搜档网
当前位置:搜档网 › 网络分析仪详解

网络分析仪详解

网络分析仪详解
网络分析仪详解

网络分析仪原理详解

1 网络分析理论

网络是一个被高频率使用的术语,有很多种现代的定义。就网络分析而言,网络指一组内部相互关联的电子元器件。网络分析仪的功能之一就是量化两个射频元件间的阻抗不匹配,最大限度地提高功率效率和信号的完整性。每当射频信号由一个元件进入另一个时,总会有一部分信号被反射,而另一部分被传输,类似于图所示。

这就好比光源发出的光射向某种光学器件,例如透镜。其中,透镜就类似于一个电子网络。根据透镜的属性,一部分光将反射回光源,而另一部分光被传输过去。根据能量守恒定律,被反射的信号和传输信号的能量总和等于原信号或入射信号的能量。在这个例子中,由于热量产生的损耗通常是微不足道的,所以忽略不计。

我们可以定义参数反射系数(G),它是一个包含幅值和相位的矢量,代表被反射的光占总(入射)光的比例。同样,定义传输系数(T)代表传输的光占入射光的矢量比。下图示意了这两个参数。

通过反射系数和传输系数,我们就可以更深入地了解被测器件(DUT-device under test)的性能。回顾光的类比,如果DUT是一面镜子,你会希望得到高反射系数。如果DUT是一个镜头,你会希望得到高传输系数。而太阳镜可能同时具有反射和透射特性。

通过反射系数和传输系数,你可以更深入地了解被测器件(DUT)的性能。回顾光的类比,如果DUT是一面镜子,你会希望得到高反射系数。如果DUT是一个镜头,你会希望得到高传输系数。而太阳镜可能同时具有反射和透射特性。

电子网络的测量方式与测量光器件的方式类似。网络分析仪产生一个正弦信号,通常是一个扫频信号。DUT响应时,会传输并且反射入射信号。传输和反射信号的强度通常随着入射信号的频率发生变化。

DUT对于入射信号的响应是DUT性能以及系统特性阻抗不连续性的表征。例如,带通滤波器的带外具有很高的反射系数,带内则具有较高的传输系数。如果DUT 略微偏离特性阻抗则会造成阻抗失配,产生额外的非期望响应信号。我们的目标是建立一个精确的测量方法,测量DUT响应,同时最大限度的减少或消除不确定性。

2 网络分析仪测量方法

反射系数(G)和传输系数(T)分别对应入射信号中反射信号和传输信号

所占的比例。下图示意了这两个向量。现代网络分析基于散射参数或S-参数扩充了这种思想。

S-参数是一种复杂的向量,它们代表了两个射频信号的比值。S-参数包含幅值和相位,在笛卡尔形式下表现为实和虚。S-参数用S坐标系表示,X 代表DUT被测量的输出端,Y代表入射RF信号激励的DUT输入端。简单的双端口器件可以表征为射频滤波器,衰减器或放大器。

S11定义为端口1反射的能量占端口1入射信号的比例,S21定义为传输到DUT端口2 的能量占端口1入射信号的比例。参数S11和S21为前向S-参数,这是因为入射信号来自端口1的射频源。对于从端口2入射信号,S22为端口2反射的能量占端口2入射信号的比例,S12为传输到DUT端口1的能量占端口2入射信号的比例。它们都是反向S-参数。你可以基于多端口或者N端口S-参数扩展这个概念。例如,射频环形器,功率分配器,耦合器都是三端口器件。你可以采用类似于双端口的分析方法测量和计算S-参数,如S13,S32,S33。S11,S22, S33等下标数字一致的S-参数表征反射信号,而S12,S32,S21和S13等下标数字不一致

的S-参数表征传输信号。此外,S-参数的总个数等于器件端口数的平方,这样才能完整的描述一个设备的RF特性。

表征传输的S-参数,如S21,类似于增益,插入损耗,衰减等其它常见术语。表征反射的S-参数,如S11,对应于电压驻波比(VSWR),回波损耗,或反射系数。S-参数还具有其他优点。它们被广泛认可并应用于现代射频测量。你可以很容易地将S-参数转换成H、Z或其他参数。你也可以对多个设备进行S-参数级联,表征复合系统的RF特性。更重要的是,S参数用比率表示。因此,你不需要把入射源功率设置为精确值。DUT的响应会反映出入射信号的任何微小差别,但通过比率方式表征传输信号或反射信号相对于入射信号的比率关系时,差别就会被消去。

3 网络分析仪结构

网络分析仪可以分为标量(只包含幅度信息)和矢量(包含幅度和相位信息)两种分析仪。标量分析仪曾一度因其结构简单,成本低廉而广泛使用。矢量分析仪可以提供更好的误差校正和更复杂的测量能力。随着技术的进步,集成度和计算效率的提高,成本的降低,矢量网络分析仪的使用越来越普及。

网络分析仪有四个基本功能模块,如上图所示。

信号源,用于产生入射信号,既支持连续扫频也支持离散频点,并且功率可调。信号源通过信号分离模块馈入DUT输入端,信号分离模块可看作一个测试装置。在这里,将反射信号和传输信号分离进不同的组件测量。对于每一个频点,处理器测量信号并计算参数值(例如S21或驻波比)。用户校准主要用于提供数据的错误校正,将在后续详细介绍。最终,当与网络分析仪交互时,你可以在显示器上查看参数以及修正后的数值,并使用其它用户功能,比如缩放波形图。

根据网络分析仪性能和成本的不同,有多种方式实现结构中的四个模块。测试装置可以设计成传输/反射(T/R)或全S-参数。其中,T/R测试装置是最基本的实现方式,结构见下图。

T/R结构包括一个稳定信号源,它能够提供指定频率和功率的正弦波信号;一个参考接收器R,它与功率分配器或定向耦合器相连,用于测量入射信号的幅值和相位。入射信号从网络分析仪端口1发出,馈入DUT的输入端。定向耦合接收器A测量任何反射回端口1的信号(包括幅值和

相位)。定向耦合器和电阻桥功能类似,都可以用于分离信号,你可以

根据性能,频率范围和成本要求进行选择。信号经过DUT传输进入网络分析仪的端口2,端口2处的接收器B用于测量该信号的幅值和相位。接收器针对不同的特性要求也有不同的结构,可被看作是带有下变频器、中频滤波器以及矢量检测器的窄带接收机,类似于矢量信号分析仪。它们可以提取出信号的实、虚部,用于计算幅值和相位信息。此外,所有接收器都与信号源使用相同的相位参考,你可以在相同的相位参考下计算接收信号与入射信号的相位关系。

T/R结构具有性价比高,结构简单,性能好的特点。但仅只支持前向参数测量,例如S11和S21。如要测量反向参数,需要断开并反转DUT,

或者借助外部开关控制。由于不能切换源(入射信号)到端口2,端口2

的纠错能力有限。如果T/R结构设计符合你的项目要求,这种结构是一种高精度和高性价比的选择。

全S-参数结构如下所示,在参考接收耦合器后的信号通路中嵌入了一个开关。

当开关连通端口1,分析仪测量前向参数。当开关连通端口2,你无需重置DUT外部连接,就可以测量反向参数。端口2处的定向耦合接收器B测量前向传输参数和反向反射参数。接收器A测量前向反射参数和反向传输参数。

由于开关放置在网络分析仪的测量路径上,因此用户校准时需要考虑开关的不确定性。尽管如此,两个开关位置仍可能会有细微的差别。另外,随着时间的推移,开关触点磨损,需要更频繁的用户校准。为了解决这个问题,可以把开关移到源输出,并且采用两个参考接收机,R1和R2,分别对应前向和反向,如下图所示。由于采用了更高性能的架构,成本和复杂性也随之而来。

网络分析仪的基本结构绝大部分在测试装置中实现。一旦分析仪测量出入射信号(R参考接收器)和传输信号的幅值和相位,或者是反射信号(A 和B接收器)的幅值和相位,就可计算出四个S-参数值,如下图所示。

可以综合应用,性能,精度,和成本等因素,选择合适的网络分析仪结构。

ZVB4矢量网络分析仪操作指导书

文件编号: 文件版本: A ZVB矢量网络分析仪操作指导书 V 1.0 拟制 _____________ 日期_______________ 审核 _____________ 日期_______________ 会审 _____________ 日期_______________ 批准 _____________ 日期______________ 生效日期:2006.10

操作规范: 使用者要爱护仪器,确保文明使用。 1、开机前确保稳压电源及仪器地线的正确连接。 2、 使用中要求必须佩戴防静电手镯。 3、 使用中不得接触仪器接头内芯(含连接电缆) 4、 使用时不允许工作台有较大振动。 5、 使用中不能随意切断电源,造成不正常关机。不能频繁开关机。 6、 使用射频电缆时不要用力大,确保电缆保持较大的弧度。用毕电缆接头上加接头盖。 7、 旋接接头时,要旋接头的螺套 ,尽量确保内芯不旋转。 8、 尽量协调、少用校准件。校准件用毕必须加盖放回器件盒。 9、 转接件用毕应加盖后放回盒中。 10、 停用时必须关机,关闭稳压电源。方可打扫卫生。 11、 无源器件调试必须佩戴干净的手套。 ______________________________________________________________________________

概述:1、本说明书主要为无源器件调试而做,涵盖了无源器件调试所需的矢量网络分析仪基本能,关于矢量网络分析仪的其它更进一步的使用,请参照仪器所附的使用说明书。 2、本说明书仅以ZVB4矢量网络分析仪为例,对其它型号矢量网络分析仪,操作步骤基本相 同,只是按键和菜单稍有差别。 3、仪器使用的一般要求仪器操作使用规范。 4、带方框的键如MEAS键为仪器面板上的按键,方框内带单引号的键为软菜单(soft menu), 即屏幕右侧所示菜单所对应的键,如‘dB Mag’。 5、本仪器几乎所有操作都可以通过鼠标进行。

几款网络分析仪的介绍

ENA射频网络分析仪 Agilent E5071C 9 KHz至8.5 GHz 详细说明: Agilent E5071C ENA系列网络分析仪 频率范围: 频率范围端口选件 E5071C 9KHz-4.5GHz 2/4 240/440 9KHz-8.5GHz 2/4 280/480 100KHz-4.5GHz 2/4 245/445 100KHz-8.5GHz 2/4 285/485 系统动态范围: 频率IF 带宽技术指标 SPD

主要特性: ?宽动态范围:在测试端口上的动态范围> 123 dB(典型值) ?极快的测量速度:39 ms(进行完全双端口校准,扫描1601点时) ?低迹线噪声:0.004 dB rms(70 kHz IFBW时) ?集成的2和4端口,带有平衡测量能力 选件: E5071C—008 频率偏置模式 E5071C—010 时域分析能力 E5071C—790 测量向导助手软件 E5071C—1E5 高稳定度时基 E5071C—240 双端口测试仪9KHz-4.5GHz 不带偏置T型接头 E5071C—245 双端口测试仪100KHz-4.5GHz 带偏置T型接头 E5071C—440 4端口测试仪9KHz-4.5GHz 不带偏置T型接头 E5071C—445 4端口测试仪100KHz-4.5GHz 带偏置T型接头 E5071C—280 双端口测试仪9KHz-8.5GHz 不带偏置T型接头 E5071C—285 双端口测试仪100KHz-8.5GHz 带偏置T型接头 E5071C—480 4端口测试仪9KHz-8.5GHz 不带偏置T型接头 E5071C—485 4端口测试仪100KHz-8.5GHz 带偏置T型接头 附件: 校准件 HP85033D/E (3.5mm) 校准件HP85032B (N型) ?宽动态范围:在测试端口上的动态范围> 123 dB(典型值) ?极快的测量速度:39 ms(进行完全双端口校准,扫描1601点时) ?低迹线噪声:0.004 dB rms(70 kHz IFBW时) ?集成的2和4端口,带有平衡测量能力 ?提供频率选件:从9 kHz/100 kHz(带有偏置T型接头)到4.5 GHz/8.5 GHz E5071C网络分析仪具有广泛的频率范围和众多功能,在同类产品中具有最高的射频性能和最快的测试速度。它是制造工程师和研发工程师测量9 kHz至8.5 GHz射频元器件和电路的最佳工具。

网络分析仪工作原理及使用要点

网络分析仪工作原理及使用要点 本文简要介绍41所生产的AV362O矢量网络分析的测量基本工作原理以及正确使用矢量网络分析测量电缆传输及反射性能的注意事项。 1.DUT对射频信号的响应 矢量网络分析仪信号源产生一测试信号,当测试信号通过待测件时,一部分信号被反射,另一部分则被传输。图1说明了测试信号通过被测器件(DUT)后的响应。 图1DUT 对信号的响应 2.整机原理: 矢量网络分析仪用于测量器件和网络的反射特性和传输特性,主要包括合成信号源、S 参数测试装置、幅相接收机和显示部分。合成信号源产生30k~6GHz的信号,此信号与幅相接收机中心频率实现同步扫描;S参数测试装置用于分离被测件的入射信号R、反射信号A 和传输信号B;幅相接收机将射频信号转换成频率固定的中频信号,为了真实测量出被测网络的幅度特性、相位特性,要求在频率变换过程中,被测信号幅度信息和相位信息都不能丢失,因此必须采用系统锁相技术;显示部分将测量结果以各种形式显示出来。其原理框图如图2所示: 图2矢量网络分析仪整机原理框图 矢量网络分析内置合成信号源产生30k~6GHz的信号,经过S参数测试装置分成两路,一路作为参考信号R,另一路作为激励信号,激励信号经过被测件后产生反射信号A和传输信号B,由S参数测试装置进行分离,R、A、B三路射频信号在幅相接收机中进行下变频,产生4kHz的中频信号,由于采用系统锁相技术,合成扫频信号源和幅相接收机同在一个锁相环路中,共用同一时基,因此被测网络的幅度信息和相位信息包含在4kHz的中频信号中,此中频信号经过A/D模拟数字变换器转换为数字信号,嵌入式计算机和数字信号处理器

矢量网络分析仪基础知识和S参数测量

矢量网络分析仪基础知识及S参数测量 §1 基本知识 1.1 射频网络 这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。 。因为只有一个口,总是接在最后又称 1.单端口网络习惯上又叫负载Z L 终端负载。最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。 2单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S )更方便些。 11 2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。 2匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。 2传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。 插损(IL)= 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。

2两端口的四个散射参量测量 两端口网络的电参数,一般用上述的插损与回 损已足,但对考究的场合会用到散射参量。两端口网络的散射参量有4个,即 S 11、S 21、S 12、S 22。这里仅简单的(但不严格)带上一笔。 S 11与网络输出端接上匹配负载后的输入反射系数Г相当。注意:它是网络 的失配,不是负载的失配。负载不好测出的Γ,要经过修正才能得到S 11 。 S 21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传 输系数T 或插损,对放大器即增益。 上述两项是最常用的。 S 12即网络输出端对输入端的影响,对不可逆器件常称隔离度。 S 22即由输出端向网络看的网络本身引入的反射系数。 中高档矢网可以交替或同时显示经过全端口校正的四个参数,普及型矢网不具备这种能 力,只有插头重新连接才能测得4个参数,而且没有作全端口校正。 1.2 传输线 传输射频信号的线缆泛称传输线。常用的有两种:双线与同轴线,频率更高则会用到 微带线与波导,虽然结构不同,用途各异,但其基本特性都可由传输线公式所表征。 2特性阻抗Z 0 它是一种由结构尺寸决定的电参数,对于同轴线: 式中εr 为相对介电系数,D 为同轴线外导体内径,d 为内导体外径。 2反射系数、返回损失、驻波比 这三个参数采用了不同术语来描述匹 配特性,人们希望传输线上只有入射电压, 没有反射电压, 这时线上各处电

ENA网络分析仪的使用

ACTIVE CH/TRACE BLOCK(活动通道/轨迹区) Channel Prev:选择前一个通道 Channel Next:选择下一个通道 Trace Prev:选择前一个轨迹 Trace Next:选择下一个轨迹 RESPONSE & ENTRY(响应和输入区) Channel Max:将当前选中的Channel最大化显示 Trace Max:将当前选中的Trace最大化显示 Entry off:关闭当前选中的窗口 Back space:退格键 Focus:在已打开的所有窗口之间进行切换 Measurement(s参数的测量) S11: Port1接收Port1发射 S21: Port1接收Port2发射 S12: Port2接收Port1发射 S22: Port2接收Port2发射 ******************************************************************************************* Format(格式设置) Log Mag:Y轴以对数形式显示振幅,X轴显示频率 Phase:Y轴以对数形式显示相位,X轴显示频率 Group Delay:Y轴以对数形式电视教学群时延,X轴显示频率 Smith:史密斯圆图的格式设置 Polar:极性图的格式设置 Lin Mag:Y轴以线性形式显示振幅,X轴显示频率 SWR:Y轴显示驻波比,X轴显示频率 Real:Y轴显示实部,X轴显示频率 Imaging:Y轴显示虚部,X轴显示频率 Expand Phase:Y轴显示扩展相位,X轴显示频率 Positive Phase:Y轴显示正相位,X轴显示频率 Return:返回 ******************************************************************************************* Scale(屏幕显示标尺) Auto scale:自动调整尺寸 Auto scale all:设置所有为自动尺寸 Divisions:设置一屏所显示的行格子数,必须为偶数个 Scale/div:每格所表示的数值 Reference position:设定参考线所在的格子数

实验一 认识网络分析仪及其基本操作

实验一认识网络分析仪及其基本操作 PB11210156 韦俞鸿23系 一.实验目的 1.了解网络分析仪基本测试原理; 2.熟悉网络分析仪的按键,显示界面及其基本操作; 3.直观了解终端负载为Open,Short,Load(50 欧姆)的传输线特性。 二.实验要求 1.严格按照实验操作规范进行操作,注意安全,不要损坏仪器; 2.按照本文档提供的操作步骤完成实验,得到最后结果,并以实验报告的形式提交。 三.实验结果及分析 (1).基本测量设置及显示调整 第一次操作图像结果: 分析:实验步骤是基于测量的设置和显示调整。如图所示,我们设置了数据格式为对数幅度格式,故纵轴单位为dB,纵轴显示8格,每格范围0.1dB/div,且设置第六格为参考,即零坐标轴。横坐标频率范围为100k~1.001GHz,扫描点数为101,可在数据包里查看到相应的101个频率及对应数据。测量结果Marker1:200MHz->-0.1841dB;Marker2: 650MHz->-0.4059dB;Marker3: 100kHz->0.0111dB。由于测量值为S22,S22=(Z out-Z0)/(Z out+Z0),所以随着Z out的改变,S22的幅值也会发生改变。而Z out的变化可能是由于电路本身的影响,故所测量的结果会出现一定的误差。

(2).终端接Open,Short,Load (50欧姆)的传输线特性 结果(Open): 分析:如图所示,三个图分别为开路情况下900M~1GHz的S11的幅度对数图,相位图,及Smith圆图。由S11=(Z in-Z0)/(Z in+Z0),可看出,S11的幅度是递减的,相位在970M 之后发生变化,随着频率的变化,则Smith圆图为从Marker1处沿着等r线顺时针旋转。由于Z L即使是没接负载,也无法做到无穷大,故1点不能达到理想的开路线处。 结果(Short):

网络分析仪基本原理

一般而言,网络分析仪在射频及微波组件方面的量测上,是最基本、应用层次也最广的仪器,它可以提供线性及非线性特性组件的量测参数,因此,举凡所有射频主被动组件的仿真、制程及测试上,几乎都会使用到。在量测参数上,它不但可以提供反射系数,并从反射系数换算出阻抗的大小,且可以量测穿透系数,以及推演出重要的S参数及其它重要的参数,如相位、群速度延迟(Group Delay)、插入损失(Insertion Loss)、增益(Gain)甚至放大器的1dB 压缩点(Compression point)等。 基本原理 电子电路组件在高频下工作时,许多特性与低频的行为有所不同,在高频时,其波长与实际电路组件的物理尺度相比会相对变小,举例来说,在真空下的电磁波其速度即为光速,则 c=λ×f,其中c为光速3×108m/sec,若操作在2.4GHz的频率下,若不考虑空气的介电系数,则波长λ=12.5cm,亦即在短短的数公分内,电压大小就会因相位的偏移而有极大的变化。因此在高频下,我们会使用能量及阻抗的观念来取代低频的电压及电流的表示法,此时我们就会引入前述文章所提「波」的概念。 光波属于电磁波的一种,当我们用光分析一个组件时,会使用一个已知的入射光源测量未知的待测物,如图1所示,当光波由空气到达另一个介质时,会因折射率的不同产生部分反射及部分穿透的特性,例如化学成分分析上使用的穿透及反射光谱。对于同样是属电磁波的射频来说,道理是相通的,光之于折射率就好比微波之于阻抗的概念,当一个电磁波到达另一个不连续的阻抗接口时,同样也会有穿透及反射的行为,从这些反射及穿透行为的大小及相位变化中,就可以分析出该组件的特性。 用来描述组件的参数有许多种,其中某些只包含振幅的讯息,如回返损耗(R.L. Return Loss)、驻波比(SWR Standing Wave Ratio)或插入损失(I.L. Insertion Loss)等,我们称为纯量,而能得到如反射系数(Γ Reflection coefficient)及穿透系数(Τ Transmission coefficient)等,我们称之为向量,其中向量可以推导出纯量行为,但纯量却因无相位信息而无法推导出向量特性。 重要的向量系数 反射特性 在此,我们重点介绍几个重要的向量系数︰首先,我们从反射系数来定义,其中Vrefect 为反射波、Vinc为入射波,两者皆为向量,亦即包含振幅及相位的信息,而反射系数代表入射与反射能量的比值,经过理论的演算,可以从传输线的特性阻抗ZO(Characteristic Impedance)得到待测组件的负载阻抗ZL,亦即,在网络分析中,一般使用史密斯图(Smith Chart)来标示不同频率下的阻抗值。另外,反射系数也可以使用极坐标表示:,其中为反射系数的大小,φ则表示入射与反射波的相位差值。 接下来,介绍两个纯量的参数--驻波比及回返损耗,其中驻波的意义是入射波与被待测装置反射回来的反射波造成在传输在线的电压或电流驻波效应,而驻波比(SWR)的定义就是驻波中的最大与最小能量的比值,我们可以从纯量的反射系数中得到。

E5071C网络分析仪测试方法

"E5071C网络分析仪测试方法 一.面板上常使用按键功能大概介绍如下: Meas 打开后显示有:S11 S21 S12 S22 (S11 S22为反射,S21 S12 为传输)注意:驻波比和回波损耗在反射功能测试,也就是说在S11或者S22里面测试。 Format 打开后显示有:Log Mag———SWR———-里面有很多测试功能,如上这两种是我们常用到的,Log Mag为回波损耗测试,SWR 为驻波比测试。Display打开后显示有:Num of Traces (此功能可以打开多条测试线进行同时测试多项指标,每一条测试线可以跟据自己的需求选择相对应的指标,也就是说一个产品我们可以同时测试驻波比和插入损耗或者更多的指标) Allocate Traces (打开此功能里面有窗口显示选择,我们可以跟据自己的需求选择两个窗口以上的显示方式) Cal 此功能为仪器校准功能:我们常用到的是打开后在显示选择:Calibrate(校准端口选择,我们可以选择单端口校准,也可以选择双端口校准) Trace Prev 此功能为测试线的更换设置 Scale 此功能为测试放大的功能,打开后常用到的有:Scale/Div 10DB/Div 为每格测试10DB,我们可以跟据自己的产品更改每格测量的大小,方便我们看测试结果 Reference Value 这项功能可以改变测试线的高低,也是方便我们测试时能清楚的看到产品测试出来的波型。 Save/Recall 此功能为保存功能,我们可以把产品设置好的测试结果保存在这个里面进去以后按下此菜单Save State 我们可以保存到自己想保存的地方,如:保存在仪器里面请按Recall State 里面会有相对应的01到08,我们也可以按

网络分析仪原理及使用

网络分析仪原理及使用 康飞---芬兰贝尔罗斯公司 2007年10月 一般而言,网络分析仪在射频及微波组件方面的量测上,是最基本、应用层次也最广的仪器,它可以提供线性及非线性特性组件的量测参数,因此,举凡所有射频主被动组件的仿真、制程及测试上,几乎都会使用到。在量测参数上,它不但可以提供反射系数,并从反射系数换算出阻抗的大小,且可以量测穿透系数,以及推演出重要的S参数及其它重要的参数,如相位、群速度延迟(Group Delay)、插入损失(Insertion Loss)、增益(Gain)甚至放大器的1dB压缩点(Compression point)等。 基本原理 电子电路组件在高频下工作时,许多特性与低频的行为有所不同,在高频时,其波长与实际电路组件的物理尺度相比会相对变小,举例来说,在真空下的电磁波其速度即为光速,则c=λ×f,其中c为光速3×108m/sec,若操作在2.4GHz的频率下,若不考虑空气的介电系数,则波长λ=12.5cm,亦即在短短的数公分内,电压大小就会因相位的偏移而有极大的变化。因此在高频下,我们会使用能量及阻抗的观念来取代低频的电压及电流的表示法,此时我们就会引入前述文章所提「波」的概念。 光波属于电磁波的一种,当我们用光分析一个组件时,会使用一个已知的入射光源测量未知的待测物,当光波由空气到达另一个介质时,会因折射率的不同产生部分反射及部分穿透的特性,例如化学成分分析上使用的穿透及反射光谱。对于同样是属电磁波的射频来说,道理是相通的,光之于折射率就好比微波之于阻抗的概念,当一个电磁波到达另一个不连续的阻抗接口时,同样也会有穿透及反射的行为,从这些反射及穿透行为的大小及相位变化中,就可以分析出该组件的特性。 用来描述组件的参数有许多种,其中某些只包含振幅的讯息,如回返损耗(R.L. Return Loss)、驻波比(SWR Standing Wave Ratio)或插入损失(I.L. Insertion Loss)等,我们称为纯量,而能得到如反射系数(Γ Reflection coefficient)及穿透系数 (Τ Transmission coefficient)等,我们称之为向量,其中向量可以推导出纯量行为,但纯量却因无相位信息而无法推导出向量特性。 重要的向量系数 反射特性 在此,我们重点介绍几个重要的向量系数︰首先,我们从反射系数来定义,其中Vrefect为反射波、Vinc为入射波,两者皆为向量,亦即包含振幅及相位的信息,而反射系数代表入射与反射能量的比值,经过理论的演算,可以从传输线的特性阻抗 ZO(Characteristic Impedance)得到待测组件的负载阻抗ZL,亦即,在网络分析中,一般使用史密斯图(Smith Chart)来标示不同频率下的阻抗值。另外,反射系数也可以使用极坐标表示:,其中为反射系数的大小,φ则表示入射与反射波的相位差值。 接下来,介绍两个纯量的参数--驻波比及回返损耗,其中驻波的意义是入射波与被待测装置反射回来的反射波造成在传输线上的电压或电流驻波效应,而驻波比(SWR)的定义就是驻波中的最大与最小能量的比值,我们可以从纯量的反射系数中得到。 同样,我们也可以从ρ值定义出回返损耗(R.L.),其意义是反射能量与入射能量的比值,其值愈大,代表反射回来的能量愈小。对于反射系数所衍生的相关纯量参数,我们将其整理成表1,基本上,它们之间是换算的过程,会因为产业及应用的不同而倾向于使用某一参数。 REMARK: 驻波系数又叫做驻波比,如果电缆线路上有反射波,它与行波相互作用就会产生驻波,这时线上某些点的电压振幅为最大值Vmax,某些点的电压振幅为最小值Vmin,最大振幅与最小振幅之比称为驻波系数.驻波系数越大,表示线路上反射波成分愈大, 也表示线路不均匀或线路终端失配较大.为控制电缆的不均匀性,要求一定长度的终端匹配的电缆在使用频段上的输入驻波系数S不超过 某一规定的数值.电缆中不均匀性的大小,也可用反射衰减来表示.反射系数的倒数的绝对值取对数,称为反射衰减.反射衰减愈大, 即反射系数愈小,也就是驻波比愈小,即表示内部不均匀性越小. 穿透特性 对于穿透的特性,一样有分为纯量与向量两种,对于向量系数而言,最重要的就是穿透系数,其中Vtrans为经过待测物后的穿透波、Vinc为入射波,而τ即为穿透系数的纯量大小,θ则表示入射与穿透波的相位差值。 对于纯量的定义上,以被动组件而言,最常使用的就是插入损失(I.L. Insertion Loss),亦即与上述的τ值是相关的参数,定义为。若为主动组件如放大器等,穿透的信号有放大的效应则为增益(Gain),此时定义为。

矢量网络分析仪的使用——实验报告

矢量网络分析仪实验报告 一、实验容 单端口:测量Open,Short,Load校准件的三组参数,分别进行单端口的校准。 a.设置测量参数 1)预设:preset OK 2)选择测试参数S11:Meas->S11; 3)设置数据显示格式为对数幅度格式:Format->LogMag; 4)设置频率围:Start->1.5GHz,Stop->2.5GHz(面板键盘上“G”代表 GHz,“M”代表MHz,“k”代表kHz; 5)设置扫描点数:Sweep Setup->Points->101->x1(或”Enter”键或按 下大按钮); 6)设置信号源扫描功率:Sweep Setup->Power->Foc->-10->x1->Entry Off (隐藏设置窗)。 b.单端口校准与测量 1)设置校准件型号:Cal->Cal Kit->85032F(或自定义/user)(F指femal 母头校准件,M指male公头校准件); 2)Modify Cal Kit->Specify CLSs->Open->Set All->Open(m/f),返回到 Specify CLSs->Short->Set ALL->Short(m/f); 3)选择单端口校准并选择校准端口:Cal-Calibrate->1-Port Cal->Select Port->1(端口1 的校准,端口2也可如此操作); 4)把Open校准件连接到端口(或与校准端口相连的同轴电缆另一连 接端),点击Open,校准提示(嘀的响声)后完成Open校准件的 测量;得到的结果如Fig 1:单口Open校准件测量 5)把Short校准件连接到端口(或与校准端口相连的同轴电缆另一连 接端),点击Short,校准提示(嘀的响声)后完成Short校准件的 测量;得到的结果如Fig 2:单口Short校准件测量 6)把Load校准件连接到端口(或与校准端口相连的同轴电缆另一连

实验1使用网络协议分析仪wireshark

实验项目列表

实验报告正文: 一、实验名称使用网络协议分析仪 二、实验目的: 1. 掌握安装和配置网络协议分析仪Wireshark的方法; 2. 熟悉使用Wireshark工具分析网络协议的基本方法,加深对协议格式、协议层次和协议交互过程 的理解。 三、实验内容和要求 1. 安装和配置网络协议分析仪Wireshark(); 2. 使用并熟悉Wireshark分析协议的部分功能。 四、实验环境 1)运行Windows 8.1 操作系统的PC 一台。 2)每台PC 具有以太网卡一块,通过双绞线与局域网相连。 3)Wireshark 程序(可以从下载)和WinPcap 程序(可以从 下载。如果Wireshark 版本为 1.2.10 或更高,则已包含了WinPcap 版 本 4.1.3) 五、操作方法与实验步骤 1) 安装网络协议分析仪 安装Wireshark Version 2.2.6 (v2.2.6-0-g32dac6a)。双击Wireshark 安装程序图标,进入安装过程。根据提示进行选择确认,可以顺利安装系统。当提示“Install WinPcap 4.1.3”时,选择安装;此后进入安装WinPcap 版本4.1.3,并选择让WinPcap 在系统启动时运行。此后,Wireshark 将能安装好并运行 2) 使用Wireshark 分析协议 (1) 启动系统。点击“Wireshark”图标,将会出现下图1所示的系统界面。

图1 Wireshark系统界面 其中“俘获(Capture)”和“分析(Analyze)”是Wireshark 中最重要的功能。 (2) 分组俘获。点击“Capture/Interface”菜单,出现下图所示界面。 图2 俘获/接口界面

安捷伦网络分析仪使用手册

网络分析仪使用手册 目录 ACTIVE CH/TRACE Block: Channel Prev:选择上一个通道 Channel Next:选择下一个通道 Trace Prev:选择上一个轨迹 Trace Next:选择下一个轨迹RESPONSE Block: Channel Max: 通道最大化 Trace Max: 轨迹最大化 Meas: 设置S参数 Format: 设置格式 Scale: 设置比例尺 Display: 设置显示参数 Avg: 波形平整 Cal: 校准 STIMULUS Block: Start: 设置频段起始位置 Stop: 设置频段截止位置 Center: 设置频段中心位置 Span: 设置频段范围 Sweep Setup: 扫描设置 Trigger: 触发 NAVIGATION Block: Enter: 确定 ENTRY Block: Entry off: 取消当前窗口 Back space: 退格键 Focus: 窗口切换键 +/-: 正负切换键 G/n, M/,k/m: 单位输入 INSTR STATE Block: Macro Setup: Macro Run: Macro Break: Save/Recall: 程序载入载出键 System: 系统功能键 Preset: 预设置键 MKR/ANALYSIS Block: Marker: 标记键 Marker Search: 标记设置键 Marker Fctn: 标记功能 Analysis: 分析 部分按键详细功能: ------------------------------------------------------------ System: (系统功能设定) Print: 将显示屏画面打印出来 Abort printing: 终止打印 Printer setup: 配置打印机 Invert image: 颠倒图象颜色 Dump screen image: 将显示屏画面保存到硬盘中 E5091A setup: 略 Misc setup: 混杂功能 Beeper: 发声控制 Beeper complete: 开/关提示音 Test beeper complete: 测试开/关提示音 Beep warning: 开/关警告音 Test beep warning: 测试开/关警告音 Return: 返回 GPIB setup: 略 Network setup: 略 Clock setup: 时钟设定 Set date and time: 设置日期和时间 Show clock: 开/关时间显示 Return: 返回 Key lock: 锁定功能 Front panel & keyboard lock: 锁定前端面板和键盘 Touch screen & mouse lock: 锁定触摸屏和鼠标

网络分析仪原理及测量阻抗

网络分析仪组成框图 图1所示为网络分析仪内部组成框图。为完成被测件传输/反射特性测试,网络分析仪包含; 1.激励信号源;提供被测件激励输入信号 2.信号分离装置,含功分器和定向耦合器件,分别提取被测试件输入和反射信号。 3.接收机;对被测件的反射,传输,输入信号进行测试。 4.处理显示单元; 对测试结果进行处理和显示。 图1 网络分析仪组成框图 传输特性是被测件输出和输入激励的相对比值,网络分析仪要完成该项测试,需分别得到被测件输入激励信号和输出信号信息。 网络分析仪内部信号源负责产生满足测试频率和功率要求的激励信号,信号源输出通过功分器均分为两路信号,一路直接进入R接收机,另一路通过开关输入到被测件相应测试口,所以,R 接收机测试得到被测输入信号信息。 被测件输出信号进入网络分析仪B接收机,所以,B接收机测试得到被测件输出信号信息。B/R为被测试件正向传输特性。当完成反向测试测试时,需要网络分析仪内部开关控制信号流程。

图2网络分析仪传输测试信号流程 反射特性是被测件反射和输入激励的相对比值,网络分析仪要完成该项测试,需分别得到被测件输入激励信号和测试端口反射信号。 网络分析仪内部信号源负责产生满足测试频率和功率要求的激励信号,信号源输出通过功分器均分为两路信号,一路直接进入R接收机,另一路通过开关输入到被测件相应测试口,所以,R 接收机测试得到被测输入信号信息。 激励信号输入到被测件后会发射反射,被测件端口反射信号和输入激励信号在相同物理路径上传播,定向耦合器负责把同个物理路径上相反方向传播的信号进行分离,提取反射信号信息,进入A接收机。 A/R 为被测试件端口反射特性。当需要测试另外端口反射特性时,需网络分析仪内部开关将激励信号转换到相应测试端口。

CYGM-61588便携式网络报文分析仪技术规范书

产品技术规范书 (图片仅供参考) 设备名称:便携式网络报文分析仪型号:CYGM-61588 生产厂家: 产品编码: 品牌:

一、产品简介 CYGM-61588便携式网络报文分析仪是应用于智能变电站或电力科研实验室的便携式网络报文分析仪器,全面支持DL/T 860以及智能变电站相关标准,为智能变电站各类二次设备的试验、调试、检修提供数据参考依据。 CYGM-61588可直接采集智能变电站过程层网络的采样值、GOOSE、MMS和IEC 61588对时报文。可选配暂态录波功能和连续记录功能模块,当选配暂态录波功能后,即可实现电网暂态故障的记录和分析测距功能。 二、技术特点 1. 全面记录SV、GOOSE、MMS、IEC61588等智能变电站所有类型报文 2. 采用高性能实时嵌入式操作系统vxWorks,系统稳定、可靠,实时性好 3. 能变电站过程层和站控层网络异常实时告警 4. 原始报文实时记录分析与暂态故障录波一体化设计 5. 支持100M/1000M/FT3等多种采集接口插件的组合配置,接口种类丰富、数目多 6. 4个1000Mbps上行通信网口 7. 支持光纤IRIG-B和电平IRIG-B对时,精度<300ns 8. 所有采集端口均支持IEC61588时钟同步,精度<300ns 9. 同步后,装置自身时钟守时精度24小时误差≦±100ms 10. 实时数据写盘速度:外圈≧70MB/s,内圈≧30MB/s 11. 实时纳秒级硬件时标,时标分辨率为40ns 三、技术指标 1. 处理器:嵌入式双核处理器,内存2GB 2. 存储空间:2TB 3. 操作系统:军工级嵌入式实时操作系统:vxWorks 6.9 4. 智能数据采集接口 标配1:8~16个100Mbps SFP模块 标配2:8个100Mbps SFP模块+4个1000Mbps SFP模块 标配3:8个FT3(ST)光纤接口+8个100Mbps SFP模块 标配4:8个FT3(ST)光纤接口+4个1000Mbps SFP模块

网络分析仪在智能站的作用

网络分析仪在智能站中的应用 1.1 传统变电站向智能站的变革 随着IEC 61850 通信建模标准的分阶段颁布实施和电子式互感器技术、智能开关技术、计算机网络通信技术的发展,以及国家建设坚强智能电网的战略发展规划的快速推进。变电站综自技术进入了数字化、智能化时代。数字化变电站的建成投产也为电网数字化建设奠定了基础, 在变电站发展历程史上具有划时代的意义, 是一次变电技术的革命。智能变电站相对于传统变电站有众多明显优势: 1、高性能通信网络采用统一的通信规约IEC 61850 , 提高了设备之间的互操作性,不需要进行规约转换, 加快了通信速度, 降低了系统的复杂度和设计、调试和维护的难度, 提高了通信系统的性能。数字信号通过光缆传输避免了电缆带来的电磁干扰, 传输过程中无信号衰减、失真。无L 、C 滤波网络, 不产生谐振过电压。传输和处理过程中不再产生附加误差, 提升了保护、计量和测量系统的精度。光电互感器无磁饱和, 精度高, 暂态特性好。 2、高安全性光电互感器的应用, 避免了油和sF 6互感器的渗漏问题, 很大程度上减少了运行维护的工作量, 不再受渗漏油的困扰, 同时提高了安全性光电互感器高低压部分光电隔离, 使得电流互感器二次开路、电压互感器二次短路可能危及人身或设备等问题不复存在, 大大提高了安全性。光缆代替电缆, 避免了电缆端子接线松动、发热、开路和短路的危险, 提高了变电站整体安全运行水平。 3、高可靠性,设备自检功能强, 合并器收不到数据会判断通讯故障或互感器故障而发出告警, 既提高了运行的可靠性又减轻了运行人员的工作量。采集器的电源由能量线圈或激光电源提供, 两者自动切换, 互为备用。 4、高经济性采用光缆代替大量电缆, 降低成本。用光缆取代二次电缆, 简化了电缆沟、电缆层和电缆防火, 保护、自动化调试的工作量减少, 减少了运行维护成本。同时, 缩短工程周期, 减少通道重复建设和投资。实现信息共享, 兼容性高, 便于新增功能和扩展规模, 减少变电站投资成本。光电互感器采用固体绝缘, 无渗漏问题, 减少了停运检修成本。?数字化变电站技术含量高, 电缆等耗材节约, 具有节能、环保、节约社会资源的多重功效。 1.2 以太网技术在智能站的应用 IEC 61850使用以太网作为基本通信网络,变电站层与远方控制中心之间、变电站层与间隔层之间、间隔层与过程层之间分别通过基于以太网的远动网络、站级网络和过程网络交互信息。使测量、保护、控制、监测等不同专业真正实现信息共享。使不同功能可以方便地得到协调和集成,形成信息高度共享的变电站自动化系统。即基于以太网的变电站自动化系统。由于以太网具有标准化、灵活性、价格低廉、稳定可靠、通信速率高、软硬件产品丰富、应用广泛以及支持技术成熟等优点,在变电站自动化系统中,为各种特定功能构建的各自独立的专用网络将被全开放的以太网取代。以以太网技术为基础的新一代数字变电站已经成为发展中的新亮点。

网络分析仪的基本原理.

一种独特的仪器 网络分析仪是一种功能强大的仪器, 正确使用时, 可以达到极高的精度。它的应用也十分广泛, 在很多行业都不可或缺, 尤其在测量无线射频 (RF元件和设备的线性特性方面非常有用。现代网络分析仪还可以应用于更具体的场合, 例如, 信号完整性和材料的测量。随着业界第一款 PXI 网络分析仪— NI PXIe - 5630的推出, 你完全可以摆脱传统网络分析仪的高成本和大占地面积的束缚, 轻松地将网络分析仪应用于设计验证和产线测试。 网络分析仪的发展 你可以使用图 1所示的 NI PXIe-5630矢量网络分析仪测量设备的幅度,相位和阻抗。由于网络分析仪是一种封闭的激励 -响应系统, 你可以在测量 RF 特性时实现绝佳的精度。当然, 充分理解网络分析仪的基本原理, 对于你最大限度的受益于网络分析仪非常重要。 在过去的十年中, 矢量网络分析仪由于其较低的成本和高效的制造技术, 流行度超过了标量网络分析仪。虽然网络分析理论已经存在了数十年,但是直到 20世纪 80年代早期第一台现代独立台式分析仪才诞生。在此之前, 网络分析仪身形庞大复杂,由众多仪器和外部器件组合而成,且功能受限。 NI PXIe-5630的推出标志着网络分析仪发展的又一个里程碑, 它将矢量网络分析功能成功地赋予了灵活,软件定义的 PXI 模块化仪器平台。 通常我们需要大量的测量实践, 才能实现精确的幅值和相位参数测量, 避免重大错误。由于射频仪器测量的不确定性, 小的错误很可能会被忽略不计。而网络分析仪作为一种精密的仪器能够测量出极小的错误。 网络分析理论 网络是一个被高频率使用的术语,有很多种现代的定义。就网络分析而言, 网络指一组内部相互关联的电子元器件。网络分析仪的功能之一就是量化两个射频元件间的阻抗不匹配, 最大限度地提高功率效率和信号的完整性。每当射频信号由

Agilent E5071C网络分析仪测试方法

Agilent E5071C网络分析仪测试方法-李S135-8076-7730 买卖仪器没找到联系方式?请搜索《欧诺谊-李海凤》进入查看联系方式,谢谢! E5071C网络分析仪测试方法 一.面板上常使用按键功能大概介绍如下: Meas 打开后显示有:S11 S21 S12 S22 (S11 S22为反射, S21 S12 为传输)注意:驻波比和回波损耗在反射功能测试,也就是说在S11或者S22里面测试。 Format 打开后显示有:Log Mag———SWR———-里面有很多测试功能,如上这两种是我们常用到的,Log Mag为回波损耗测试,SWR 为驻波比测试。 Display打开后显示有:Num of Traces (此功能可以打开多条测试线进行同时测试多项指标,每一条测试线可以跟据自己的需求选择相对应的指标,也就是说一个产品我们可以同时测试驻波比和插入损耗或者更多的指标) Allocate Traces (打开此功能里面有窗口显示选择,我们可以跟据自己的需求选择两个窗口以上的显示方式) Cal 此功能为仪器校准功能:我们常用到的是打开后在显示选择:Calibrate (校准端口选择,我们可以选择单端口校准,也可以选择双端口校准) Trace Prev 此功能为测试线的更换设置 Scale 此功能为测试放大的功能,打开后常用到的有:Scale/Div 10DB/Div 为每格测试10DB,我们可以跟据自己的产品更改每格测量的大小,方便我们看测试结果 Reference Value 这项功能可以改变测试线的高低,也是方便我们测试时能清楚的看到产品测试出来的波型。 Save/Recall 此功能为保存功能,我们可以把产品设置好的测试结果保存在这个里面进去以后按下此菜单Save State 我们可以保存到自己想保存的地方,如:保存在仪器里面请按 Recall State 里面会有相对应的01到08,我们也可以按SaveTrace Data 保存在外接的U盘里面,方便的把我们产品的测试结果给客户看。 二.仪器测试的设置方法 1.频率设置:在仪器面板按键打开 Start 为开始频率,Stop 为终止频率。如我们要测量 2.4G到5.8G,我们先按 Start 设置为2.4G,再按 Stop 设置为5.8G 2.传输与反射测试功能设置:在仪器面板按键打开Meas 打开后显示菜单里面会有 S11 S21 S12 S22 (S11 S22为反射,S21 S12 为传输)注意:驻波比和回波损耗在反射功能测试,也就是说在S11或者S22 里面测试,S11和S21为第一个测试端口测试,S22和S12为第二个端口测试。

S参数定义,矢量网络分析仪基本知识和S参数测量

S参数定义、矢量网络分析仪基础知识及S参数测量 §1 基本知识 1.1 射频网络 这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。 1.单端口网络习惯上又叫负载Z L。因为只有一个口,总是接在最后又称终端负载。最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。 ?单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S11)更方便些。 2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。?匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。 ?传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。 插损(IL)= 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。

V2 ?两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。两端口网络的散射参量有4个,即S11、S21、S12、S22。 S参数的基本定义: S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1;也可用输入回波损耗RL=-2Olg(ρ)(能量方面的反应)表示。 S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。 S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。 S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。 特点: 1、对于互易网络有S12=S21 2、对于对称网络有S11=S22 3、对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上 4、在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。

相关主题