.(3)助力运动:通常由徒手,健侧或通过滑轮装置等对患肢的主动运动施加辅助力量,兼有主动运动和被动运动的特点.(4)关节功能牵引法:按需要扩大活动关节运动方向作持续一定时间的重力牵引,使挛缩及粘连的纤维产生更多的塑性延长,以取得更好的联系效果.在其远端肢体上按需要方向用沙袋作重力牵引,重力以引起一定的紧张或轻度的疼痛感觉,可以忍受,不引起反射性痉挛为度.(5)持续被动运动(CPM)主要用于防治制动引起的关节挛缩,促

相关主题