搜档网
当前位置:搜档网 › 大学物理矢量基础

大学物理矢量基础

大学物理矢量基础
大学物理矢量基础

附录II 矢量基础

1 标量

在物理学习中,经常见到一类只具有数值大小(包括有关单位),而不具有方向的一类物理量,这些物理量之间遵循一般的代数法则,这样的量叫物理标量,简称标量。例如路程、速率、时间、温度等。标量有正负之分,例如温度,+20℃表示冰点以上20℃,-20℃表示冰点以下20℃,但它并不表示方向。

2 矢量

2.1 矢量的表示

除了标量,经常见到一类既要由数值大小(包括有关单位),又要由方向才能完全确定的物理量,它们之间遵循特殊的运算法则,这类物理量叫做物理矢量,简称矢量。例如位移、力、速度、加速度、动量、电场强度等。

矢量一般(印刷时)用黑体表示,如A ,但在手写时,为了方便,一般是在字母上加上矢量符号即可,如A . 作图时,用一个带箭头的的线段表示矢量,线段的长度表示矢量的大小,线段的方向表示矢量的方向. 矢量的大小也称为矢量的模,用A 或A 表示.

在矢量中,有两个特殊矢量,分别为:零矢量和单位矢量. 零矢量的模为0,方向任意;单位矢量的模为1,方向与对应矢量方向相同,例如可以用0A 表示矢量A 的单位矢量,则

00A A A A ==A . 一些特殊的单位矢量的物理意义是约定俗成的,如i ,j ,k 分别表示三

维直角坐标系中x ,y ,z 三个坐标轴上正方向的单位矢量;n ,τ(t )分表表示自然坐标系中的法向和切向坐标轴上正方向的单位矢量.

如果两个矢量大小相同,方向一致,则这两个矢量相等,如图1.1所示. 如果两个矢量大小相等,方向相反,则这两个矢量互为负矢量,如图1.2所示.

图1.1 等矢量 图1.2 负矢量 在比较几个矢量之间的关系时,或对他们进行运算时,这些矢量要按照相同的比例来绘图,且矢量可以在空间中平移,平移后的大小和方向仍保持不变,如图1.3所示

.

图1.3 矢量的平移 2.2 矢量运算

2.2.1 矢量的加法

矢量加法是矢量的几何和,两个矢量的几何和服从平行四边形规则,如图1.4(a )所示,则有B A C +=,矢量加法也可以用矢量三角形表示,如图1.4(b )所示. 矢量A 的头和矢量B 的尾相接,得矢量C 。同理矢量B 的头和矢量A 的尾相接,也得矢量C ,可见,矢量加法和矢量排列次序无关,即服从交换律

A B B A +=+ (1.1)

如果要求三个矢量A ,B ,C 的和,可先求B A +,再与C 相加即可.若以A 与C B +相加,会得同样的结果,如图1.5所示. 由图1.5可知,矢量加法也服从结合律.

()()C B A C B A ++=++ (1.2)

(a )

(b )

图1.4 矢量加法

图1.5 多个矢量的加法

矢量加法是几个矢量的合成问题,反之,一个矢量也可以分解为几个矢量,一般为方便计算,常采用正交分解法. 例如把矢量A 可以在三维直角坐标系中分解,如图1.6所示.

y

z

x

图1.6 三维直角坐标系中的矢量

由图1.6可知

k j i A z y x A A A ++= (1.3)

则,矢量A 的模与夹角余弦值为

222z y x A A A ++=

A (1.4) A x A =αcos ,A y A =βcos ,A

z A =γcos (1.5) 其中α,β和γ分别为矢量A 的方向角,即矢量A 与三个坐标轴方向的夹角,αcos βcos 和γcos 称为矢量A 的方向余弦,且有1cos cos cos 222=++γβα.

设有三个矢量A ,B 和C ,在直角坐标系中分别表示为k j i A z y x A A A ++=,k j i B z y x B B B ++=,k j i C z y x C C C ++=,则三个矢量相加为

()()

()k j i C B A z z z y y y x x x Z B A Z B A Z B A ++++++++=++ (1.6)

在矢量的分解中,应注意到分解的不唯一性.

2.2.2 矢量的减法

矢量减法可视为矢量加法的逆运算,即 ()B A B A -+=- (1.7)

通常()B -称为矢量B 的逆矢量,它的大小和矢量B 一样,但方向相反,如图1.7所示.

图1.7 矢量减法 图1.8 和矢量为零的几何表示

由矢量加减法运算规则可知,如果三个矢量A ,B 和C 头尾相连组成封闭三角形,其矢量和为零,如图1.8所示。

0=++C B A (1.8)

同理可推断,若多个矢量头尾相连组成封闭的多边形,其矢量和必为零.

2.2.3 矢量的数乘

一个标量m 和矢量A 相乘,则它们的乘积A m 仍是一个矢量,该矢量的模等于矢量A 的模与数m 的乘积,并且平行于矢量A . 如果m >0,则它的指向与矢量A 相同,如果m <0,则它的指向与矢量A 相反,如果0=m ,则它为零矢量.

特别地,当1-=m 时,A A )1(-=m ,记为A -. 矢量与数量的乘积有下列性质:设A 、B 为任意矢量,m ,n 为任意数,则有

(1)()A A A n m n m +=+

(2)()()()A A A mn m n n m ==

(3)()B A B A m m m +=+

2.2.4 矢量的点积

两矢量的点积亦称标积,其结果是一个标量. 定义为:一个矢量在另一个矢量方向上的投影与另一矢量模的乘积,可表示为

θAB cos =?B A (1.9)

式中θ为矢量A 和矢量B 的夹角,如图1.9所示.

A

θcos B

图1.9 矢量点积的图示 图1.10 矢量叉积的图示

由式(1.9)可知,当2π

θ=时,点积结果为零,因此,两非零矢量A 和B 的正交条件为

0=?B A (1.10)

矢量的点乘服从以下运算规律

(1)交换律 A B B A ?=?,2A =?A A

(2)分配律 ()C A B A C B A ?+?=+?

(3)结合律 ()()()B A B A B A m m m ?=?=?

在直角坐标系中,i ,j ,k 三个单位矢量互相正交,根据点积定义得

?

??=?=?=?=?=?=?01i k k j j i k k j j i i (1.11) 于是两矢量的点积可表示为

()()z

z y y x x z y x z y x B A B A B A B B B A A A ++=++?++=?z

j i z j i B A (1.12)

说明两矢量的点积等于其对应的分量的乘积之和.

2.2.5 矢量的叉积 两矢量A 和B 的叉积亦称矢积,其结果是一个矢量,用矢量C 表示,矢量C 的大小为A 和B 组成的平行四边形的面积,方向垂直于矢量A 和B 构成的平面,其数学表达式为

B A

C ?= (1.13)

式中,θsin AB =C ,θ为矢量A 和B 的夹角,如图1.10所示. 矢量C 的方向满足右手螺旋法则,即伸出右手,使大拇指与其余四指垂直,并且都跟手掌在同一个平面内,令四指方向指向矢量A ,并沿θ方向(小于180°)握向矢量B ,则大拇指方向即为矢量C 的方向. 由式(1.13)可以得到非零矢量A 和B 平行的条件为

0=?B A (1.14)

矢量的叉积符合以下运算规律

(1)0=?A A

(2)A B B A ?=?-

这是因为按右手螺旋法则,从A 握向B 定出的方向恰好与从B 握向A 定出的方向相反,它表明交换律对矢量的叉乘不成立.

(3)分配律 ()C A B A C B A ?+?=+?

(4)结合律 ()()()B A B A B A m m m ?=?=?

对于直角坐标系来说,由矢量积定义可得到单位矢量之间的关系

???=?-=?=?-=?=?-=?=?=?=?j

k i i k i j k k j k i j j i k k j j i i ,,0 (1.15) 于是叉积在直角坐标系中可表示为

()()

()()()z

j i z j i z j i B A z y y x z x x z y z z y z y x z y x B A B A B A B A B A B A B B B A A A -+-+-=++?++=?

(1.16) 也可用行列式表示,如下 z

y x z y x B B B A A A k

j i B A =?

(1.17)

大学物理知识点

A r r y r ? 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,2r x =?+△路程是△t 时间内质点运动轨迹长度s ?是标量。 明确 r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?= ? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+

大学物理学知识总结

大学物理学知识总结 第一篇 力学基础 质点运动学 一、描述物体运动的三个必要条件 (1)参考系(坐标系):由于自然界物体的运动是绝对的,只能在相对的意义上讨论运动,因此,需要引入参考系,为定量描述物体的运动又必须在参考系上建立坐标系。 (2)物理模型:真实的物理世界是非常复杂的,在具体处理时必须分析各种因素对所涉及问题的影响,忽略次要因素,突出主要因素,提出理想化模型,质点和刚体是我们在物理学中遇到的最初的两个模型,以后我们还会遇到许多其他理想化模型。 质点适用的范围: 1.物体自身的线度l 远远小于物体运动的空间范围r 2.物体作平动 如果一个物体在运动时,上述两个条件一个也不满足,我们可以把这个物体看成是由许多个都能满足第一个条件的质点所组成,这就是所谓质点系的模型。 如果在所讨论的问题中,物体的形状及其在空间的方位取向是不能忽略的,而物体的细小形变是可以忽略不计的,则须引入刚体模型,刚体是各质元之间无相对位移的质点系。 (3)初始条件:指开始计时时刻物体的位置和速度,(或角位置、角速度)即运动物体的初始状态。在建立了物体的运动方程之后,若要想预知未来某个时刻物体的位置及其运动速度,还必须知道在某个已知时刻物体的运动状态,即初台条件。 二、描述质点运动和运动变化的物理量 (1)位置矢量:由坐标原点引向质点所在处的有向线段,通常用r 表示,简称位矢或矢径。 在直角坐标系中 zk yi xi r ++= 在自然坐标系中 )(s r r = 在平面极坐标系中 rr r = (2)位移:由超始位置指向终止位置的有向线段,就是位矢的增量,即 1 2r r r -=?

位移是矢量,只与始、末位置有关,与质点运动的轨迹及质点在其间往返的次数无关。 路程是质点在空间运动所经历的轨迹的长度,恒为正,用符号s ?表示。路程的大小与质点运动的轨迹开关有关,与质点在其往返的次数有关,故在一般情况下: s r ?≠? 但是在0→?t 时,有 ds dr = (3)速度v 与速率v : 平均速度 t r v ??= 平均速率 t s v ??= 平均速度的大小(平均速率) t s t r v ??≠ ??= 质点在t 时刻的瞬时速度 dt dr v = 质点在t 时刻的速度 dt ds v = 则 v dt ds dt dr v === 在直角坐标系中 k v j v i v k dt dz j dt dy i dt dx v z y x ++=++= 式中dt dz v dt dy v dt dx v z y x = == ,, ,分别称为速度在x 轴,y 轴,z 轴的分量。

【北京理工大学】大学物理1(上)知识点总结

一 质 点 运 动 学 知识点: 1. 参考系 为了确定物体的位置而选作参考的物体称为参考系。要作定量描述,还应在参考系上建立坐标系。 2. 位置矢量与运动方程 位置矢量(位矢):是从坐标原点引向质点所在的有向线段,用矢量r 表示。位矢用于确定质点在空间的位置。位矢与时间t 的函数关系: k ?)t (z j ?)t (y i ?)t (x )t (r r ++== 称为运动方程。 位移矢量:是质点在时间△t 内的位置改变,即位移: )t (r )t t (r r -+=?? 轨道方程:质点运动轨迹的曲线方程。 3. 速度与加速度 平均速度定义为单位时间内的位移,即: t r v ?? = 速度,是质点位矢对时间的变化率: dt r d v = 平均速率定义为单位时间内的路程:t s v ??= 速率,是质点路程对时间的变化率:ds dt υ= 加速度,是质点速度对时间的变化率:dt v d a = 4. 法向加速度与切向加速度 加速度 τ?a n ?a dt v d a t n +==

法向加速度ρ=2 n v a ,方向沿半径指向曲率中心(圆心),反映速度方向的变化。 切向加速度dt dv a t =,方向沿轨道切线,反映速度大小的变化。 在圆周运动中,角量定义如下: 角速度 dt d θ = ω 角加速度 dt d ω= β 而R v ω=,22 n R R v a ω== ,β==R dt dv a t 5. 相对运动 对于两个相互作平动的参考系,有 ''kk pk pk r r r +=,'kk 'pk pk v v v +=,'kk 'pk pk a a a += 重点: 1. 掌握位置矢量、位移、速度、加速度、角速度、角加速度等描述质点运动和运动变化的 物理量,明确它们的相对性、瞬时性和矢量性。 2. 确切理解法向加速度和切向加速度的物理意义;掌握圆周运动的角量和线量的关系,并能灵活运用计算问题。 3. 理解伽利略坐标、速度变换,能分析与平动有关的相对运动问题。 难点: 1.法向和切向加速度 2.相对运动问题 三、功和能 知识点: 1. 功的定义 质点在力F 的作用下有微小的位移d r (或写为ds ),则力作的功定义为力和位移的标积即 θθcos cos Fds r d F r d F dA ==?= 对质点在力作用下的有限运动,力作的功为 ? ?=b a r d F A 在直角坐标系中,此功可写为 ???++=b a z b a y b a x dz F dy F dx F A

大学物理物理知识点总结

y 第一章质点运动学主要内容 一 . 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动

大学物理物理知识点总结!!!!!!

y 第一章质点运动学主要容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动程 ()r r t =r r 运动程的分量形式() ()x x t y y t =???=?? 位移 是描述质点的位置变化的物理量 △t 时间由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和向的物理量) 平均速度 x y r x y i j i j t t t u u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度向是曲线切线向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动

大学物理上知识点整理

大学物理上知识点整理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状 大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 ?固体间的静摩擦力:(最大值) ?固体间的滑动摩擦力: 3、流体阻力:或?。 4、万有引力: ?特例:在地球引力场中,在地球表面附近:。 ?式中R为地球半径,M为地球质量。 ?在地球上方(较大),。 ?在地球内部(),。

三、惯性参考系中的力学规律?牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了惯性系。 牛顿第二定律: 普遍形式:; 经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系的运动状态,这体现了惯性力就是参考系的加速度效应。2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出分量式的运动方程。变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第3章机械能和功 一、功

大学物理知识点汇总

大学物理I期末复习知识点汇总 (2011-5-12) 第一章:质点运动学 1、参考系坐标系质点 2、位置矢量位移速度加速度 3、角量和线量的关系(角量:角坐标角速度角加速度) 4、运动方程和轨迹方程 5、相对运动绝对=牵连+相对 第二章:牛顿运动定律 1、牛顿运动定律(牛顿第一定律、牛顿第二定律、牛顿第三定律) 2、常见的三种力(万有引力、弹性力、摩擦力) 第三章:动量守恒定律和能量守恒定律 1、动量冲量质点和质点系的动量定理以及动量守恒定律 2、功保守力和非保守力的功势能 常见的保守力:重力弹性力万有引力 势能:引力势能重力势能弹性势能 3、质点和质点系的动能定理 4、系统的功能原理 5、机械能守恒定律 6、质心质心运动定理 第四章:刚体 1、刚体刚体的运动 2、刚体的定轴转动 3、力矩转动惯量转动定律 4、质点的角动量质点的角动量定理质点的角动量守恒定律 5、刚体定轴转动角动量 6、刚体定轴转动的角动量定理 7、刚体定轴转动的角动量守恒定律 8、刚体定轴转动时力矩做功 9、刚体定轴转动的动能定理 第五章:静电场

1、点电荷电荷守恒定律库伦定律 2、电场强度电场叠加原理 3、电势电势叠加原理 4、静电场的高斯定理 5、静电场的环路定理 6、电场强度和电势梯度之间的关系 7、求场强的三种方法: (1)已知空间电荷分布,用场强叠加原理求场强 (2)已知电荷分布,电荷分布具有高度对称性,高斯定律求场强(3)已知电势分布,可利用电势梯度来计算电场强度 第六章:静电场中的导体与电介质 1、静电场中的导体 (1)均匀导体静电平衡的条件:导体内部电场强度处处为零。 (2)根据均匀导体的静电平衡条件,可以得到以下推论: (a)导体为等势体,其表面为等势面 (b)导体表面上任意一点的电场强度的方向都垂直于该处表面 (c)当带点导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体表面 (d)导体表面附近的电场强度大小与该处电荷的面密度成正比。即(e)孤立带电导体表面各处电荷密度的大小与该处表面的曲率半径有关,曲率半径越大的地方,电荷面密度越小。 (3)静电屏蔽 在静电平衡条件下: (a)外电场不可能对空腔内部空间发生任何影响 (b)接地封闭导体腔外电场不受腔内电荷的影响 2、静电场中的电介质 (1)电介质的极化外电场作用下,电介质表面出现束缚电荷的现象(2)电极化强度矢量 P (3)电位移矢量D P、D、E之间的关系 (4)有电介质时的高斯定理 3、电容器电容 (1)电容的定义 (2)串联和并联的等效电容 4、静电能 (1)电场的能量密度

大学物理(上)知识点整理

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 固体间的静摩擦力:(最大值) 固体间的滑动摩擦力: 3、流体阻力:或。 4、万有引力: 特例:在地球引力场中,在地球表面附近:。 式中R为地球半径,M为地球质量。 在地球上方(较大),。 在地球内部(),。 三、惯性参考系中的力学规律牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了惯性系。 牛顿第二定律: 普遍形式:;

经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系的运动状态,这体现了惯性力就是参考系的加速度效应。 2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出分量式的运动方程。 变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第3章机械能和功 一、功 1、功能的定义式: 恒力的功: 变力的功: 2、保守力 若某力所作的功仅取决于始末位置而与经历的路径无关,则该力称保守力。或满足下述关

大学物理第1章质点运动学知识点复习及练习

第1章质点运动学(复习指南) 一、基本要求 掌握参考系、坐标系、质点、运动方程与轨迹方程得概念,合理选择运动参考系并建立直角坐标系,理解将运动对象视为质点得条件、 掌握位矢、位移、速度、加速度得概念;能借助直角坐标系计算质点在平面内运动时得位移、平均速度、速度与加速度、会计算相关物理量得大小与方向、 二、基本内容 1.位置矢量(位矢) 位置矢量表示质点任意时刻在空间得位置,用从坐标原点向质点所在点所引得一条有向线段,用表示.得端点表示任意时刻质点得空间位置.同时表示任意时刻质点离坐标原点得距离及质点位置相对坐标轴得方位.位矢就是描述质点运动状态得物理量之一.对应注意: (1)瞬时性:质点运动时,其位矢就是随时间变化得,即.此式即矢量形式得质点运动方程. (2)相对性:用描述质点位置时,对同一质点在同一时刻得位置,在不同坐标系中可以就是不相同得.它表示了得相对性,也反映了运动描述得相对性. (3)矢量性:为矢量,它有大小,有方向,服从几何加法.在平面直角坐标系系中 位矢与x轴夹角正切值 ? 质点做平面运动得运动方程分量式:,. 平面运动轨迹方程就是将运动方程中得时间参数消去,只含有坐标得运动方程、 2.位移 得大小?. 注意区分:(1)与,前者表示质点位置变化,就是矢量,同时反映位置变化得大小与方位.后者就是标量,反映从质点位置到坐标原点得距离得变化.(2)与,表示时间内质点通过得路程,就是标量.只有当质点沿直线某一方向前进时两者大小相同,或时,. 3.速度 定义,在直角坐标系中 得方向:在直线运动中,表示沿坐标轴正向运动,表示沿坐标轴负向运动. 在曲线运动中,沿曲线上各点切线,指向质点前进得一方.

大学物理知识点整理

一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 固体间的静摩擦力:(最大值) 固体间的滑动摩擦力: 3、流体阻力:或。 4、万有引力: 特例:在地球引力场中,在地球表面附近:。 式中R为地球半径,M为地球质量。 在地球上方(较大),。 在地球内部(),。 三、惯性参考系中的力学规律牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了惯性系。 牛顿第二定律: 普遍形式:; 经典形式:(为恒量)

牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系的运动状态,这体现了惯性力就是参考系的加速度效应。 2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出分量式的运动方程。 变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第3章机械能和功 一、功 1、功能的定义式: 恒力的功: 变力的功: 2、保守力 若某力所作的功仅取决于始末位置而与经历的路径无关,则该力称保守力。或满足下述关系的力称保守力:

大学物理A(2)基本知识点

大学物理A (2)基本知识点 一、试题题型、试卷结构和试题分数分布 1、试题题型: 选择题(10小题,每小题3分,计30分) 填空题(10小题,每小题3分,计30分) 计算题或证明题(4小题,每小题10分,计40分) 二、大学物理A (2)基本知识点 气 体 分 子 动 理 论 1. 理想气体状态方程 在平衡态下 RT M PV μ = , n k T p =, 普适气体常数 K m o l /J 31.8R ?= 玻耳兹曼常数 K /J 10 38.1N R k 23 A -?== 2. 理想气体的压强公式 t 2 E n 3 2v nm 31p = = 3. 温度的统计概念 kT 23E t = 4. 能量均分定理 每一个自由度的平均动能为1/(2KT)。 一个分子的总平均动能为自由度):i (kT 2i E =。 ν摩尔理想气体的内能RT 2 i E ?ν=。 5. 速率分布函数 Ndv dN )v (f = 麦克斯韦速率分布函数 2 v kT 2m 23 v e )kT 2m (4)v (f 2 - ππ= 三种速率

最概然速率 μ = = RT 2m kT 2v p 平均速率 πμ = π= RT 8m kT 8v 方均根速率 μ = = RT 3m kT 3v 2 热 力 学 基 础 1. 准静态过程:在过程进行中的每一时刻,系统的状态都无限接近于平衡态。 2. 体积功:准静态过程中系统对外做的功为 pdV dA =, ? = 2 1 v v pdV A 3. 热量:系统与外界或两个物体之间由于温度不同而交换的热运动能量。 4. 热力学第一定律 A )E E (Q 12+-=, A dE dQ += 5. 热容量 d T d Q C = 定压摩尔热容量 dT dQ C p p = 定容摩尔热容量 dT dQ C V V = 迈耶公式 R C C V p += 比热容比 i 2i C C V p += = γ 6. 循环过程 热循环(正循环):系统从高温热源吸热,对外做功,同时向低温热源放热。 效率 1 21 Q Q 1Q A - == η 致冷循环(逆循环):系统从低温热源吸热,接受外界做功,向高温热源放热。 致冷系数:2 122Q Q Q A Q -= = ε 7. 卡诺循环:系统只和两个恒温热源进行热交换的准静态循环过程。 卡诺正循环效率 1 2T T 1- =η

关于大学物理基本知识

第一章力学 第1章质点运动学 1.1 本章主要内容 1.1.1 描写质点运动的基本物理量 (1) 位置矢量(矢径):是描写质点任意时刻在空间位置的物理量。如图所示, 质点在A点的位置矢量。 (2) 位移:是描述质点在Δt=t 2-t 1 时间内质点位置变化和方向的物理量。 (3) 速度:是描述质点位置变化的快慢和运动方向的物理量。 瞬时速度

直角坐标系中 (4) 加速度:是描述质点运动速度变化的快慢和方向的物理量。 瞬时加速度 直角坐标系中 1.1.2 种典型运动的运动公式 (1) 匀速直线运动: (2) 匀变速直线运动: (3) 匀速率圆周运动: (4) 抛体运动: 当时: (5) 圆周运动:,

,, (6) 角量与线量间的关系: , 1.1.3 描述质点运动的三种方法 (1) 矢量描述法:质点作空间曲线运动位置矢量随时间变化,是质点的 矢量运动方程。是质点运动的矢量表示法。 (2) 坐标描述法:支点的运动方程可以在直角坐标系中写成分量式 (3) 图线描述法:质点在某一坐标方向上的运动可以用坐标随时间的曲线(x-t 曲线)、速度随时间变化的曲线(v x-t曲线)和加速度随时间变化的曲线(a x-t) 来表示。 1.1.4 学习指导 (1) 矢径、速度、加速度反映的是在某一时刻或某一位置上运动状态及其变化情况,具有瞬时性。因此,质点的矢径或速度、加速度,都应指明是哪一时刻或 哪一位置的矢径、速度、加速度。 (2) 矢径、速度、加速度都是对某一确定的参照系而言的,在不同的参照系中对同一质点的运动描述是不同的,上述各量的大小和方向都可能不同,这就是它们

《大学物理(上册)》课后习题答案

第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2-+++=m ⑵ 1=t s,2=t s 时,j i r 5.081-= m ;2114r i j =+m ∴ 213 4.5r r r i j ?=-=+m ⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404 r r r i j i j t --?+= ===+??-v ⑷ 1d 3(3)m s d r i t j t -==++?v ,则:437i j =+v 1s m -? (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44 j a j t --?= ===??v v v (6) 2d 1 m s d a j t -==?v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x =+,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x ===v v v v 得:2 d d (26)d a x x x ==+v v 两边积分 210 d (26)d x x x =+? ?v v v 得:2322 250x x =++v ∴ 1m s -=?v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2==== ωβθω ⑴ s 2=t 时,2 s m 362181-?=??==βτR a 2 222s m 1296)29(1-?=??==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ?== 即:βωR R =2 ,亦即t t 18)9(2 2=,解得:9 23= t 则角位移为:32 2323 2.67rad 9 t θ=+=+? = 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2=t 时,4.022.0=?== t αω 1s rad -? 则0.40.40.16R ω==?=v 1s m -? 064.0)4.0(4.022=?==ωR a n 2 s m -? 0.4 0.20.0a R τα==?=2s m -? 22222 s m 102.0)08.0()064.0(-?=+=+= τa a a n 与切向夹角arctan()0.06443n a a τ?==≈?

大学物理知识点归纳

大学物理 第十一章:真空中的静电场 一、电场强度:数值上等于单位正电荷在该点受到的电场力的大小,也等于单位面 积电通量的大小(即电场线密度);方向与该点的受力方向(或者说电场线方向) 一致。 二、电场强度的计算: a)点电荷的电场强度: b)电偶极子中垂线上任意一点的电场强度:(表示点到电偶极子连 线的距离) c)均匀带电直棒: i.有限长度: ii.无限长(=0,): iii.半无限长: () 三、电通量 a)电场线:电场线上任意一点的切线方向与该点的电场强度E的方向一致,曲线 的疏密程度表示该点电场强度的大小,即该点附近垂直于电场方向的单位面积 所通过的电场线条数满足:电场中某点的电场强度大小等于该处的电 场线密度,即该点附近垂直于电场方向的单位面积所通过的电场线条数。 b)静电场电场线的特点: 1.电场线起于正电荷(或无穷远),终于负电荷(或伸向无穷远),在无 电荷的地方不会中断; 2.任意两条电场线不相交,即静电场中每一点的电场强度只有一个方 向; 3.电场线不形成闭合回路; 4.电场强处电场线密集,电场弱处电场线稀疏。 c)电通量 i.均匀电场E穿过任意平面S的电通量: ii.非均匀电场E穿过曲面S的电通量:

四、高斯定理 a) b)表述:真空中任何静电场中,穿过任一闭合曲面的电通量,在数值上等于该闭 合曲面包围的电荷的代数和除以; c)理解: 1.高斯定理表达式左边的E是闭合面上处的电场强度,他是由闭合面 外全部电荷共同产生的,即闭合曲面外的电荷对空间各点的E有贡 献,要影响闭合面上的各面元的同量。 2.通过闭合曲面的总电量只决定于闭合面包围的电荷,闭合曲面外部的 电荷对闭合面的总电通量无贡献。 d)应用: 1.均匀带电球面外一点的场强相当于全部电荷集中于球心的点电荷在 该点的电场强度。 2.均匀带电球面部的电场强度处处为零。 五、电势 a)静电场环路定理:在静电场中,电场强度沿任意闭合路径的线积分等于零。 b)电场中a点的电势: 1.无穷远为电势零点: 2.任意b点为电势零点: 六、电势能:电荷在电场中由于受到电场作用而具有电荷中的电荷比值决定位置的 能叫做电势能, 七、电势叠加定理:点电荷系电场中任意一点的电势等于各点电荷单独存在该点所 产生的电势的代数和。 八、等势面与电场线的关系: 1.等势面与电场线处处正交; 2.电场线指向电势降落的方向; 3.等势面与电场线密集处场强的量值大,稀疏处场强量值小。 九、电势梯度: a) b)电场中任意一点的电场强度等于该点点势梯度的负值。 第十二章静电场中的导体电介质 一、处于静电平衡状态下的导体的性质: a)导体部,电场强度处处为零;导体表明的电场强度方向垂直该处导体表面;电场线 不进入导体部,而与导体表面正交。 b)导体部、表面各处电势相同,整个导体为一个等势体。 c)导体无净电荷,净电荷只分部于导体外表面

大学物理基本知识

第一章 力 学 第1章 质点运动学 本章主要内容 描写质点运动的基本物理量 (1) 位置矢量(矢径):是描写质点任意时刻在空间位置的物理量。如图所示,质点在 A 点的位置矢量。 (2) 位移:是描述质点在Δt=t 2-t 1时间内质点位置变化和方向的物理量。 (3) 速度:是描述质点位置变化的快慢和运动方向的物理量。 瞬时速度 直角坐标系中 (4) 加速度:是描述质点运动速度变化的快慢和方向的物理量。 瞬时加速度 直角坐标系中 种典型运动的运动公式 (1) 匀速直线运动:

(2) 匀变速直线运动: (3) 匀速率圆周运动: (4) 抛体运动: 当时: (5) 圆周运动:, , , (6) 角量与线量间的关系: , 描述质点运动的三种方法 (1) 矢量描述法:质点作空间曲线运动位置矢量随时间变化,是质点的 矢量运动方程。是质点运动的矢量表示法。 (2) 坐标描述法:支点的运动方程可以在直角坐标系中写成分量式 (3) 图线描述法:质点在某一坐标方向上的运动可以用坐标随时间的曲线(x-t 曲线)、速度随时间变化的曲线(v x-t曲线)和加速度随时间变化的曲线(a x-t)

来表示。 学习指导 (1) 矢径、速度、加速度反映的是在某一时刻或某一位置上运动状态及其变化情况,具有瞬时性。因此,质点的矢径或速度、加速度,都应指明是哪一时刻或 哪一位置的矢径、速度、加速度。 (2) 矢径、速度、加速度都是对某一确定的参照系而言的,在不同的参照系中对同一质点的运动描述是不同的,上述各量的大小和方向都可能不同,这就是它们 具有相对性。 (3) 矢径、位移、速度、加速度都是矢量在描述质点运动时不仅要指明这些量的 大小,还要说明它们的方向。 (4) 在曲线运动中质点在曲线上任一点的加速度是该点法向加速度和切向加 速度的矢量和。 其中,,总加速度大小, 第2章牛顿运动定律 本章主要内容 牛顿运动定律的内容 (1) 牛顿第一定律:当物体不受外力作用或所受的和合外力为零时,物体将保持

大学物理课程介绍

大学物理课程介绍 大学物理是一门实验性科学,它很好的将理论和实践结合起来,是理论联系实际的一个窗口。能够培养学生用科学的眼睛看世界,坚持真理,破除迷信。大学物理是低年级开设的课程,在使学生树立正确学习态度、掌握科学学习方法,培养独立获取知识的能力方面起十分重要的作用。 本课程主要由:质点运动学、质点动力学、振动和波、波动光学、分子动理论、热力学以及电磁学七个部分组成。 本课程课程代码为:090201 本课程课程类别为:基础课,必修课。 本课程适用对象为:理工科各类非物理专业的本专科学生。 授课学时:本科化工类、轻纺类授课总学时为68学时,3.4学分,第二学期一学期完成;本科材料类、建工类、机械类、动力类、电子信息类授课总学时为100学时,5学分,分第二学期68学时,3.4学分和第三学期32学时,1.6学分两学期完成。专科授课总学时为70学时,3.5学分。 本课程目前师资配备为:教授2名,副教授2名,讲师6名,助教10名。 本课程考核形式:闭卷考试占70%,作业及平时成绩占30% 。 本课程教材与教学参考书: 基本教材: 内蒙古工业大学物理系编.《大学物理》(第一版). 内蒙古大学出版社. 2002. 教学参考书: 1、祁关泉等译.《物理学史》.上海教育出版社.1986,3. 2、何维杰,欧阳玉.《物理学思想史与方法论》.湖南大学出版社.2001,9. 3、赵凯华,罗蔚茵.《新概念物理教程》(力学…).高等教育出版社.1986,2. 4、尹鸿钧.《基础物理教程丛书》(力学…).中国科学技术大学出版社.1996,2. 5、顾建中.《力学教程》.人民教育出版社.1979.3. 6、梁昆淼.《力学》(上、下册,修订版).人民教育出版社.1980.1. 7、李椿,章立源,钱尚武.《热学》.人民教育出版社.1978.9. 8、赵凯华.《电磁学》(上、下册).人民教育出版社.1978,4. 9、梁灿彬,秦光戎,梁竹健.《电磁学》.人民教育出版社.1980,12. 10、姚启钧.《光学教程》.人民教育出版社.1981.6. 11、母国光,李若蹯.《普通物理学》(光学部分).高等教育出版社.1965.11. 12、章志鸣,沈元华,陈惠芬.《光学》.高等教育出版社.2000,6. 13、张三慧.《大学物理学》(第一、二、三、四、五册).清华大学出版社.1999. 14、陆果.《基础物理学教程》(上、下册).高等教育出版社.1998. 15、[美]阿特.霍布森.《物理学:基本概念极其与方方面面的联系》.上海科学技术出版社.2001. 16、邓飞帆,葛昆龄,王祖恺.《普通物理疑难问答》.湖南科技出版社.1984,7. 17、华东师大普物研究室.《大学物理选择题》.北京工业学院出版社.1987,10.

大学物理物理知识点总结

第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △ ,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向二.抛体运动 运动方程矢量式为 2012 r v t gt =+r r r 分量式为 02 0cos ()1sin ()2 αα==-?? ???水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt

大学物理上知识点整理

大学物理上知识点整理 The Standardization Office was revised on the afternoon of December 13, 2020

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 固体间的静摩擦力:(最大值) 固体间的滑动摩擦力: 3、流体阻力:或。 4、万有引力: 特例:在地球引力场中,在地球表面附近:。 式中R为地球半径,M为地球质量。 在地球上方(较大),。 在地球内部(),。 三、惯性参考系中的力学规律牛顿三定律

牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了惯性系。 牛顿第二定律: 普遍形式:; 经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系的运动状态,这体现了惯性力就是参考系的加速度效应。 2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出分量式的运动方程。 变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。

大学物理知识点归纳

大学物理知识点归纳 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

大学物理 第十一章:真空中的静电场 一、电场强度:数值上等于单位正电荷在该点受到的电场力的大小,也等于单 位面积电通量的大小(即电场线密度);方向与该点的受力方向(或者说电场线 方向)一致。 二、电场强度的计算: a)点电荷的电场强度:E=F q0=1 4πε0 q r3 r b)电偶极子中垂线上任意一点的电场强度:E=?ql 4πε0r3 (l表示点到电偶极子连线的距离) c)均匀带电直棒: i.有限长度:E=λ 4πε0a (sinθ2? sinθ1)i+λ 4πε0a (cosθ1?cosθ2)j ii.无限长(θ1=0,θ2=π): E=E y j=λ 2πε0a j iii.半无限长:(θ1=π 2,θ2=π或者θ1=0,θ2=π 2 )E= λ 4πε0a (?i+j)或 E=λ 4πε0a (i+j) 三、电通量 a)电场线:电场线上任意一点的切线方向与该点的电场强度E的方向一致,曲 线的疏密程度表示该点电场强度的大小,即该点附近垂直于电场方向的单位 面积所通过的电场线条数满足:E=dΦe dS⊥ 电场中某点的电场强度大小等于该处的电场线密度,即该点附近垂直于电场方向的单位面积所通过的电 场线条数。 b)静电场电场线的特点: 1.电场线起于正电荷(或无穷远),终于负电荷(或伸向无穷远), 在无电荷的地方不会中断; 2.任意两条电场线不相交,即静电场中每一点的电场强度只有一个方 向; 3.电场线不形成闭合回路; 4.电场强处电场线密集,电场弱处电场线稀疏。 c)电通量 i.均匀电场E穿过任意平面S的电通量:Φe=EScosθ ii.非均匀电场E穿过曲面S的电通量:Φe=∫E? S dSΦe=∮E S dS 四、高斯定理

大学物理知识点期末复习版

y 第一章 运动学 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r == v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △ t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) 瞬时速度:j v i v j dt dy i dt dx dt r d v y x ??????+=+==,瞬时速率:2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

相关主题