搜档网
当前位置:搜档网 › 构造函数和析构函数习题

构造函数和析构函数习题

构造函数和析构函数习题
构造函数和析构函数习题

定义构造函数的四种方法

定义类的构造函数 作者:lyb661 时间:20150613 定义类的构造函数有如下几种方法: 1、使用默认构造函数(类不另行定义构造函数):能够创建一个类对象,但不能初始化类的各个成员。 2、显式定义带有参数的构造函数:在类方法中定义,使用多个参数初始化类的各个数据成员。 3、定义有默认值的构造函数:构造函数原型中为类的各个成员提供默认值。 4、使用构造函数初始化列表:这个构造函数初始化成员的方式显得更紧凑。 例如:有一个学生类。其中存储了学生的姓名、学号和分数。 class Student { private: std::string name; long number; double scores; public: Student(){}//1:default constructor Student(const std::string& na,long nu,double sc); Student(const std:;string& na="",long nu=0,double sc=0.0); Student(const std:;string& na="none",long nu=0,double sc=0.0):name(na),number(nu),scores(sc){} ……….. void display() const; //void set(std::string na,long nu,double sc); }; ......... Student::Student(const std::string& na,long nu,double sc) { name=na; number=nu; scores=sc; } void Student::display()const { std::cout<<"Name: "<

构造函数法解不等式问题(学生版)

专题2.3构造函数法解不等式问题(小题) 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x =,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥构造''[()][()()] x x e f x e f x f x =+(2)'()()0xf x f x +≥构造''[()]()() xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()] n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论) 关系式为“减”型

专题6.1 导数中的构造函数 高考数学选填题压轴题突破讲义(解析版)

【方法综述】 函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F n x x f x =;出现()()xf x nf x '-形式,构造函数()() F n f x x x = ;出现()()f x nf x '+形式,构造函数()()F nx x e f x =;出现()()f x nf x '-形式,构造函数()() F nx f x x e = . 【解答策略】 类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (n x )构造 常用构造形式有()xf x , ()f x x ;这类形式是对u v ?,u v 型函数导数计算的推广及应用,我们对u v ?,u v 的导函数观察可得知,u v ?型导函数中体现的是“+”法,u v 型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v ?型,当导函数形式出现的是“-”法形式时,优先考虑构造 u v . 例1.【2019届高三第二次全国大联考】设 是定义在上的可导偶函数,若当 时, ,则函数 的零点个数为 A .0 B .1 C .2 D .0或2 【答案】A 【解析】 设 ,因为函数 为偶函数,所以 也是上的偶函数,所以 .由已知, 时, ,可得当 时, , 故函数在上单调递减,由偶函数的性质可得函数在 上单调递增.所以

,所以方程,即无解,所以函数没有零点.故选A. 【指点迷津】设,当时,,可得当时,,故函数 在上单调递减,从而求出函数的零点的个数. 【举一反三】【新疆乌鲁木齐2019届高三第二次质量检测】的定义域是,其导函数为,若,且(其中是自然对数的底数),则 A.B. C.当时,取得极大值D.当时, 【答案】C 【解析】 设,则 则 又得 即,所以 即 , 由得,得,此时函数为增函数 由得,得,此时函数为减函数 则,即,则,故错误 ,即,则,故错误 当时,取得极小值 即当,,即,即,故错误 当时,取得极小值 此时,则取得极大值

为什么要引入构造函数和析构函数汇总

1.为什么要引入构造函数和析构函数? 对象的初始化是指对象数据成员的初始化,在使用对象前,一定要初始化。由于数据成员一般为私有的(private),所以不能直接赋值。对对象初始化有以下两种方法:类中提供一个普通成员函数来初始化,但是会造成使用上的不便(使用对象前必须显式调用该函数)和不安全(未调用初始化函数就使用对象)。 当定义对象时,编译程序自动调用构造函数。 析构函数的功能是当对象被撤消时,释放该对象占用的内存空间。析构函数的作用与构造函数正好相反,一般情况下,析构函数执行构造函数的逆操作。在对象消亡时,系统将自动调用析构函数,执行一些在对象撤消前必须执行的清理任务。 2. 类的公有、私有和保护成员之间的区别是什么? ①私有成员private: 私有成员是在类中被隐藏的部分,它往往是用来描述该类对象属性的一些数据成员,私有成员只能由本类的成员函数或某些特殊说明的函数(如第4章讲到的友员函数)访问,而类的外部根本就无法访问,实现了访问权限的有效控制,使数据得到有效的保护,有利于数据的隐藏,使内部数据不能被任意的访问和修改,也不会对该类以外的其余部分造成影响,使模块之间的相互作用被降低到最小。private成员若处于类声明中的第一部分,可省略关键字private。 ②公有成员public:公有成员对外是完全开放的,公有成员一般是成员函数,它提供了外部程序与类的接口功能,用户通过公有成员访问该类对象中的数据。 ③保护成员protected: 只能由该类的成员函数,友元,公有派生类成员函数访问的成员。保护成员与私有成员在一般情况下含义相同,它们的区别体现在类的继承中对产生的新类的影响不同,具体内容将在第5章中介绍。缺省访问控制(未指定private、protected、public访问权限)时,系统认为是私有private 成员。 3. 什么是拷贝构造函数,它何时被调用?

例析构造函数的基本方法

例析构造函数的基本方法 一、用作差法构造函数 求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 证明:设函数x x x f -+=)1ln()(,1111)(+-=-+= 'x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数,故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞,于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则, 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111)1ln(+- ≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 二、换元法构造函数 对任意的正整数n ,不等式3 211)11ln(n n n ->+ 都成立. 分析:从所证结构出发,只需令x n =1,则问题转化为:当0>x 时, 恒有32)1ln(x x x ->+成立,现构造函数)1ln()(23++-=x x x x h ,求导即可达到证明。

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A.B.C.D. 2.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是() A.B. C.D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A.B.C.D. 4.已知函数定义在数集,,上的偶函数,当时恒有,且,则不等式的解集为() A.,,B.,, C.,,D.,, 5.定义在上的函数满足,,则不等式的解集为() A.B.C.D. 6.设定义在上的函数满足任意都有,且时,有,则、、的大小关系是() A.B. C.D. 7.已知偶函数满足,且,则的解集为 A.或B. C.或D. 8.定义在R上的函数满足:是的导函数,则不等式 (其中e为自然对数的底数)的解集为( )

9.已知定义在上的函数的导函数为,满足,且,则不等式的解集为() A.B.C.D. 10.定义在上的函数f(x)满足,则不等式的解集为A.B.C.D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A.B.C.D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A.e2017f(-2017)e2017f(0) B.e2017f(-2017)f(0),f(2017)>e2017f(0) D.e2017f(-2017)>f(0),f(2017)

构造函数法证明导数不等式的八种方法

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时, 0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证) , 现证左面,令11 1)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

C++实验三 构造函数和析构函数题目+答案

实验三构造函数和析构函数 班级:B135A2 学号: 201322688 姓名:杨弘成绩: 一.实验目的 1.理解构造函数和析构函数作用; 2.掌握各种类型的构造函数和析构函数的使用; 3.掌握构造函数和析构函数的调用顺序。 二.使用的设备和仪器 计算机+Windows XP +Visual C++6.0 三.实验内容及要求 1.阅读程序,写出运行结果,然后上机运行,将机器运行结果与人工运行的结果进行比较,并对每一行输出做出分析。 (1) #include using namespace std; class MyClass { public: MyClass(); MyClass(int xx); MyClass(int xx,int yy); MyClass(MyClass &); void Display(); void Set(int, int); ~ MyClass(); private: int x,y; }; MyClass:: MyClass() { cout<<"执行无参构造函数:" ; x=0;y=0; cout<<"x="<

cout<<"执行一个参数构造函数:" ; x=xx;y=0; cout<<"x="<

构造函数法解选填压轴题

微专题:构造函数法解选填压轴题 高考中要取得高分,关键在于选准选好的解题方法,才能省时省力又有效果。近几年各地高考数学试卷中,许多方面尤其涉及函数题目,采用构造函数法解答是一个不错的选择。所谓构造函数法是指通过一定方式,设计并构造一个与有待解答问题相关函数,并对其进行观察分析,借助函数本身性质如单调性或利用运算结果,解决原问题方法,简而言之就是构造函数解答问题。怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。 几种导数的常见构造: 1.对于()()x g x f ''>,构造()()()x g x f x h -= 若遇到()()0'≠>a a x f ,则可构()()ax x f x h -= 2.对于()()0''>+x g x f ,构造()()()x g x f x h += 3.对于'()()0f x f x +>,构造()()x f e x h x = 4.对于'()()f x f x > [或'()()0f x f x ->],构造()()x f x h x e = 5.对于()()0'>+x f x xf ,构造()()x xf x h = 6.对于()()0'>-x f x xf ,构造()()x x f x h = 一、构造函数法比较大小 例1.已知函数()y f x =的图象关于y 轴对称,且当(,0),()'()0x f x xf x ∈-∞+<成立,0.20.22(2)a f =,log 3(log 3)b f ππ=,33log 9(log 9)c f =,则,,a b c 的大小关系是 ( ) .Aa b c >> .B a c b >> .C c b a >> .Db a c >> 【解析】因为函数()y f x =关于y 轴对称,所以函数()y xf x =为奇函数.因为[()]'()'()xf x f x xf x =+, 所以当(,0)x ∈-∞时,[()]'()'()0xf x f x xf x =+<,函数()y xf x =单调递减, 当(0,)x ∈+∞时,函数()y xf x =单调递减. 因为0.2122<<,0131og π<<,3192og =,所以0.23013219og og π<<<,所以b a c >>,选D. 变式: 已知定义域为R 的奇函数()f x 的导函数为'()f x ,当0x ≠时,()'()0f x f x x + >, 若111(),2(2),ln (ln 2)222 a f b f c f ==--=,则下列关于,,a b c 的大小关系正确的是( D ) .Aa b c >> .B a c b >> .C c b a >> .Db a c >> 例2.已知()f x 为R 上的可导函数,且x R ?∈,均有()()f x f x '>,则有

导函数构造函数

已知函数()f x 是定义在(0,)+∞上的非负可导函数,且满足()()0xf x f x '+≤,对任意正数,a b 。 若a b <,则必有( A ) ,()(),()()()()()()A af b bf a B bf a af b C af a f b D bf b f a ≤≤≤≤ 已知(),()f x g x 分别是定义在R 上的奇函数,偶函数,若0x <时,()()()()0f x g x f x g x ''+>, 且(3)0g -=,则不等式()()0f x g x <的解集是 (,3)(0,3)-∞-? 已知函数()f x 在R 上的奇函数,且(2)0f =,当0x >时,有2 ()()0xf x f x x '-<,则2 ()0x f x >的 解集是 (,2)(0,2)-∞-? 设函数(),y f x x R =∈的导函数为()f x ',且()(),()()f x f x f x f x '-=<,则下列不等式成立的是(D ) 12212112()(0)(1)(2)()(2)(0)(1)()(2)(1)(0)()(1)(0)(2) A f e f e f B e f f e f C e f e f f D e f f e f ----<<<<<<<<已知函数2()2ln f x x x a x =++,当1t ≥时,不等式(21)2()3f t f t -≥-恒成立, 则实数a 的取值范围为 <=2 设1(),(0,1)ln f x x x x x =>≠(1)求()f x 的单调区间;(2)若不等式1 2a x x >,对任意(0,1)x ∈ 恒成立,求实数a 的取值范围; 11 11 (1)(0,) ,(,1),(1,)ln 21(2)2ln 2ln ln ln 2 ln ln 2a a x x e e a x x a x a e x x x +∞>∴>∴>∴<∴> 已知函数2 1()ln ,()2 f x x g x x == (1)设()()(),(0)F x ag x f x a =->,若()F x 没有零点,求实数a 的取值范围; (2)若120x x >>总有[]121122()()()()m g x g x x f x x f x ->-成立,求实数m 的取值范围; 2211122211 ()ln ,()2()()()() ()()()()01 a ax F x x x F x a x e mg x x f x mg x x f x h x mg x xf x h x m -'=-=∴> ->-=-''∴≥∴≥

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧. 技法一:“比较法”构造函数 [典例] (2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解] (1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的

结论求解. [对点演练] 已知函数f (x )=x e x ,直线y =g (x )为函数f (x )的图象在x =x 0(x 0<1) 处的切线,求证:f (x )≤g (x ). 证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)= 1-x e x - 1-x 0 e 0 x = ?1-x ?e 0 x -?1-x 0?e x e 0 +x x . 设φ(x )=(1-x )e 0 x -(1-x 0)e x , 则φ′(x )=-e 0 x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0, ∴φ(x )在R 上单调递减,又φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0, ∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ). 技法二:“拆分法”构造函数 [典例] 设函数f (x )=ae x ln x +be x -1 x ,曲线y =f (x )在点(1,f (1)) 处的切线为y =e (x -1)+2. (1)求a ,b ; (2)证明:f (x )>1. [解] (1)f ′(x )=ae x ? ?? ??ln x +1x +be x -1 ?x -1? x 2 (x >0), 由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),

构造函数和析构函数

一、选择题 1、以下有关构造函数的叙述不正确的是()。 A、构造函数名必须和类名一致 B、构造函数在定义对象时自动执行 C、构造函数无任何函数类型 D、在一个类构造函数有且仅有一个 2、以下有关析构函数的叙述不正确的是()。 A、一个类只能定义一个析构函数 B、析构函数和构造函数一样可以有形参 C、析构函数不允许有返回值 D、析构函数名前必须冠有符号“~” 3、系统提供的默认拷贝构造函数中形参表和函数体分别为()。 A、形参表为空,函数体为空 B、形参表为空,函数体不为空 C、形参表不为空,函数体为空 D、形参表不为空,函数体不为空 4、设A为test类的对象且赋有初值,则语句test B=A; 表示()。 A、语法错 B、为对象A定义一个别名 C、调用复制构造函数,将对象A复制给对象B D、仅说明B和A属于同一类 5、若有如下类定义,则下列叙述正确的是()。 class Time { int H,M,S; public: void Time(int h,int m,int s) { }; //A } //B A、A行有错误 B、B行有错误 C、A和B行都有错误 D、A和B行都没有错误 6、若有如下类定义,则下列叙述正确的是()。 class S { int x; public: S ( ) {x=0;} S (int a) {x=++a;} void show( ) {cout<<”x=”<

几种构造辅助函数的方法及应用

几种构造辅助函数的方法及应用 许生虎 (西北师范大学数学系,甘肃 兰州 730070) 摘 要:在对数学命题的观察和分析基础上给出了构造辅助函数的方法,举例说 明了寻求辅助函数的几种方法及在解题中的作用。 关键词:辅助函数 弧弦差法 原函数法 几何直观法 微分方程法 1. 引言 在解题过程中,根据问题的条件与结论的特点,通过逆向分析、综合运用数学的基本概念和原理,经过深入思考、缜密的观察和广泛的联想,构造出一个与问题有关的辅助函数,通过对函数特征的考查达到解决问题的目的,这种解决问题的方法叫做构造辅助函数法。 构造函数方法在许多命题证明中的应用,使问题得以解决,如在微分中值定理、泰勒公式、中值点存在性、不等式等证明。但构造辅助函数方法的内涵十分丰富没有固定的模式和方法,构造过程充分体现了数学的发现、类比、逆向思维及归纳、猜想、分析与化归思想。但如何通过构造,构造怎样的辅助函数给出命题的证明,是很难理解的问题之一,本文通过一些典型例题归纳、分析和总结常见的构造辅助函数方法及应用。 2. 构造辅助函数的七中方法 “逆向思维法” 例1: 设()x f 在[]1,0 上可微,且满足 ()()?=21 21dx x xf f ,证明在][1,0内至少有一点θ,使()() θ θθf f - ='. 证明:由所证明的结论出发,结合已知条件,探寻恰当的辅助函数. 将() () θ θθf f '变为()()0='?+θθθf f ,联想到()[]()()θθθθf f x xf x '?+=' =, 可考虑辅助函数 ()()[].1,0,∈=x x xf x F

因为()()ξξf f =1 , 而对于()x F ,有()()ξξξf F =,()().11f F = 所以,()()1F F =ξ ,由罗尔定理知,至少存在一点()1,ξθ∈,使得()0='θF 即:()() θ θθf f - ='. 证毕 2.2 原函数法 在微分中值定理(尤其是罗尔定理)求解介值(或零点)问题时要证明的结论往往是某一个函数的导函数的零点,因此可通过不定积分反求出原函数作为辅助函数,用此法构造辅助函数的具体步骤如下: (1)将要证的结论中的;)(0x x 换或ξ (2)通过恒等变换,将结论化为易积分(或易消除导数符号)的形式; (3)用观察法或凑微分法求出原函数(必要时可在等式两端同乘以非零的积 分因子),为简便起见,可将积分常数取为零; (4)移项,将等式一边为零,则等式的另一边为所求的辅助函数. 例2: ()[]() (),0,0,,>>a f a b a b a x f 且内可导,其中上连续,在在设 ()()()ξξ ξξf a b f b a '?-=?∈?,,证明: 分析: ()()ξξ ξf a b f '?-= ()()x f a x b x f x '?-=??→?=ξ令 ()()x b a x f x f -='? ()()c x b x f a ln ln ln +-=??→?-积分 ()()c x f x b a =-? 可令 ()()()x f x b x F a -= 证明: 作辅助函数 ()()()x f x b x F a -=

C#中构造函数使用方法

C#构造函数是在创建给定类型的对象时执行的类方法。构造函数具有与类相同的名称,它通常初始化新对象的数据成员。不带参数的构造函数称为“默认构造函数”。无论何时,只要使用new 运算符实例化对象,并且不为new 提供任何参数,就会调用默认构造函数。除非类是static 的,否则C# 编译器将为无构造函数的类提供一个公共的默认构造函数,以便该类可以实例化。 构造函数必须是在类里的一级声明,并且命名为类名, 形式为:修饰符类名(参数类型1,参数名1,。。。) 例如 class A { public int x, y; public string s; // 默认构造函数 public A() { x = 0; y = 0; } //带参数的构造函数 public A(string a) { this.s=a; } } 一般函数的声明则不受这些约束 只要定义在命名空间内,命名形式为:修饰符返回值类型函数名(参数类型1,参数名1,。。。) 例如:private static void Main(string args) 声明了一个私有的静态主函数,无返回值,参数为args,string类型vvv 一、C#构造函数?Construct,Function 构造函数是一种特殊的成员函数,它主要用于为对象分配存储空间,对数据成员进行初始化. 构造函数具有一些特殊的性质: (1)构造函数的名字必须与类同名; (2)构造函数没有返回类型,它可以带参数,也可以不带参数; (3)声明类对象时,系统自动调用构造函数,构造函数不能被显式调用; (4)构造函数可以重载,从而提供初始化类对象的不同方法; (5)若在声明时未定义构造函数,系统会自动生成默认的构造函数,此时构造函数的函数体为空.

类的构造函数和析构函数

C++面向对象编程入门:构造函数与析构函数 请注意,这一节内容是c++的重点,要特别注意! 我们先说一下什么是构造函数。 上一个教程我们简单说了关于类的一些基本内容,对于类对象成员的初始化我们始终是建立成员函数然后手工调用该函数对成员进行赋值的,那么在c++中对于类来说有没有更方便的方式能够在对象创建的时候就自动初始化成员变量呢,这一点对操作保护成员是至关重要的,答案是肯定的。关于c++类成员的初始化,有专门的构造函数来进行自动操作而无需要手工调用,在正式讲解之前先看看c++对构造函数的一个基本定义。 1.C++规定,每个类必须有默认的构造函数,没有构造函数就不能创建对象。 2.若没有提供任何构造函数,那么c++提供自动提供一个默认的构造函数,该默认构造函数是一个没有参数的构造函数,它仅仅负责创建对象而不做任何赋值操作。 3.只要类中提供了任意一个构造函数,那么c++就不在自动提供默认构造函数。 4.类对象的定义和变量的定义类似,使用默认构造函数创建对象的时候,如果创建的是静态或者是全局对象,则对象的位模式全部为0,否则将会是随即的。 我们来看下面的代码: #include using namespace std; class Student { public: Student()//无参数构造函数 { number = 1; score = 100; } void show(); protected: int number; int score; }; void Student::show() { cout<

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法 利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 1、从条件特征入手构造函数证明 【例1】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b , 求证:.a )(a f >b )(b f 【变式1】若函数y =)(x f 在R 上可导且满足不等式)(x f >)(x f ',且1)(-=x f y 为奇函数. 求不等式)(x f 2 x . 求不等式0)2(4)2015()2015(2 >--++f x f x 的解集. 2、移项法构造函数 【例2】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+- )1ln(1 1 1 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数11 1 )1ln()(-+++=x x x g ,从其导数入手即可证明。 3、作差法构造函数证明 【例3】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2 )(x x g =的图象的下方; 分析:函数)(x f 图象在函数)(x g 的图象的下方)()(x g x f + 都成立. 分析:本题是山东卷的第(II )问,从所证结构出发,只需令 x n =1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(2 3 ++-=x x x x h ,求导即可达到证明。

构造函数和析构函数

第三周实验构造函数和析构函数 实验目的: 1、清楚构造函数的作用,掌握构造函数的声明、定义方法; 2、掌握重载构造函数、带参数构造函数的定义、应用; 3、熟悉用参数列表初始化数据成员的书写方式; 4、清楚析构函数的作用,掌握析构函数的声明、定义方法; 5、熟悉构造函数、析构函数的调用顺序。 实验内容 一、请按要求运行下列程序,并回答相关问题,从中体会构造函数的作用: #include using namespace std; class Time { private: int hour, minute, second; public: void disp(); }; void Time::disp() { cout<

{ hour=0; minute=0; second=0; } 问题:请用参数列表初始化数据成员的方式改写构造函数,查看程序运行结果有无不同? 二、阅读、运行下列程序,并回答相关问题,进一步熟悉构造函数、析构函数的定义、调用,清楚对象构造、析构的顺序: #include using namespace std; class Test { private: int x; public: Test() { cout<<"对象地址: "<