搜档网
当前位置:搜档网 › 传送带问题解题技巧

传送带问题解题技巧

传送带问题解题技巧
传送带问题解题技巧

传送带问题

传送带问题是高中物理习题中较为常见的一类问题,因其涉及的知识点较多(力的分析、运动的分析、牛顿运动定律、功能关系等),包含的物理过程比较复杂,所以这类问题往往是习题教学的难点,也是高考考查的一个热点。下面以一道传送带习题及其变式题为例,谈谈这类题目的解题思路和突破策略。

题目如图1所示,水平传送带以5m/s的恒定速度运动,传送带长l=7.5m,今在其左端A将一工件轻轻放在上面,工件被带动,传送到右端B,已知工件与传送带间的动摩擦因数μ=0.5,试求:工件经多少时间由传送带左端A运动到右端B?(取g=10m/s2)

解析工件被轻轻放在传送带左端,意味着工件对地初速度v0=0,但由于传送带对地面以v=5m/s向右匀速运动,所以工件相对传送带向左运动,故工件受水平向右的滑动摩擦力作用,即:F f=μF N=μmg。

依牛顿第二定律,工件加速度m/s2,a为一恒量,工件做初速度为零的匀加速直线运动,当工件速度等于传送带速度时,摩擦力消失,与传送带保持相对静止,一起向右做匀速运动,速度为v=5m/s。

工件做匀加速运动的时间s,工件做匀加速运动的位移m。

由于x1

因此,工件从左端运动到右端的时间:t=t1+t2=2s。

变式一若传送带长l=2.5m,则工件从左端A运动到右端B一直做匀加速运动,依

有:s。

变式二若工件以对地速度v0=5m/s滑上传送带,则工件相对传送带无运动趋势,工件与传送带间无摩擦力,所以工件做匀速运动,工件运动时间s。

变式三若工件以速度v0=7m/s滑上传送带,由于工件相对传送带向右运动,工件受滑动摩擦力水平向左,如图2所示。工件做匀减速运动,当工件速度等于传送带速度后,二者之间摩擦力消失,工件随传送带一起匀速运动。

工件做匀减速运动时间s

工件做匀减速运动的位移m

工件做匀速运动的时间s

所以工件由左端A到右端B的时间t=t1+t2=1.42s。

变式四若工件以v0=3m/s速度滑上传送带,由于v0

工件匀加速运动的时间s

工件做匀加速运动的位移m

工件做匀速运动的时间s

所以工件由左端A到右端B的时间t=t1+t2=1.58s。

变式五本题若传送带与水平面间倾角θ=37?,如图3所示,其他条件不变,那么工件由A滑到B时间为多少呢?

首先应比较动摩擦因数μ与tanθ的大小,由于μ=0.4,tanθ=0.75,所以μ

即a1=gsinθ+μgcosθ=10m/s2

工件与传送带速度相等的时间s

在0.5s内工件的位移m

随后,工件不会像传送带水平放置那样,工件与传送带一起匀速运动,而是沿传送带加速向下滑动,当工件速度超过传送带速度时,工件所受滑动摩擦力沿传送带斜面向上,如图

4所示,工件的加速度即a2=gsinθ-μgcosθ=2m/s2

工件以2m/s2加速度运行的位移x2=l-x1=6.25m

设这段位移所需时间为t2,依有

解得:,(舍去)

故工件由A到B的时间t=t1+t2=1.5s。

变式六当传送带以5m/s速度向上运动时,如图5所示,工件相对传送带向下运动,所以工件所受滑动摩擦力方向始终沿传送带向上,工件一直向下匀加速运动,工件的加速度

依,有

故工件由A到B的时间t=2.7s。

变式七本题若求工件在传送带上滑过的痕迹长L是多少?

由题意可知:痕迹长等于工件相对传送带滑过的距离。

依几何关系:痕迹长L=传送带对地的距离x-工件对地的距离x1;工件匀加速运动的时间内传送带匀速运动的位移x1;工件匀加速运动的位移即L=vt1-x1=(5×1-2.5)m=2.5m。

变式八如图6所示,水平传送带AB长l=8.3m,质量为M=1kg的木块随传送带一起以v1=2m/s的速度向左匀速运动(传送带的传送速度恒定),木块与传送带间的动摩擦因μ=0.5.当木块运动至最左端A点时,一颗质量为m=20g的子弹以v0=300m/s水平向右的速度正对射入木块并穿出,穿出速度v=50m/s,以后每隔1s就有一颗子弹射向木块,设子弹射穿木块的时间极短,且每次射入点各不相同,g取10m/s2.求:

(1)在被第二颗子弹击中前,木块向右运动离A点的最大距离?

(2)木块在传达带上最多能被多少颗子弹击中?

(3)从第一颗子弹射中木块到木块最终离开传送带的过程中,子弹、木块和传送带这一系统产生的热能是多少?

解析(1)第一颗子弹射入木块过程中动量守恒

mv0-MV1=mv+MV1′

解得:

木块向右作减速运动加速度

木块速度减小为零所用时间

解得t1=0.6s<1s

所以木块在被第二颗子弹击中前向右运动离A点最远时,速度为零,移动距离为

解得s1=0.9m.

(2)在第二颗子弹射中木块前,木块再向左作加速运动,时间t2=1s-0.6s=0.4s

速度增大为v2=at2=2m/s(恰与传送带同速)

向左移动的位移为

所以两颗子弹射中木块的时间间隔内,木块总位移s0=s1-s2=0.5m方向向右

第16颗子弹击中前,木块向右移动的位移为s=15×0.5m=7.5m

第16颗子弹击中后,木块将会再向右先移动0.9m,总位移为0.9m+7.5m=8.4m>8.3m 木块将从B端落下.

所以木块在传送带上最多能被16颗子弹击中.

(3)第一颗子弹击穿木块过程中产生的热量为

木块向右减速运动过程中板对传送带的位移为

产生的热量为

木块向左加速运动过程中相对传送带的位移为

产生的热量为

第16颗子弹射入后木块滑行时间为t3有

解得t3=0.4s

木块与传送带的相对位移为s=v1t3+0.8

产生的热量为

全过程中产生的热量为Q=15(Q1+Q2+Q3)+Q1+Q4

解得Q=14155.5J

通过以上几个变式问题的分析,传送带问题的方方面面就有了一个比较全面的了解。如果我们平常在专题教学和训练时,能够将一个有代表性的问题进行发散、挖掘、变化、创新,一定能取得很好的复习效果。

高中物理传送带问题分类解析

传 送 带 问 题 分类 解析 传送带是运送货物的一种省力工具,在装卸运输行业中有着广泛的应用,只要稍加留心,在工厂、车站、机场、装卸码头随处可见繁忙运转的传送带.近年来“无论是平时训练还是高考,均频繁地以传送带为题材命题”,体现了理论联系实际,体现了把物理知识应用于日常生活和生产实际当中.本文收集、整理了传送带相关问题,并从两个视角进行分类剖析:一是从传送带问题的考查目标(即:力与运动情况的分析、能量转化情况的分析)来剖析;二是从传送带的形式来剖析. 一、传送带问题中力与运动情况分析 传送带的试题以力和运动的关系为多见,有水平方向的,有倾斜方向的,也有水平和倾斜两个方向相结合的,还有变形的传送带.在处理传送带上的力和运动的关系时,有依据物体的受力情况,判断物体的运动性质;也有依据物体的运动性质,去求解物体的受力情况. 1、水平传送带上的力与运动情况分析 例1 水平传送带被广泛地应用于车站、码头,工厂、车间。如图所示为水平传送带装置示意图,绷紧的传送带AB 始终保持v 0=2 m/s 的恒定速率运行,一质量为m 的工件无初速度地放在A 处,传送带对工件的滑动摩擦力使工件开始做匀加速直线运动,设工件与传送带间的动摩擦因数为μ=0.2 ,AB 的之间距离为L =10m ,g 取10m/s 2 .求工件从A 处运动到B 处所用的时间. 分析 工件无初速度地放在传送带上,由于传送带以2 m/s 的恒定速度匀速运动,工件在传送带上受到传送带给予的滑动摩擦力作用做匀加速运动,当工件加速到与传送带速度相等时,如果工件没有滑离传送带,工件在传送带上再不相对滑动,两者一起做匀速运动. 解答 设工件做加速运动的加速度为a ,加速的时间为t 1 ,加速运动的位移为l ,根据牛顿第二定律,有:μmg=ma 代入数据可得:a =2 m/s 2 工件加速运动的时间t 1= a v 0 代入数据可得: t 1=1s

运动与力的关系专题之传送带问题(典型例题分析+专项训练)附详细解析

牛顿第二定律的运用之传送带问题 一、传送带水平放,传送带以一定的速度匀速转动,物体轻放在传送带一端,此时物体可能经历两个过程——匀加速运动和匀速运动。 【例题1】在民航和火车站可以看到用于对行李进行安全检查的水平传送带,当旅客把行李放到传送带上时,传送带对行李的摩擦力使行李开始运动,最后行李随传送带一起前进,设传送带匀速前进的速度为0.6m/s,质量为4.0kg的皮箱在传送带上相对滑动时,所受摩擦力为24N,那么,这个皮箱无初速地放在传送带上后,求: (1)经过多长时间才与皮带保持相对静止? (2)传送带上留下一条多长的摩擦痕迹? 【答案】分析:(1)行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动 (2)传送带上对应于行李最初放置的一点通过的位移与行李做匀加速运动直至与传送带共同运动时间内通过的位移之差即是擦痕的长度 解答:解:(1)设皮箱在传送带上相对运动时间为t,皮箱放上传送带后做初速度为零的匀加速直线运动,由牛顿运动定律: 皮箱加速度:a==m/s2=6m/s2 由v=at 得t==s=0.1s (2)到相对静止时,传送带带的位移为s1=vt=0.06m 皮箱的位移s2==0.03m 摩擦痕迹长L=s1--s2=0.03m(10分) 所以,(1)经0.1s行李与传送带相对静止 (2)摩擦痕迹长0.0.03m 二、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的最低端,只

要物体与传送带之间的滑动摩擦系数μ≥tanθ,那么物体就能被向上传送。此时物体可能经历两个过程——匀加速运动和匀速运动。 【例题2】如图2—4所示,传送带与地面成夹角θ=37°,以 10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量 m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送 带从A→B的长度L=50m,则物体从A到B需要的时间为多少? 解:物体放上传送带后,开始一段时间t1内做初速度为0的匀加速直线运动,对小物体受力分析如下图所示: 可知,物体所受合力F合=f-Gsinθ 又因为f=μN=μmgcosθ 所以根据牛顿第二定律可得: 此时物体的加速度 a===m/s2=1.2m/s2 当物体速度增加到10m/s时产生的位移 x===41.67m 因为x<50m 所以=8.33s 所以物体速度增加到10m/s后,由于mgsinθ<μmgcosθ,所以物体将以速度v做匀速直线运动 故匀速运动的位移为50m-x,所用时间

(完整版)传送带问题(教案)

第三章牛顿运动定律 传送带问题 【教学目标】 1.知识与技能 (1)理解传送带问题; (2)学会运用牛顿运动定律解决传送带问题和其它实际问题。2.过程与方法 (1)运用“五段式”教学法,以问题链的形式由浅到深,引导学生自主思考,加深对牛顿运动定律的理解。 (2)通过合作交流、自主探究,培养学生运用物理规律解决实际问题的能力。 3.情感态度价值观 (1)通过对传送带问题的学习,感受物理源于生活服务于生活的理念。 (2)通过对传送带问题的学习,感受生活中的物理,激发学生运用物理规律解决生活问题的激情和信念,激发其创造性。 【教学重点】 运用牛顿第二定律判定物块在传送带上的运动状态 【教学难点】 相对位移(划痕)的计算 【课时安排】 1课时

【教学过程】 1.创设情境,提出问题。 情境引入:飞机场、火车站、汽车站都有安全检查仪,其装置可以简化成如右图所示的一个传送带。 提出问题:人在传送带A点把行李放在以恒定速度V运行的传送带上。人同时也以速度V匀速前进,行李和人谁先到达B点? 2.问题引导,自主探究。 (1)传送带做什么运动?人做什么运动?行李向哪边运动?为什么? 学生:传送到做匀速直线运动,人做匀速直线运动。通过受力分析知道,行李受到水平向右的摩擦力。行李向右运动。 (2)行李开始做什么性质的运动?行李会一直这样运动下去吗?行李可能的最大速度是多少? 学生:行李F合=μmg,且为恒力。根据牛顿第二定律,得a=μg。行李向右做匀加速直线运动。因为当行李速度等于传送带速度时,行李和传送带达到相对静止,摩擦力消失,行李和传送带以匀速运动的速度共同做匀速直线运动。 (3)行李达到最大速度之前的运动情况:V 0、V、a、t、X。 AB V

传送带模型 与摩擦生热相关的功能关系问题

传送带模型 1.水平传送带模型 项目图示滑块可能的运动情况 情景1(1)可能一直加速 (2)可能先加速后匀速 情景2(1)v0>v时,可能一直减速,也可能先减速再匀速 (2)v0v,返回时速度为v;当v0

传送带长度 滑块在传送带上的运动情景 滑块运动情况 滑块运动的v-t 图像 滑块运动的时间 传送带不够长 滑块一直做匀加速 22 1 at s = g s a s t μ22==得: 传送带刚够长 滑块一直做匀加速 22 1at s = g s a s t μ22== 得: 传送带足够长 滑块先做匀加速后匀速 g v a v t μ01== a v s 221=v s s t 1 2-= 21t t t += 2.有初速度的滑块在水平传送带上的运动情况分析 传送带长度 滑块在传送带上的运动情景 滑块运动情况 滑块运动的v-t 图像(v 1v 0) 反向 滑块运动情况 滑块运动的v-t 图像 传送带不够 长 滑块一直做匀加速 滑块一直做匀减速 传送带刚够 长 滑块一直做匀加速 滑块一直做匀减速 传送带足够 长 滑块先做匀加速后匀速 先做匀减速 后反向匀加速至v1(v1v0) 3.无初速度的滑块在倾斜传送带上的运动情况分析 4.有初速度的滑块在倾斜传送带上的运动情况分析 传送带长度 滑块在传送带上的运动情景 滑块运动情况 滑块运动的v-t 图像 传送带不够长 滑块一直做匀加速 传送带刚够长 滑块一直做匀加速 传送带足够长 滑块先做匀加速后匀速 传送带长度 滑块在传送带上的运动情景 同向速度的滑块在倾斜传送带上(v1v0) 反向 滑块运动的v-t 图像 传送带不够长 滑块一直做匀加速 传送带刚够长 滑块一直做匀加速 传送带足够长 滑块先做匀加速后匀速 v t v v t v t v t v t v v t v t v t v t v v v t v t

高考板块模型及传送带问题 压轴题【含详解】

如图所示,长L=1.5 m,高h=0.45 m,质量M=10 kg的长方体木箱,在水平面上向右做直线 运动.当木箱的速度v0=3.6 m/s时,对木箱施加一个方向水平向左的恒力F=50 N,并同时将一个质量m=l kg的小球轻放在距木箱右端的P点(小球可视为质点,放在P点时相对于地 面的速度为零),经过一段时间,小球脱离木箱落到地面.木箱与地面的动摩擦因数为0.2,其他摩擦均不计.取g=10 m/s2.求: ⑴小球从离开木箱开始至落到地面所用的时间; ⑵小球放到P点后,木箱向右运动的最大位移; ⑶小球离开木箱时木箱的速度. 【解答】:⑴设小球从离开木箱开始至落到地面所用的时间为t,由于 ,① 则s.② ⑵小球放到木箱后相对地面静止,木箱的加速度为m/s2.③) 木箱向右运动的最大位移为m ④ ⑶x1<1 m,故小球不会从木箱的左端掉下. 木箱向左运动的加速度为m/s2⑤ 设木箱向左运动的距离为x2时,小球脱离木箱m ⑥ 设木箱向左运动的时间为t2,由,得 s ⑦ 小球刚离开木箱瞬间,木箱的速度方向向 左, 大小为m/s ⑧ 如图所示,一质量为m B = 2 kg的木板B静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B右端的上表面之间有一段小圆弧平滑连接),轨道与水平面的夹角θ= 37°.一质量也为m A = 2 kg的物块A由斜面轨道上距轨道底端x0 = 8 m处静止释放,物块A刚好没有从木板B的左端滑出.已知物块A与斜面轨道间的动摩擦因数为μ1 = 0.25,与木板B上表面间的动摩擦因数为μ2 = 0.2,sinθ = 0.6,cosθ = 0.8,g 取10 m/s2,物块A可看做质点.求: ⑴ 物块A刚滑上木板B时的速度为多大? ⑵ 物块A从刚滑上木板B到相对木板B静止共经历了多长时 间? (3)木板B有多长?

(完整)高中物理必修一涉及到传送带问题解析(含练习解析)

涉及到传送带问题解析 【学习目标】 能用动力学观点分析解决多传送带问题 【要点梳理】 要点一、传送带问题的一般解法 1.确立研究对象; 2.受力分析和运动分析,逐一摩擦力f大小与方向的突变对运动的影响; ⑴受力分析: F的突变发生在物体与传送带共速的时刻,可能出现f消失、变向或变为静摩擦力,要注意这个时刻。 ⑵运动分析: 注意参考系的选择,传送带模型中选地面为参考系;注意判断共速时刻并判断此后物体与带之间的f变化从而判定物体的受力情况,确定物体是匀速运动、匀加速运动还是匀减速运动;注意判断带的长度,临界之前是否滑出传送带。 ⑶注意画图分析: 准确画出受力分析图、运动草图、v-t图像。 3.由准确受力分析、清楚的运动形式判断,再结合牛顿运动定律和运动学规律求解。 要点二、分析物体在传送带上如何运动的方法 1、分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。 具体方法是: (1)分析物体的受力情况 在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。 (2)明确物体运动的初速度 分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。 (3)弄清速度方向和物体所受合力方向之间的关系 物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。 2、常见的几种初始情况和运动情况分析 (1)物体对地初速度为零,传送带匀速运动,(也就是将物体由静止放在运动的传送带上) 物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V10是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V20是物体对地运动初速度。(以下的说明中个字母的意义与此相同) 物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。其加速度由牛顿第二定律 ,求得;

高考物理--传送带问题专题归类(含答案及解析)

传送带问题归类分析 传送带是运送货物的一种省力工具,在装卸运输行业中有着广泛的应用,本文收集、整理了传送带相关问题,并从两个视角进行分类剖析:一是从传送带问题的考查目标(即:力与运动情况的分析、能量转化情况的分析)来剖析;二是从传送带的形式来剖析.(一)传送带分类:(常见的几种传送带模型) 1.按放置方向分水平、倾斜和组合三种; 2.按转向分顺时针、逆时针转两种; 3.按运动状态分匀速、变速两种。 (二)| (三)传送带特点:传送带的运动不受滑块的影响,因为滑块的加入,带动传送带的电机要多输出的能量等于滑块机械能的增加量与摩擦生热的和。 (三)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。突变有下面三种: 1.滑动摩擦力消失; 2.滑动摩擦力突变为静摩擦力; 3.滑动摩擦力改变方向; (四)运动分析: 1.注意参考系的选择,传送带模型中选择地面为参考系; 2.判断共速以后是与传送带保持相对静止作匀速运动呢还是继续加速运动 , 3.判断传送带长度——临界之前是否滑出 (五)传送带问题中的功能分析

1.功能关系:W F =△E K +△E P +Q 。传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。 2.对W F 、Q 的正确理解 (a )传送带做的功:W F =F·S 带 功率P=F× v 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f·S 相对 (c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q= 2 mv 2 1传 。一对滑动摩擦力做的总功等于机械能转化成热能的值。而且这个总功在求法上比一般的相互作用力的总功更有特点,一般的一对相互作用力的功为W =f 相s 相对,而在传送带中一对滑动摩擦力的功W =f 相s ,其中s 为被传送物体的实际路程,因为一对滑动摩擦力做功的情形是力的大小相等,位移不等(恰好相差一倍),并且一个是正功一个是负功,其代数和是负值,这表明机械能向内能转化,转化的量即是两功差值的绝对值。 (六)水平传送带问题的变化类型 ) 设传送带的速度为v 带,物体与传送带之间的动摩擦因数为μ,两定滑轮之间的距离为L ,物体置于传送带一端的初速度为v 0。 1、v 0=0, v 0物体刚置于传送带上时由于受摩擦力作用,将做a =μg 的加速运动。 假定物体从开始置于传送带上一直加速到离开传送带,则其离开传送带时的速度为v = gL μ2,显然有: v 带< gL μ2 时,物体在传送带上将先加速,后匀速。 v 带 ≥ gL μ2时,物体在传送带上将一直加速。 2、 V 0≠ 0,且V 0与V 带同向 (1)V 0< v 带时,同上理可知,物体刚运动到带上时,将做a =μg 的加速运动,假定物体一直加速到离开传送带,则其离开传送带时的速度为V = gL V μ220 +,显然有: V 0< v 带< gL V μ220 + 时,物体在传送带上将先加速后匀速。 v 带 ≥ gL V μ220 + 时,物体在传送带上将一直加速。 (2)V 0> v 带时,因V 0> v 带,物体刚运动到传送带时,将做加速度大小为a = μg 的减速运动,假定物体一直减速到离开传送带,则其离开传送带时的速度为V = gL V μ220 - ,显然

传送带问题典型题解

传送带问题典型题解 摩擦力做功 A 、滑动摩擦力做功的特点: ①滑动摩擦力可以对物体做正功,也可以对物体做负功,还可以不做功。 ②相互摩擦的系统内,一对滑动摩擦力所做的功总为负值,其绝对值等于滑动摩擦力与相对位移的乘积。 B 、静摩擦力做功的特点: 1.静摩擦力可以做正功,也可以做负功,还可以不做功. 2.相互摩擦的系统内,一对静摩擦力所做功的和总是等于零. 三、传送带问题: 传送带类分水平、倾斜两种:按转向分顺时针、逆时针转两种。 ^ (1)受力和运动分析: 受力分析中的摩擦力突变(大小、方向)——发生在V 物与V 传相同的时刻; 运动分析中的速度变化——相对运动方向和对地速度变化。 分析关键是: V 物、V 带的大小与方向; mgsin θ与f 的大小与方向。 (2)传送带问题中的功能分析 ①功能关系:WF=△E K +△E P +Q ②对W F 、Q 的正确理解 (a )传送带做的功:W F =F ·S 带 功率P=F ×V 带 (F 由传送带受力平衡求得) - (b )产生的内能:Q=f ·S 相对 (c )如物体无初速,放在水平传送带上,则在整个加速过程中 物体获得的动能E K =2mv 2 1传E K , 因为摩擦而产生的热量Q 两者间有如下关系:E K =Q= 2mv 21传 难点: 1、属于易错点,突破方法是先让学生正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,让学生做到准确灵活地分析摩擦力的有无、大小和方向。 2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误。该难点应属于思维上有难度的知识点,突破方法是灵活运用“力是改变物体运动状态的原因”这个理论依据,对物体的运动性质做出正确分析,判断好物体和传送带的加速度、速度关系,画好草图分析,找准物体和传送带的位移及两者之间的关系。 3、对于匀速运动的传送带传送初速为零的物体,传送带应提供两方面的能量,一是物体动能的增加,二是物体与传送带间的摩擦所生成的热(即内能),有不少同学容易漏掉内能的转化,因为该知识点具有隐蔽性,往往是漏掉了,也不能在计算过程中很容易地显示出来,尤其是在综合性题目中更容易疏忽。突破方法是引导学生分析有滑动摩擦力做功转化为

高中物理传送带问题知识难点讲解汇总(带答案)

图2—1 弄死我咯,搞了一个多钟 传送带问题 一、难点形成的原因: 1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清; 2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误; 3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。 二、难点突破策略: (1)突破难点1 在以上三个难点中,第1个难点应属于易错点,突破方法是先让学生正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,让学生做到准确灵活地分析摩擦力的有无、大小和方向。 摩擦力的产生条件是:第一,物体间相互接触、挤压; 第二,接触面不光滑; 第三,物体间有相对运动趋势或相对运动。 前两个产生条件对于学生来说没有困难,第三个条件就比较容易出问题了。若物体是轻轻地放在了匀速运动的传送带上,那么物体一定要和传送带之间产生相对滑动,物体和传送带一定同时受到方向相反的滑动摩擦力。关于物体所受滑动摩擦力的方向判断有两种方法:一是根据滑动摩擦力一定要阻碍物体间的相对运动或相对运动趋势,先判断物体相对传送带的运动方向,可用假设法,若无摩擦,物体将停在原处,则显然物体相对传送带有向后运动的趋势,因此物体要受到沿传送带前进方向的摩擦力,由牛顿第三定律,传送带要受到向后的阻碍它运动的滑动摩擦力;二是根据摩擦力产生的作用效果来分析它的方向,物体只所以能由静止开始向前运动,则一定受到向前的动力作用,这个水平方向上的力只能由传送带提供,因此物体一定受沿传送带前进方向的摩擦力,传送带必须要由电动机带动才能持续而稳定地工作,电动机给传送带提供动力作用,那么物体给传送带的就是阻力作用,与传送带的运动方向相反。 若物体是静置在传送带上,与传送带一起由静止开始加速,若物体与传送带之间的动摩擦因数较大,加速度相对较小,物体和传送带保持相对静止,它们之间存在着静摩擦力,物体的加速就是静摩擦力作用的结果,因此物体一定受沿传送带前进方向的摩擦力;若物体与传送带之间的动摩擦因数较小,加速度相对较大,物体和传送带不能保持相对静止,物体将跟不上传送带的运动,但它相对地面仍然是向前加速运动的,它们之间存在着滑动摩擦力,同样物体的加速就是该摩擦力的结果,因此物体一定受沿传送带前进方向的摩擦力。 若物体与传送带保持相对静止一起匀速运动,则它们之间无摩擦力,否则物体不可能匀速运动。 若物体以大于传送带的速度沿传送带运动方向滑上传送带,则物体将受到传送带提供的使它减速的摩擦力作用,直到减速到和传送带有相同的速度、相对传送带静止为止。因此该摩擦力方向一定与物体运动方向相反。 若物体与传送带保持相对静止一起匀速运动一段时间后,开始减速,因物体速度越来越小,故受到传送带提供的使它减速的摩擦力作用,方向与物体的运动方向相反,传送带则受到与传送带运动方向相同的摩擦力作用。 若传送带是倾斜方向的,情况就更为复杂了,因为在运动方向上,物体要受重力沿斜面的下滑分力作用,该力和物体运动的初速度共同决定相对运动或相对运动趋势方向。 例1:如图2—1所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A →B 的长度L=16m ,则物体从A 到B 需要的时间为多少? 【审题】传送带沿逆时针转动,与物体接触处的速度方向斜向下,物体初速度为零,所以物体相对传送带向上滑动(相对地面是斜向下运动的),因此受到沿斜面向下的滑动摩擦力作用,这样物体在沿斜面方向上所受的合力为重力的下滑

高中物理传送带问题(有答案)

传送带问题 例1:一水平传送带长度为20m ,以2m /s 的速度做匀速运动,已知某物体与传送带间动摩擦因数为0.1,则从把该物体由静止放到传送带的一端开始,到达另一端所需时间为多少? 解:物体加速度a=μg=1m/s2,经t1=v/a =2s 与传送带相对静止,所发生的位移 S1=1/2 at 12=2m,然后和传送带一起匀速运动经t2=l-s1/v =9s ,所以共需时间t=t1+t2=11s 练习:在物体和传送带达到共同速度时物体的位移,传送带的位移,物体和传送带的相对位移分别是多少?(S1=1/2 vt1=2m ,S2=vt1=4m ,Δs=s2-s1=2m ) 例2:如图2—1所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A →B 的长度L=16m ,则物体从A 到B 需要的时间为多少? 【解析】物体放上传送带以后,开始一段时间,其运动加速度 2m/s 10cos sin =+=m mg mg a θ μθ。 这样的加速度只能维持到物体的速度达到10m/s 为止,其对应的时间和位移分别为: ,1s 10 101s a v t === m 52 21==a s υ<16m 以后物体受到的摩擦力变为沿传送带向上,其加速度大小为(因为mgsin θ>μmgcos θ)。 22m/s 2cos sin =-=m mg mg a θμθ。 设物体完成剩余的位移2s 所用的时间为2t , 则2222022 1t a t s +=υ, 11m= ,10222t t + 解得:)s( 11 s, 1 2212舍去或-==t t , 所以:s 2s 1s 1=+=总t 。

传送带问题解题技巧

传送带问题 传送带问题是高中物理习题中较为常见的一类问题,因其涉及的知识点较多(力的分析、运动的分析、牛顿运动定律、功能关系等),包含的物理过程比较复杂,所以这类问题往往是习题教学的难点,也是高考考查的一个热点。下面以一道传送带习题及其变式题为例,谈谈这类题目的解题思路和突破策略。 题目如图1所示,水平传送带以5m/s的恒定速度运动,传送带长l=7.5m,今在其左端A将一工件轻轻放在上面,工件被带动,传送到右端B,已知工件与传送带间的动摩擦因数μ=0.5,试求:工件经多少时间由传送带左端A运动到右端B?(取g=10m/s2) 解析工件被轻轻放在传送带左端,意味着工件对地初速度v0=0,但由于传送带对地面以v=5m/s向右匀速运动,所以工件相对传送带向左运动,故工件受水平向右的滑动摩擦力作用,即:F f=μF N=μmg。 依牛顿第二定律,工件加速度m/s2,a为一恒量,工件做初速度为零的匀加速直线运动,当工件速度等于传送带速度时,摩擦力消失,与传送带保持相对静止,一起向右做匀速运动,速度为v=5m/s。 工件做匀加速运动的时间s,工件做匀加速运动的位移m。 由于x1

变式二若工件以对地速度v0=5m/s滑上传送带,则工件相对传送带无运动趋势,工件与传送带间无摩擦力,所以工件做匀速运动,工件运动时间s。 变式三若工件以速度v0=7m/s滑上传送带,由于工件相对传送带向右运动,工件受滑动摩擦力水平向左,如图2所示。工件做匀减速运动,当工件速度等于传送带速度后,二者之间摩擦力消失,工件随传送带一起匀速运动。 工件做匀减速运动时间s 工件做匀减速运动的位移m 工件做匀速运动的时间s 所以工件由左端A到右端B的时间t=t1+t2=1.42s。 变式四若工件以v0=3m/s速度滑上传送带,由于v0

高中物理难点分类解析滑块与传送带模型问题(经典)

滑块—木板模型 例1 如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。 分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B一起加速的最大加速度由A决定。解答:物块A能获得的最大加速度为: .∴A、B一起加速运动时,拉力F的最大值为: . 变式1 例1中若拉力F作用在A上呢?如图2所示。 解答:木板B能获得的最大加速度为: 。∴A、B一起加速运动时,拉力F的最大值为: . 变式2 在变式1的基础上再改为:B与水平面间的动摩擦因数为

(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。 解答:木板B能获得的最大加速度为: ,设A、B一起加速运动时,拉力F的最大值为Fm,则: 解得: 例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。(g取10m/s2) 解答:物体放上后先加速:a1=μg=2m/s2,此时小车的加速度 为: ,当小车与物体达到共同速度时:v共=a1t1=v0+a2t1,解得:t1=1s ,v共=2m/s,以后物体与小车相对静止: (∵ ,物体不会落后于小车)物体在t=1.5s内通过的位移为:s= a1t12+v共(t-t1)+

a3(t-t1)2=2.1m 练习1 如图4所示,在水平面上静止着两个质量均为m=1kg、长度均为 L=1.5m的木板A和B,A、B间距s=6m,在A的最左端静止着一个质量为M=2kg的小滑块C,A、B与C之间的动摩擦因数为μ1=0.2,A、B与水平地面之间的动摩擦因数为μ2=0.1。最大静摩擦力可以认为等于滑动摩擦力。现在对C施加一个水平向右的恒力F=4N,A和C开始运动,经过一段时间A、B相碰,碰后立刻达到共同速度,C瞬间速度不变,但A、B并不粘连,求:经过时间t=10s时A、B、C 的速度分别为多少?(已知重力加速度g=10m/s2) 解答:假设力F作用后A、C一起加速,则: ,而A能获得的最大加速度为: ,∵ ,∴假设成立,在A、C滑行6m的过程中: ,∴v1=2m/s, ,A、B相碰过程,由动量守恒定律可得:mv1=2mv2 ,∴v2=1m/s,此后A、C相对滑动: ,故C匀速运动;

【强烈推荐】传送带问题与功能关系

对于匀速运动的传送带传送初速为零的物体,传送带应提供两方面的能量,一是物体动能的增加,二是物体与传送带间的摩擦所生成的热(即内能),有不少同学容易漏掉内能的转化,因为该知识点具有隐蔽性,往往是漏掉了,也不能在计算过程中很容易地显示出来,尤其是在综合性题目中更容易疏忽。突破方法是引导学生分析有滑动摩擦力做功转化为内能的物理过程,使“只要有滑动摩擦力做功的过程,必有内能转化”的知识点在学生头脑中形成深刻印象。 一个物体以一定初速度滑上一粗糙平面,会慢慢停下来,物体的动能通过物体克服滑动摩擦力做功转化成了内能,当然这个物理过程就是要考查这一个知识点,学生是绝对不会犯错误的。 质量为M的长直平板,停在光滑的水平面上,一质量为m的物体,以初速度v0滑上长板,已知它与板间的动摩擦因数为μ,此后物体将受到滑动摩擦阻力作用而做匀减速运动,长板将受到滑动摩擦动力作用而做匀加速运动,最终二者将达到共同速度。其运动位移的关系如图2—9所示。 图2—9 该过程中,物体所受的滑动摩擦阻力和长板受到滑动摩擦动力是一对作用力和反作用力, W物=—μmg·x物 W板=μmg·x板 很显然x物>x板,滑动摩擦力对物体做的负功多,对长板做的正功少,那么物体动能减少量一定大于长板动能的增加量,二者之差为ΔE=μmg(x物—x板)=μmg·Δx,这就是物体在克服滑动摩擦力做功过程中,转化为内能的部分,也就是说“物体在克服滑动摩擦力做功过程中转化成的内能等于滑动摩擦力与相对滑动路程的乘积。”记住这个结论,一旦遇到有滑动摩擦力存在的能量转化过程就立即想到它。 再来看一下这个最基本的传送带问题: 图2—10 物体轻轻放在传送带上,由于物体的初速度为0,传送带以恒定的速度运动,两者之间有相对滑动,出现滑动摩擦力。作用于物体的摩擦力使物体加速,直到它的速度增大到等于传送带的速度,作用于传送带的摩擦力有使传送带减速的趋势,但由于电动机的作用,保持了传送带的速度不变。尽管作用于物体跟作用于传送带的摩擦力的大小是相等的,但物体与传送带运动的位移是不同的,因为两者之间有滑动。如果物体的速度增大到等于传送带的速度经历的时间为t,则在这段时间内物体运动的位移小于传送带运动的位移。在这段时间内,传送带克服摩擦力做的功大于摩擦力对物体做的功(这功转变为物体的动能),两者之差即为摩擦发的热。所谓传送带克服摩擦力做功,归根到底是电动机在维持传送带速度不变的过程中所提供的。

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律 滑块与传送带专题 一“滑块—滑板”模型 1.模型特点 上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动. 2.两种位移关系 滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长. 3.解题思路 处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系. (1) 加速度关系 如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件. (2) 速度关系 滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况. (3) 位移关系 滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了. 例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:

(1)B与木板相对静止时,木板的速度; (2)A、B开始运动时,两者之间的距离. 解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有 F f1=μ1m A g ① F f2=μ1m B g ② F f3=μ2(m+m A+m B)g ③ 由牛顿第二定律得 F f1=m A a A ④ F f2=m B a B ⑤ F f2-F f1-F f3=ma1 ⑥ 设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有 v1=v0-a B t1 ⑦ v1=a1t1 ⑧ 联立①②③④⑤⑥⑦⑧式,代入已知数据得 v1=1 m/s,方向与B的初速度方向相同⑨ (2)在t1时间间隔内,B相对于地面移动的距离为 s B=v0t1-1 2a B t 2 1⑩ 设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有 F f1+F f3=(m B+m)a2 ? 由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式, 对木板有v2=v1-a2t2 ? 对A有v2=-v1+a A t2 ?

传送带问题专题讲解

传送带问题专题讲解 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

传送带问题专题讲解 知识特点 传送带上随行物受力复杂,运动情况复杂,功能转换关系复杂。 基本方法 解决传送带问题要特别注重物理过程的分析和理解,关键是分析传送带上随行物时一般以地面为参照系。 1、对物体受力情况进行正确的分析,分清摩擦力的方向、摩擦力的突变。当传送带和随行物相对静止时,两者之间的摩擦力为恒定的静摩擦力或零;当两者由相对运动变为速度相等时,摩擦力往往会发生突变,即由滑动摩擦力变为静摩擦力或变为零,或者滑动摩擦力的方向发生改变。 2、对运动情况进行分析分清物体的运动过程,明确传送带的运转方向。 3、对功能转换关系进行分析,弄清能量的转换关系,明白摩擦力的做功情况,特别是物体与传送带间的相对位移。 一、基础练习 【示例1】一水平传送带长度为20m,以2m/s的速度做匀速运动,已知某物体与传送带间动摩擦因数为,则从把该物体由静止放到传送带的一端开始,到 V 达另一端所需时间为多少 【讨论】 1、在物体和传送带达到共同速度时物体的位移,传送带的位移,物体和传送带的相对位移分别是多少

2、若物体质量m=2Kg ,在物体和传送带达到共同速度的过程中传送带对物体所做的功,因摩擦而产生的热量分别是多少 情景变换一、当传送带不做匀速运动时 【示例2】一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。初始时,传送带与煤块都是静止的。现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动。经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。 情景变换二、当传送带倾斜时 【示例3】如图所示倾斜的传送带以一定的速度逆时针运转,现将一物体轻放在传送带的顶端,此后物体在向下运动的过程中。 ( ) A 物体可能一直向下做匀加速运动,加速度不变 B.物体可能一直向下做匀速直线运动 C.物体可能一直向下做匀加速运动,运动过程中加速度改 变 D.物体可能先向下做加速运动,后做匀速运动 情景变换三、与功和能知识的联系 【示例4】、如图所示,电动机带着绷紧的传送带始终保持v 0=2m/s 的速度运行,传送带与水平面间的夹角为30?,现把一个质量为m=10kg 的工件轻放在传送带上,传送到h=2m 的平台上,已知工件与传送带之间的动摩擦因数为?=3/2 ,除此之外,不计其它损

“传送带”模型问题专题分析

“传送带”模型问题专题分析 一.模型特点: 1.水平传送带 情景一 物块可能运动情况: (1)可能一直加速 (2)可能先加速后匀速 情景二 (1)v0>v时,可能一直减速,也可能先减速再匀速 (2)v0v返回时速度为v,当v0

高中物理难点分类解析滑块与传送带模型问题(经典)

滑块—木板模型 例1如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。 分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B 一起加速的最大加速度由A决定。解答:物块A能获得的最大加速度为:.∴A、B 一起加速运动时,拉力F的最大值为:. 变式1例1中若拉力F作用在A上呢如图2所示。解答:木板B能获得的最大加速度为:。∴A、B一起加速运动时,拉力F的最大值为: . 变式2在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。 解答:木板B能获得的最大加速度为:,设A、B一起加速运动时,拉力F的最大值为F m,则: 解得: 《 例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒 力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。(g 取10m/s2) 解答:物体放上后先加速:a1=μg=2m/s2,此时小车的加速度为:,当小车与物体达到共同速度时:v共=a1t1=v0+a2t1,解得:t1=1s ,v共=2m/s,以后物体与小车相对静止: (∵,物体不会落后于小车)物体在t=1.5s内通过的位移为:s= a1t12+v共(t-t1)+ a3(t-t1)2=2.1m

练习1如图4所示,在水平面上静止着两个质量均为m=1kg、长度均为L=1.5m的木板A和B,A、B 间距s=6m,在A的最左端静止着一个质量为M=2kg的小滑块C,A、B与C之间的动摩擦因数为μ1=0.2,A、B与水平地面之间的动摩擦因数为μ2=0.1。最大静摩擦力可以认为等于滑动摩擦力。现在对C施加一个水平向右的恒力F=4N,A和C开始运动,经过一段时间A、B相碰,碰后立刻达到共同速度,C瞬间速度不变,但A、B并不粘连,求:经过时间t=10s时A、B、C的速度分别为多少(已知重力加速度g=10m/s2) 解答:假设力F作用后A、C一起加速,则:,而A能获得的最 大加速度为:,∵,∴假设成立,在A、C滑行6m的过程中:,∴v1=2m/s,,A、B相碰过程,由动量守恒定律可得:mv1=2mv2 ,∴v2=1m/s,此后A、C相对滑动:,故C匀速运动; ,故AB也匀速运动。设经时间t2,C从A右端滑下:v1t2-v2t2=L∴t2=1.5s,然后A、B分离,A减速运动直至停止:a A=μ2g=1m/s2,向 左,,故t=10s时,v A=0.C在B上继 续滑动,且C匀速、B加速:a B=a0=1m/s2,设经时间t4,C.B速度相 等:∴t4=1s。此过程中,C.B的相对位移为:,故C没有从B的右端滑下。然后C.B一起加速,加速度为a1,加速的时间为: ,故t=10s时,A、B、C的速度分别为0,2.5m/s,2.5m/s. $ 练习2如图5所示,质量M=1kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数,在木板的左端放置一个质量m=1kg、大小可以忽略的铁块,铁块与木板间的动摩擦因数 ,取g=10m/s2,试求: (1)若木板长L=1m,在铁块上加一个水平向右的恒力F=8N,经过多长时间铁块运动到木板的右端 (2)若在铁块上施加一个大小从零开始连续增加的水平向右的力F,通过分析和计算后。(解答略)答案如下:(1)t=1s,(2)①当F≤N时,A、B相对静止且对地静止,f2=F;,②当2N6N时,A、B发生相对滑动,N. 滑块问题 1.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=;木板右端放着一

相关主题