搜档网
当前位置:搜档网 › PKPM计算结果的分析

PKPM计算结果的分析

PKPM计算结果的分析
PKPM计算结果的分析

计算机的后处理结果,即最终打印结果指内力图、配筋图和详细的内力及配筋表(按构件编号依次输出),有抗震计算时还输出中间分析结果(如自震周期、振型、位移、底部总剪力等)设计人应认真对最终打印结果进行分析,确认无误或无异常情况后再绘制施工图,必要时应将最终确定的构件编号、构件截面和配筋数量、规格绘制成简单的平面图,供校核审定和归档用。对最终打印结果不进行分析,盲目采用其配筋直接绘制施工图的做法是不可取的,往往会造成不良的严重后果,既对工程不负责任、有不利于提高自己的设计水平。一、整体分析

一、对重力荷载作用下计算结果的分析

审查重力荷载作用下的内力图是否符合受力规律;可以利用结构底层检查竖向内外力的

平衡,即底层柱、墙在重力荷载作用下的轴力之和应等于总重量;如果结构对称、荷载对称,其结构内力图必然对称,即检查其对称性。当以上三者出现异常情况时,需要返回原始数据进行检查。

二、对风荷载作用下计算结果的分析

审查风荷载作用下的内力图和位移是否符合受力规律;可以利用结构底层检查侧向内外力的平衡,即底层柱、墙在风荷载作用下的剪力之和应等于全部风力值(需注意局部坐标与整体坐标的方向);如果结构沿竖向的刚度变化较均匀、且风荷载沿高度的变化也较均匀时,其结构的内力和位移沿高度的变化也应该是均匀的,不应有大正大负、大出大进等突变。三、对水平地震荷载作用下计算结果的分析

水平地震荷载作用下,可以利用其结果进行如同风荷载作用下的渐变性分析,但不能进行对称性分析,也不能利用结构底层进行内外力平衡的分析(因为振型组合后的内力与地震作用力不再平衡)。水平地震荷载作用下,对其计算结果的分析重点如下。

1.结构的自振周期

对一般的工程,结构的自振周期在考虑折减系数后应控制在一定的范围内。如结构的基本自振周期(即第一周期)大致为:

框架结构T1≈ ( 0.12~0.15) n

框-剪和框-筒结构T1≈ ( 0.08~0.12) n

剪力墙和筒中筒结构T1≈(0.04~0.06)n

式中,n为建筑物的总层数。

第二周期、第三周期与第一周期的关系大致为:

T2≈(1/3~1/5)T1

T3≈(1/5~1/7)T1

周期偏长,说明结构过“软”、所承担的地震剪力偏小,应考虑抗侧力构件(柱、墙)截面太小或布置不当;如周期偏短,说明结构过“刚”、所承担的地震力偏大,应考虑抗侧力构件截面太大或墙的布置太多或墙的刚度太大(宜设结构洞予以减小其刚度)。如果抗侧力构件的截面尺寸、布置都很正常,无特殊情况而自振周期偏离太远,则应检查输入数据是否有错误。对20层以上的高层建筑结构,如果一切正常,其基本自振周期往往在2.0~3.0之间(叫次长周期),则需要增加地震力(调整系数取1.5~1.8)重新进行计算。

以上的判断是根据平移振动振型分解方法得出来的。考虑弯扭耦连振动时情况要复杂得

多,可以挑出与平移振动相对应的自振周期来进行上述比较,至于扭转周期的合理数值,由于缺乏经验尚难提出。

2.各振型曲线

对于竖向刚度和质量比较均匀的结构,如果计算正常,其振型曲线应是比较连续光滑的曲线(见图5-4),不应有大进大出、大的凹凸曲折。

三、剪力墙结构的位移曲线,具有悬臂弯曲梁的特征,位移越往上增长越快,呈外弯型曲线;

四、框架结构的位移曲线,具有剪切梁的特征,位移越往上增长越慢,呈内收型曲线;

五、-剪结构及框-筒结构的位移曲线,介于以上两者之间,呈反S型曲线、中部接近为直线。在竖向刚度较均匀的情况下,以上三种曲线均应连续光滑、无突然凹凸变化和明显的折点。

六、层间水平位移的限值

抗震规范提出的层间弹性位移角和层间弹塑性位移角限值,实际上是控制层间水平位移不得过大,避免带来结构的P-△效应。两个阶段的层间位移要分别满足以下要求:

ΔUe≤[θe]H

ΔUp≤[θp]H

式中ΔUe—多于地震作用标准之产生的层间弹性位移;

ΔUp—罕遇地震作用下按弹性分析产生的层间位移;

[θe]—层间弹性位移角限制;

[θp]—层间弹塑性位移角限制;

H—第二阶段时指薄弱层(部位)的层高;

由于规范对层间弹性位移角限制放松较多,所以第一阶段抗震的变形验算往往容易满足。而对结构的自振周期、各振型曲线、水平位移特征和结构承受的地震力大小,规范并未提出定性或定量的要求,于是不少设计人会造成一种误解,认为满足层间弹性位移角限制即为合理的结构。事实上,这种理解是片面的。

因为抗震计算中,自振周期、水平位移、地震力大小均与结构的刚度有关。结构刚度偏小时,自振周期偏长,水平地震力也偏小,水平位移也偏小,虽然位移也有可能在限制范围内,但由于承担的地震力太小,结构并不安全。

5.地震力大小

结构承担的地震力大小可用底部总剪力与结构总质量之比(剪质比)来衡量。

对抗侧力构件布置、截面尺寸都比较正常的结构,其剪质比在下述范围内:

8度近震,Ⅱ类场地Fek/G≈0.03~0.06

7度近震,Ⅱ类场地Fek/G≈0.015~0.03

式中 Fek ——结构总水平地震作用标准值

G——结构等效总重力荷载(即结构总质量)。

层数多、刚度小的结构,其剪质比偏小,如小于上述范围或接近最小值,宜适当增大构件截面或提高结构刚度,从而增大地震力以保证结构的安全;反之,地震力过大,宜适当渐低结构刚度,以取得合理的经济技术指标。

对框剪结构,还要分析剪力墙部分的承受的地震倾覆力矩是否大于结构总地震倾覆力矩的50%,以检查其框架部分的抗震等级确定的是否合适。

宜绘出结构的整体弯矩图和剪力图,分析沿高度的受力状况。

七、构件分析

八、定性分析

定性分析的目的,是在整体分析的基础上进一步判断计算结果是否大体正常。一般来说,设计较正常的结构,基本上应符合以下的规律:

九、柱、墙的轴力设计值绝大部分为压力;

一〇、柱的箍筋大部分为构造配筋;

一一、墙的竖向和水平分布钢筋大部分为构造配筋;

一二、梁基本上无超筋(连系梁除外);

一三、柱的轴压比在限值以内,并有一定的余量;

一四、除个别墙段外,剪力墙截面符合抗剪要求;

一五、梁截面不满足抗剪要求或抗扭超限的情况不多。

如计算结果出现严重错误,应考虑以下原因并采取相应的措施:

一六、采用解密盗版程序;

一七、几何数据或荷载数据错误;

一八、复杂开洞剪力墙和框支剪力墙的上下连接不恰当,出现过大的拐角刚域;一九、对竖向体型复杂的框剪结构进行了框架剪力调整。

有的计算结果出现所谓的“异常”情况,这并非是计算错误,而是三维空间分析方法与简化计算方法的差别造成的。例如:

二〇、次梁端部负弯矩。这是因为三维空间分析时考虑了次梁与主梁的共同作用,按其刚度关系、位移协调条件计算得出的,反映了次梁的实际受力状况。而手工计算时,次梁两端按铰支处理,无负弯矩。

二一、主梁的受扭。按简化平面框架计算时,所有内力均在框架平面之内,所以主梁的扭矩无法考虑;实际上梁是空间受力的,次梁、悬臂梁的根部弯矩均对主梁产生扭矩。二二、悬臂梁的正弯矩。手工计算悬臂梁时只有负弯矩;而空间计算时,当上下几层悬臂梁端有小柱连接而构成小框架时,必然出现悬臂梁的正弯矩。

二三、柱的轴力。手工计算时,柱的轴力是按楼面荷载的面积大小求得的;而空间分析时,由于梁的刚度影响,柱的轴力要在各柱之间重新分配,并不等于前者计算得到的轴力。一般的计算结果表明,中柱重新分配的轴力要比按荷载面积求得的轴力小,边、角柱重新分配的轴力要大于按荷载面积求得的轴力。

二四、临近剪力墙的框架柱轴力。考虑框剪结构的空间整体作用后,框架柱的一部分轴力邀传递到邻近的剪力墙上,因此该柱的轴力就会变小。柱靠墙越近,梁的刚度越大,这一现象越明显;而采用简化的平面框架分析方法时,各片框架是独立计算的,框架柱不存在轴力减小的问题。

定量分析

定量分析的目的,是为了判断构件的配筋是否合理,有无钢筋超限情况,是否有遗留

问题需要处理。(详见第五节构件配筋的确定)

二五、遗留问题的处理

二六、所有梁的正负配筋必须考虑活荷载最不利分布的影响,乘以1.2的增大系数(软件如已考虑其影响着除外)。地震区框架梁的负钢筋可不再增加。

二七、对空间分析的平面交叉梁,其主梁正钢筋应在乘以1.2~1.5的增大系数(不含上述活荷载不利分布影响的增大系数);其次梁的负钢筋不得小于次梁的正钢筋。二八、凡净跨〉7米的大梁,一般要进行挠度和裂缝宽度的计算并满足规范的有关规定;净跨≤7米的大梁,可不进行挠度和裂缝宽度的计算,但仍应酌情增加其配筋量。二九、悬挑梁的根部钢筋,如悬臂端构造柱按不传力计算,其负钢筋应乘以1.2~1.8的增大系数(下层取1.8,以上递减);如悬臂端构造柱按传力计算时,应配置正钢筋。

三〇、任何三维空间程序都不可能是包罗万象的,凡程序未加考虑的构件和部位且影响安全时均应进行补充计算(采用小构件计算程序或手算)如折线式楼梯、螺旋式楼梯、圆弧梁、阳台、雨篷、挑檐、井式楼盖、转换层大梁、局部受压、节点核心区抗剪、牛腿等。三一、柱下独立基础、条形基础、十字交叉梁基础、筏形基础、箱形基础和人防地下室都有相应的程序可供采用。但取上部结构传来的内力时,应考虑下述问题:

三二、基础顶面上所受的内力(轴力、弯矩和剪力)应取同一种工况作用的组合内力进行设计,再取另一种(或几种)工况作用的组合内力进行验算,按最不利的结果确定基础构件的截面和配筋。不要误用最大轴力、最大弯矩、最大剪力的打印结果进行设计,因为它是不同工况产生的最大内力,不可能同时出现。

三三、直接按荷载面积求得的基础顶面(即柱脚)轴力来进行基础设计,对边角柱是不安全的。

三四、直接按剪力墙荷载面积求得的墙基础顶面(即墙底部)的轴力来进行基础设计,也是不安全的,应适当增大墙底部的轴力。

三五、主次梁相交处的无柱连接点,对次梁端部负钢筋不应少于跨中正钢筋,对主梁不应出现跨中负钢筋。

三六、框架梁的配筋

三七、梁的纵向钢筋

三八、梁应处于单筋受力状态。如果计算结果为双筋受力状态,应加大梁截面尺寸,按其内力重新计算求得配筋面积。

三九、梁不设弯起钢筋,应为弯起钢筋起不到双向抗剪的作用,从而不能保证水平地震荷载作用下梁端塑性铰区段的转动能力。

四〇、梁的纵向受拉钢筋的最小配筋率:一级抗震支座为0。4%、跨中为0。3%;抗震二级时支座为0。3%、跨中为0。25%;抗震三、四级时,支座为0.25%,跨中为0.2%。四一、梁端纵向受拉钢筋的配筋率不应大于2.5%,且混凝土受压区高度与有效高度之比,抗震一级不应大于0.25,抗震二、三级不应大于0。35%。

四二、受牛纵向钢筋应沿梁截面周边均匀布置,一般可在上下两边各配置15%~20%,左右两边各配置35%~30%。

四三、梁端截面的底部和顶面配筋量之比,除按计算确定外,抗震一级时不应小于0.5,抗震二、三级时不应小于0。3。

四四、梁内贯通中柱的各根纵向钢筋,抗震一、二级时不宜大于柱截面高度的1/20。四五、梁顶面和底面至少有两根直径不小于14mm的通常钢筋伸入支座,其面积不得小于两端相应底面和顶面配筋中最大值的1/4,同时其配筋率不得小于纵向受拉钢筋的最小配筋率。

四六、当梁的截面高度超过700时,在梁的两侧面每隔300~400mm,应设置直径不小于10mmd的纵向构造钢筋(即腰筋)。位于梁两侧的受扭纵向钢筋可兼作腰筋。

四七、梁顶面纵向钢筋的净距,不应小于30mm和1.5d(d为钢筋的最大直径);梁底面纵向钢筋的净距,不应小于25mm和d。当梁底面纵向钢筋配置多于两层时,其上层钢筋水平方向的中距应比上面两层钢筋的中距大一倍。

四八、的箍筋

四九、梁端加密区的箍筋配置最低要求

五〇、箍筋的最小直径:抗震一级为φ10、二、三级为φ8、四级为φ6。

五一、箍筋的最大间距:抗震一二级为100mm;三四级为150mm。

五二、箍筋的肢距:抗震一二级不应大于200mm,三四级不宜大于250mm.

五三、承受地震力为主的框架梁,沿梁全长的最小配箍率:抗震一级为0.035fc/fyv,抗震二级为0.030fc/fyv,抗震三四级为0.025fc/fyv,式中fc和fyv分别为混凝土和箍筋强度设计值。

五四、电算时梁箍筋的间距按梁端加密区箍筋间距输入,所得计算结果亦为梁端箍筋的计算值,此时计算剪力已考虑梁端的“强剪弱弯”放大系数,故梁端箍筋计算值小于构造配箍时,可按上述构造要求配箍,当梁端箍筋为计算配置时,必须按计算配足,且满足上述的构造要求。

五五、梁的中段配箍要求

五六、当梁端为构造配箍时,梁中段配箍可适当减小(一般箍筋直径和肢数不变,箍筋间距可加大一倍,但不应小于沿梁全长的最小配箍率。

五七、当梁端为计算配箍时且梁剪力沿跨长变化不大时,一般情况下中段配箍不予减小;只有梁的一端或两端为框架柱且梁剪力沿跨长变化较大时,中段配筋方可适当减少(抗震一级可减少20%,二级可减少10%)。

五八、当按HPB235钢筋计算,而实际采用HRB335钢筋配箍时,箍筋用量可减少15%)。

五九、梁的箍筋直径不宜大于14mm,可增加箍筋肢数或减小箍筋间距来减小其直径。

六〇、框架柱的配筋

六一、柱的纵向钢筋

1.柱的纵向钢筋的最小配筋率,应理解为柱截面对边两侧计算配筋面积之和与柱全截面面积之比。对中柱和边柱,一级抗震为0。8%、抗震二级为0。7%、抗震三级为0.6%,四级为0.5%;对角柱和框支柱,相应增大0。2%。

2.应采用对称配筋,柱截面对边两侧计算配筋面积之和(2Asx或2Asy)小于最小配筋率得出的构造配筋面积时,按构造配筋面积配置;反之,按计算配筋面积配置,计算配筋面积时已考虑“强柱弱梁”的放大系数。实配钢筋时尚应考虑调整后实配梁纵向钢筋,按“强柱弱梁”关系再予以增大。

3.柱的纵向钢筋最大配筋率为4%,是指柱截面四侧全部纵向钢筋的截面面积与柱全截面面积(总配筋率大于3%时为净混凝土截面面积)之比。

4.柱纵向钢筋的总配筋量不小于计算得出的2Asx+2Asy(角筋不得公用),且不大于其最大配筋率。这里,Asy、Asy分别为X方向、Y方向按对称配筋计算得出的单侧配筋面积。

5.柱截面尺寸大于1.5m时,应在截面中部另加一圈构造纵向配筋,其直径与周边主要受力纵向钢筋相同。

6.纵向钢筋的间距不宜大于200mm、直径不宜小于14mm.

六二、柱的箍筋

六三、柱端加密区的箍筋配置最低要求

六四、箍筋的最小直径:抗震一级为φ10、二、三级为φ8、四级为φ6。(抗震二三级柱截面尺寸不大于400mm时,可采用φ6)。

六五、箍筋的最大间距:抗震一级为100mm;抗震二级为100mm(当箍筋直径不小于φ10时为150mm),三四级为150mm。

六六、箍筋的肢距:抗震一级不宜大于200mm,抗震二级不宜大于250mm,三四级不宜大于300mm.

六七、柱的体积配箍率,指在一个箍筋间距范围内、全部箍筋的体积(扣除重叠部分)与混凝土体积之比。箍筋的最小体积配箍率,详见抗震规范第6.3.10条的规定,最小值为0.4%、最大值为1.2%尚需根据具体情况进行调整。

六八、柱非加密区箍筋配置最低要求

六九、配箍量:不宜小于加密区的50%。

七〇、箍筋间距:抗震一、二级时不应大于10倍纵向钢筋直径,抗震三级时不应大于15倍纵向钢筋直径。

七一、电算时柱箍筋的间距按柱端加密区箍筋间距输入,所得计算结果亦为柱端箍筋的计算值,此时计算剪力已考虑柱端的“强剪弱弯”放大系数,故当柱端箍筋计算值小于构造配箍时,可按上述构造要求配箍,当柱端箍筋为计算配置时,必须按计算配足,且满足上述的构造要求。

七二、柱的中段配箍要求

七三、当柱端为构造配箍时,可按非加密区的箍筋配置最低要求对柱的中段进行配箍,一般箍筋直径和肢数不变,箍筋间距可加大一倍

七四、当柱端为计算配箍时,柱高全长均应按端部配箍。只有抗震一二级时中段配筋方可适当减少(抗震一级可减少30%,二级可减少20%)。对底层柱宜为端部配筋的50%~60%。

七五、当按HPB235钢筋计算,而实际采用HRB335钢筋配箍时,箍筋用量可减少15%。

七六、梁的箍筋直径不宜大于16mm,可增加箍筋肢数或减小箍筋间距来减小其直径。

七七、节点核心区的配箍要求

七八、箍筋的最大间距、最小直径和肢距同柱端加密区的要求。

七九、体积配箍率:当柱轴压比≥0.4时,抗震一级宜≥1。0%,二级宜≥0.8%,三四级宜≥0.6%,当柱轴压比<0.4时,分别为0.8%、0.6% 、0.4% 。

八〇、框支柱和净高与截面高度之比小于4的短柱(包括嵌砌填充墙形成的短柱),其体积配箍率宜≥1.0%,沿柱全高范围内箍筋的间距均不应大于100mm.

八一、剪力墙的配筋

(一)竖向和横向分布钢筋

1.分布钢筋的布置

(1)框剪结构中的剪力墙,分布钢筋应采用双排布置,横筋在外、竖筋在内。

(2)剪力墙结构中的剪力墙分布钢筋,除抗震三、四级的一般部位且墙厚<160mm时可采用单排布置外,其他情况均应或宜采用双排布置。

2.分布钢筋的最小直径为φ8。

3.分布钢筋的最大间距为300mm,一般不宜大于250mm.

4.分布钢筋的最小配筋率

(1)框剪结构中的剪力墙,分布钢筋的配筋率均不应小于0.25%。这里所谓的分布钢筋配筋率,是指在钢筋间距范围内两根竖向或水平分布钢筋的截面面积与混凝土的截面面积之比。

(2)剪力墙结构中的剪力墙分布钢筋的最小配筋率:抗震等级为一级时,均为0.25%;二级时,加强部位为0.25%、一般部位为0.20%;三级时,加强部位为0.20%、一般部位为0.15%;(但Ⅳ类场地为0.20%);四级时,加强部位为0.20%、一般部位为0.15%。

5.水平分布钢筋的配筋率大于1.2%时,宜调整剪力墙的刚度,以减小该剪力墙所分配的剪力。

剪力墙边缘构件的配筋

1.剪力墙的边缘构件分为翼墙、边框柱、暗柱和不设暗柱四种类型。其中,前三种类型适用于抗震一、二级的剪力墙和抗震三级剪力墙的加强部位;其他情况下和墙宽度小于墙厚度4倍的小墙肢可采用第四种类型(即不设暗柱)。

2. 边缘构件的最低配筋要求

(1)底部加强部位墙端纵向(竖向)最小配筋:抗震一级为0.015Ac,二级为0.012Ac,三级为0.005Ac和2φ14的较大值,四级为2φ12。

(2)底部加强部位墙端箍筋或拉筋的最小配筋:抗震一级为φ8@100,二级为φ8@150,三四级为φ6@150。

(3)其他部位墙端纵向(竖向)最小配筋:抗震一级为0.012Ac,二级取0.010Ac和4φ12的较大值,三级取0.005Ac和2φ14的较大值,四级为2φ12。

(4)其他部位墙端箍筋或拉筋的最小配筋:抗震一级为φ8@150二级为φ8@200,三四级为φ6@200。

3.边框柱的配筋

(1)如果边框柱截面尺寸大于墙厚的三倍、且在计算中按框架柱单独处理时,其配筋氨计算结果进行,并应符合框架柱配筋的构造要求。

(2)当剪力墙在门洞边形成独立端柱时,端柱全高的箍筋宜符合框架柱箍筋加密区的构造要求。

(3)框剪结构中剪力墙全高范围内的端柱箍筋,均应按上述底部加强部位墙端箍筋的要求设置。

(4)其他情况下与剪力墙相连的边框柱,可将计算所得的剪力墙端部钢筋全部配在柱内。竹内纵向钢筋除应满足上述边缘构件的最低配筋要求外,尚应满足框架柱的构造配筋要求;柱内箍筋的直径和间距,按上述边缘构件的最低配筋要求设置即可。

八二、 L形、T形和十字形剪力墙配筋

当采用三维空间分析程序计算时,任何形状的剪力墙都是划分为若干墙段来分别计算其内力和配筋,计算所得到的墙端部钢筋面积As是指该墙段一端全部竖向钢筋截面面积之和。这对一字形剪力墙处理很方便,如计算值大于构造值,应按计算值将竖筋全部配置在边缘构件内即可,否则按构造配置。但对L形、T形和十字形剪力墙,配筋时要进行处理,处理办法如下:

八三、在墙端相交处,按计算所得的端部竖向钢筋集中配置在墙端相交的暗柱内,其数量为各墙段端部竖向钢筋之和;

八四、如墙段相交处的暗柱配筋过多时-,可先在暗柱内按构造要求配置,多余的竖向钢筋再向墙段的远端(即边缘构件内)转移。

八五、如墙段相交处的暗柱为构造配筋时,可以扣除重叠计算的暗柱截面面积将竖向钢筋予以折减。

八六、也可以找出这些剪力墙的剪心位置,将各墙段的内力转换为该剪心的内力,重新计算进行配筋。

八七、连梁的配筋

八八、连梁箍筋的构造要求

八九、箍筋的最小直径:抗震一级为φ10,二级和三级为φ8,四级为φ6。

九〇、箍筋的最大间距:抗震一级取hw/4、6d和100mm的最小值;二级取hw/4、8d和100mm的最小值;三级和四级取hw/4、8d和150mm的最小值。这里hw为连梁截面高度,d为连梁纵筋直径。

九一、箍筋的最大肢距:抗震一、二级为200mm;三四级为250mm.顶层连梁伸入墙肢内的纵向钢筋应设置箍筋,其间距不得大于150mm,其他要求不变。

九二、连梁的弯矩、剪力配筋过大而使配筋超限时,可采取以下措施:

九三、调整洞口宽度、高度,增大连梁的跨度,减小连梁的高度;

九四、窗洞以下、楼板以上的墙体改用轻质材料或砖砌筑;

九五、考虑连梁刚度折减系数(≥0.55)。

九六、采取以上措施后依然超限时,可按最大配筋率配筋。此时,应加大相邻层连梁和墙肢的配筋。增强连梁与墙相交处的构造措施。

九七、连梁的纵向受拉钢筋最大配筋率同框架梁的要求,即:不应大于2.5% ;且混凝土受压区高度与有效高度之比,抗震一级不应大于0.25,抗震二、三极不应大于0.35。九八、连梁的最大配筋率同框架梁的要求,体现在梁的“剪压比”控制是否超限上。即连梁端部截面组合的剪力设计值符合下式要求时,再按抗剪公式计算得到的配箍率就是该梁的最大配箍率。

V=1/γre(0.2fcbh0)

结构设计提纲

九九、结构设计提纲的内容和深度

设计提纲应根据已批复的初步设计进行编制,如无初步设计,应根据已确定的结构方案进行编制。

(一)工程概况

1.建设单位和工程项目的名称,或子项工程的名称。

2.建设地点,该地区的地震基本烈度。

3.结构平面划分的区段,每个区段结构类型、层数、主要使用功能、主要生产设备。

4.相邻建筑物的情况和影响关系,施工时深基坑的围护措施和其他注意事项。

结构设计pkpm软件satwe计算结果分析 (2)

结构设计pkpm软件SATWE计算结果分析 SATWE软件计算结果分析 一、位移比、层间位移比控制 规范条文: 新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求: 结构休系Δu/h限值 框架 1/550 框架-剪力墙,框架-核心筒 1/800 筒中筒,剪力墙 1/1000 框支层 1/1000 名词释义: (1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。 (2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。 其中: 最大水平位移:墙顶、柱顶节点的最大水平位移。 平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。 层间位移角:墙、柱层间位移与层高的比值。 最大层间位移角:墙、柱层间位移角的最大值。 平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。 控制目的: 高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点: 1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。 2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。 3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。 结构位移输出文件(WDISP.OUT) Max-(X)、Max-(Y)----最大X、Y向位移。(mm) Ave-(X)、Ave-(Y)----X、Y平均位移。(mm) Max-Dx ,Max-Dy : X,Y方向的最大层间位移

PKPM计算结果正确性的大致判别

PKPM计算结果正确性的大致判别 结构CAD毕竟是一个辅助设计工具,智能化功能很弱,在概念设计、计算模型选择、结果分析等方面必须由设计人员来做,而且结构CAD也会有漏洞、出错,这在软件工程理论来说是不可避免的,因而还需要校审把关。如果设计人员不考虑计算模型是否适用,不考虑计算结果是否合理,不检查输入数据是否正确,一味迷信计算机是很危险的。因为高层建筑结构复杂,构件多,计算后数据输出量很大,如何对计算结果进行分析是非常重要的问题,上机计算并不能保证计算结果一定正确,设计人员必须要对计算结果进行分析,判断其正确性。 计算结果产生错误的原因大致有两方面:一方面是程序的计算模型和假定与工程的实际情况是否对应;另一方面输入数据错误:一个工程要准备成千上万条原始数据,虽经多方校对,也难保证不出错误。查看SSW计算结果总信息。 对计算结果分析可按以下项目进行: ⒈自振周期:在文件中,依次给出所有周期或先X后Y。按正常的设计,大量工程的自振周期大约在下列范围(未考虑周期折减的计算值)。 第一周期即基本自振周期为: 框架结构: T1=(0.12~0.15)n 框剪框筒结构: T1=(0.08~0.12)n 剪力墙筒中筒结构 T1=(0.04~0.05)n 中给 H为 EK 式中 F EK—结构底部水平地震作用标准值。 G —建筑物总质量。 文件中层数多,刚度小时F EK偏于较小值;层数少,刚度大时F EK趋于较大值。当计算的地震作用小于上述的下限,宜适当加大结构的截面尺寸,提高结构的刚度,使设计地震作用不至太小而不安全;当计算的地震作用大于上述的上限太多,宜适当减小结构的截面尺寸,降低结构的刚度,使结构设计比较经济合理。

初学者如何看懂PKPM文字结果信息

结构设计总信息: 1、刚重比:框架结构,大于20不考虑重力二阶效应,大于10通过整体稳定验算。剪力墙结构及框架剪力墙结构,大于2.7不考虑重力二阶效应,大于1.4通过整体稳定验算(高规5.4) 2、刚度比:本层塔侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均侧移刚度80%的比值大于1。查看Ratx1是否大于1,否则薄弱层(结构竖向布置,高规4.4.2) 3、薄弱层: A级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的80%,不应小于其上一层受剪承载力的65%;B级高度高层建筑的楼层层间抗侧力结构的受剪承载力不应小于其上一层受剪承载力的75%。查看Ratio_Bu是否小于0.8,若小则是薄弱层(结构竖向布置,高规4.4.3) 周期振型地震力:1、计算得第一平动周期输入到风荷载信息中的结构周期 2、周期比:结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比,A级高度高层建筑不应大于0.9,B级高度高层建筑、混合结构高层建筑及本规程第10章所指的复杂高层建筑不应大于0.85。(结构平面布置,高规4.3.5) 3、查看地震作用最大的方向是否大于15度否则输入到总信息中的水平力与整体坐标夹角 4、有效质量系数是否大于90%见高规5.1.13: 1 应采用至少两个不同力学模型的三维空间分析软件进行整体内力位移计算; 2 抗震计算时,宜考虑平扭耦联计算结构的扭转效应,振型数不应小于15,对多塔楼结构的振型数不应小于塔楼数的9倍,且计算振型数应使振型参与质量不小于总质量的90%; 3 应采用弹性时程分析法进行补充计算; 4 宜采用弹塑性静力或动力分析方法验算薄弱层弹塑性变形。 5、剪重比,见抗规5.2.5是否大于剪力系数λ 结构位移:1、位移比,结构平面布置应减少扭转的影响。在考虑偶然偏心影响的地震 作用下,楼层竖向构件的最大水平位移和层间位移,A级高度高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.5倍;B级高度高层建筑、混合结构高层建筑及本规程第10章所指的复杂高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.4倍。(结构平面布置,高规4.3.5)查看Ratio-(X),Ratio-(Y),Ratio-Dx,Ratio-Dy是否大于1.2 2、层间位移角,高度不大于150m,框架1/550,剪力墙1/1000,见高规4.6.3。层间位移角不需要考虑偶然偏心,另外在总信息里对所有楼层采用刚性楼板假定,且是在单向水平地震作用下。 框架倾覆弯矩:是小于40%,则按短肢剪力墙计算

结构设计pkpm软件SATWE计算结果分析报告

学习笔记 PMCAD中--进入建筑模型与荷载输入: 板荷:点《楼面恒载》会有对话框出来,选上自动计算现浇楼板自重,然后在恒载和活载项输入数值即可,一般恒载要看楼面的做法,比如有抹灰,找平,瓷砖,吊顶什么的,在民用建筑中可以输2.0,活载就是查荷载规范。梁间荷载:PKPM中梁的自重是自己导入的,所以梁间荷载是指梁上有隔墙或者幕墙或者女儿墙之内在建模时不建的构建,把他们折算成均布荷载就行。比如,一根梁上有隔墙,墙厚200mm,层高3000mm,梁高500mm,如果隔墙自重为11KN/m3,那么恒载为11*(3000-500)*200+墙上抹灰的自重什么的即可。 结构设计pkpm软件SATWE计算结果分析 SATWE软件计算结果分析 一、位移比、层间位移比控制 规范条文: 新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求: 结构休系Δu/h限值 框架 1/550 框架-剪力墙,框架-核心筒 1/800 筒中筒,剪力墙 1/1000 框支层 1/1000 名词释义: (1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。 (2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。 其中: 最大水平位移:墙顶、柱顶节点的最大水平位移。 平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。 层间位移角:墙、柱层间位移与层高的比值。 最大层间位移角:墙、柱层间位移角的最大值。 平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。 控制目的: 高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:

剪力墙如何根据SATWE计算结果正确配筋

剪力墙如何根据SATWE计算结果 配筋 假设此楼层为构造边缘构件,剪力墙厚度为200, 剪力墙显示“0”是指边缘构件不需要配筋且不考虑构造配筋(此时按照高规表7.2.16来配),当墙柱长小于3倍的墙厚或一字型墙截面高度不大于800mm 时,按柱配筋,此时表示柱对称配筋计算的单边的钢筋面积。 水平钢筋:H0.8是指Swh范围内的水平分布筋面积(cm2),Swh范围指的就是Satwe参数中的墙水平分布筋间距,是指的双侧的,先换算成1米内的配筋值,再来配,比如你输入的间距是200 mm ,计算结果是H0.8,那就用0.8*100 (乘以100是为了把cm2转换为mm2)*1000/200=400mm2 再除以2 就是 200mm2 再查板配筋表就可以了所以配8@200面积250>200 满足要求了!(剪力墙厚度为200,直径8间距200 配筋率 =2*50.24/(200*200)=0.25%,最小配筋率为排数*钢筋面 积/墙厚度*钢筋间距)。 竖向钢筋:计算过程1000X200X0.25%=500mm2,同样是指双侧,除以2就是250mm2,Φ8@200(面积251mm2)足够。 Satwe参数中的竖向配筋率是可根据工程需要调整的,当边缘构件配筋过大时,可提高竖向配筋率。

剪力墙边缘构件中的纵向钢筋间距应该和箍筋(拉筋)的选用综合考虑 一般情况下,墙的钢筋为构造钢筋,不过在屋面层短墙在大偏心受压下有时配筋很大 墙竖向分布筋配筋率0.3%进行计算是不对的。应该填0.25%(或者0.20%)。 如果填了0.3%,实际配了0.25%,则造成边缘构件主筋配筋偏小。墙竖向分 布筋按你输入配筋率,水平配筋按你输入的钢筋间距根据计算结果选筋。 规范规定的:剪力墙竖向和水平分布钢筋的配筋率,一、二、三级时均不应小于0.25%,四级和非抗震设计时均不应小于0.20%,此处的“配筋率”为水平截面全截面的配筋率,以200mm厚剪力墙为例,每米的配筋面积为:0.25% x 200 x 1000 = 500mm2,双排筋,再除以2,每侧配筋面积为250mm2,查配筋表,φ8@200配筋面积 为251mm2,刚好满足配筋率要求。 至于边缘构件配筋,一般是看SATWE计算结果里面的第三项:“梁弹性挠度、柱轴压比、墙边缘构件简图”一项里面的“边缘构件”,按此配筋,如果出现异常配筋,比如配筋率过大的情况,就用第十五项:“剪力墙组合配筋修改及验算”一项进行组合墙配筋计算,

PKPM必须检查的计算结果输出信息

PKPM必须检查的计算结果输出信息 1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.6和6.4.5。 2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,参见《高规》的表3.3.13;地震规范的表5.2.5同。程序对算出的“楼层最小地震剪力系数”如果不满足规范的要求,将给出是否调整地震剪力的选择。根据规范组的解释,如果不满足,就应调整结构方案,直到达到规范的值为止,而不能简单的调大地震力。 3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层。 新抗震规范附录E2.1规定,转换层结构上下层的侧向刚度比不宜大于2。 新高规的4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80% 新高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。上述所有这些刚度比的控制,都涉及到楼层刚度的计算方法。目前,有三种方案可供选择: (1)高规附录E.0.1建议的方法--剪切刚度 Ki=GiAi/Hi (2)高规附录E.0.2建议的方法--剪弯刚度Ki=Vi /△i (3)抗震规范3.4.2和3.4.3条文说明中建议的方法Ki=Vi/△ui 选用方法如下: (1)对于多层(砌体、砖混底框),宜采用刚度1; (2)对于带斜撑的钢结构和底部大空间层数>1层的结构宜采用刚度2; (3)多数结构宜采用刚度3。(所有的结构均可用刚度3) 竖向刚度不规则结构的程序处理: 抗震规范3.4.3条规定,竖向不规则的建筑结构,其薄弱层的地震剪力应乘以1.15的增大系数;

PKPM计算结果分析及注意的问题讲义(终审稿)

P K P M计算结果分析及注意的问题讲义 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

第一节结构整体性能控制 I、轴压比 一、规范要求 轴压比:柱( 墙)轴压比N/(fcA) 指柱( 墙) 轴压力设计值与柱( 墙) 的全截面面积和混凝土轴心抗压强度设计值乘积之比。它是影响墙柱抗 震性能的主要因素之一,为了使柱墙具有很好的延性和耗能能力,规范 采取的措施之一就是限制轴压比。规范对墙肢和柱均有相应限值要求, 见10 版高规和。 抗震设计时,钢筋混凝土柱轴压比不宜超过表的规定;对于Ⅳ类场 地上较高的高层建筑,其轴压比限值应适当减小。 二、电算结果的判别与调整要点: 混凝土构件配筋、钢构件验算输出文件(WPJ*.OUT) Uc --- 轴压比(N/Afc) 1.抗震等级越高的建筑结构,其延性要求也越高,因此对轴压比的 限制也越严格。对于框支柱、一字形剪力墙等情况而言,则要求更严 格。抗震等级低或非抗震时可适当放松,但任何情况下不得小于。

2.限制墙柱的轴压比,通常取底截面(最大轴力处)进行验算,若截面尺寸或混凝土强度等级变化时,还验算该位置的轴压比。SATWE验算结果,当计算结果与规范不符时,轴压比数值会自动以红色字符显示。 3.需要说明的是,对于墙肢轴压比的计算时,规范取用重力荷载代表值作用下产生的轴压力设计值(即恒载分项系数取,活载分项系数取)来计算其名义轴压比,是为了保证地震作用下的墙肢具有足够的延性,避免受压区过大而出现小偏压的情况,而对于截面复杂的墙肢来说,计算受压区高度非常困难,故作以上简化计算。 4.试验证明,混凝土强度等级,箍筋配置的形式与数量,均与柱的轴压比有密切的关系,因此,规范针对情况的不同,对柱的轴压比限值作了适当的调整(抗规条注)。 5.当墙肢的轴压比虽未超过上表中限值,但又数值较大时,可在墙肢边缘应力较大的部位设置边缘构件,以提高墙肢端部混凝土极限压应变,改善剪力墙的延性。当为一级抗震(9度)时的墙肢轴压比大于,一级(8度)大于,二级大于时,应设置约束边缘构件,否则可设置构造边缘构件,程序对底部加强部位及其上一层所有墙肢端部均按约束边缘构件考虑。 三、轴压比不满足简便的调整方法: 1.程序调整:SATWE程序不能实现。 2.人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。 II、位移和位移比 一、位移和位移比控制

PKPM计算结果及注意的问题-资料

第一节结构整体性能控制 I、轴压比 一、规范要求 轴压比:柱( 墙)轴压比N/(fcA) 指柱( 墙) 轴压力设计值与柱( 墙) 的全截面面积和混凝土轴心抗压强度设计值乘积之比。它是影响墙柱抗震性能的主要因素之一,为了使柱墙具有很好的延性和耗能能力,规范采取的措施之一就是限制轴压比。规范对墙肢和柱均有相应限值要求,见10 版高规6.4.2和7.2.13。 抗震设计时,钢筋混凝土柱轴压比不宜超过表6.3.6的规定;对于Ⅳ类场地上较高的高层建筑,其轴压比限值应适当减小。 二、电算结果的判别与调整要点: 混凝土构件配筋、钢构件验算输出文件(WPJ*.OUT) Uc --- 轴压比(N/Afc) 1.抗震等级越高的建筑结构,其延性要求也越高,因此对轴压比的限制也越严格。对于框支柱、一字形剪力墙等情况而言,则要求更严格。抗震等级低或非抗震时可适当放松,但任何情况下不得小于1.05。 2.限制墙柱的轴压比,通常取底截面(最大轴力处)进行验算,若截面尺寸或混凝土强度等级变化时,还验算该位置的轴压比。SATWE验算结果,当计算结果与规范不符时,轴压比数值会自动以红色字符显示。 3.需要说明的是,对于墙肢轴压比的计算时,规范取用重力荷载代表值作用下产生的轴压力设计值(即恒载分项系数取1.2,活载分项系数取1.4)来计算其名义轴压比,是为了保证地震作用下的墙肢具有足够的延性,避免受压区过大而出现小偏压的情况,而对于截面复杂的墙肢来说,计算受压区高度非常困难,故作以上简化计算。 4.试验证明,混凝土强度等级,箍筋配置的形式与数量,均与柱的轴压比有密切的关系,因此,规范针对情况的不同,对柱的轴压比限值作了适当的调整(抗规6.3.6条注)。 5.当墙肢的轴压比虽未超过上表中限值,但又数值较大时,可在墙肢边缘应力较大的部位设置边缘构件,以提高墙肢端部混凝土极限压应变,改善剪力墙的延性。当为一级抗震(9度)时的墙肢轴压比大于0.3,一级(8度)大于0.2,二级大于0.1时,应设置约束边缘构件,否则可设置构造边缘构件,程序对底部加强部位及其上一层所有墙肢端部均按约束边缘构件考虑。 三、轴压比不满足简便的调整方法: 1.程序调整:SATWE程序不能实现。 2.人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。

pkpm文本输出符号说明

符号说明: * * * * B,H --- 矩形截面宽、高(mm) * * Dr --- 圆柱直径(mm) * * B,H,U,T,D,F --- 异型截面参数(mm) * * Hr --- 变截面异型截面参数之右端高度(mm) * * Ac --- 截面面积(mm) * * Lc,Lg,Lwc,Lwb,Lb --- 分别为柱、支撑、墙柱、墙梁和梁的长度(m) * * N-C,N-G,N-WC,N-WB,N-B --- 分别为柱、支撑、墙柱、墙梁和梁的单元号 * * Nfc,Nfg,Nfw,Nfwb,Nfb --- 分别为柱、支撑、墙柱、墙梁和梁的抗震等级 * * Rcc,Rcg,Rcw,Rcwb,Rcb --- 分别为柱、支撑、墙柱、墙梁和梁的材料强度 * * Rsc,Rsg,Rsb --- 分别为柱、支撑和梁的钢号或复合截面的钢号 * * Cover --- 保护层厚度(mm) * * (Icn) --- 控制内力的内力组合号 * * LoadCase --- 控制梁内力包络的组合号 * * * * 混凝土、型钢混凝土,矩形、圆形、异型柱、支撑配筋输出符号说明: * * Cx,Cy --- 分别为X、Y向计算长度系数 * * Cmax --- 圆柱或异型柱最大计算长度系数 * * Rs --- 全截面配筋率,上下端取大值(As/Ac) * * Rsv --- 体积配箍率(Vs/Vc) * * Uc --- 轴压比(N/Ac/fc) * * (Icn)Nu --- 控制轴压比的轴力(kN) * * As_corner --- 矩形截面单根角筋面积(mm) * * Asxt,Asxb --- 矩形截面B边上下端单边配筋面积(含两根角筋)(mm) * * Asyt,Asyb --- 矩形截面H边上下端单边配筋面积(含两根角筋)(mm) * * Asvx,Asvx0 --- 矩形截面H边加密区配箍面积和非加密区配箍面积(mm) * * Asvy,Asvy0 --- 矩形截面B边加密区配箍面积和非加密区配箍面积(mm) * * Ast,Asb --- 圆截面上下端全截面配筋面积(mm) * * Aszt,Aszb --- 异型截面柱角部上下端的固定配筋面积之和(mm) * * Asft,Asfb --- 异型截面柱上下端分布配筋面积之和(mm) * * Asv,Asv0 --- 圆截面或异型截面柱加密区和非加密区配箍面积(mm) * * (Icn)N,Mx,My --- 矩形柱、圆柱、异型柱纵向钢筋配筋控制内力(kN,kN-m)* * (Icn)N,Vx,Vy --- 矩形柱、圆柱、异型柱箍筋的配筋控制内力(kN) * * Asvjx,Asvjy --- 柱节点域B、H边的配箍面积(mm) * * (Icn)Nj,Vjx,y --- 节点域箍筋Asvjx、Asvjy的控制内力(kN) * * 注:柱箍筋是指间距Sc范围内的箍筋面积 * * * * 矩形钢管混凝土柱、钢柱、钢支撑验算输出符号说明: * * F1 --- 强度验算 * * F2,F3 --- 分别为X,Y向的稳定验算 * * Px,Py --- 分别为X,Y向梁、柱全塑性承载力之比 * * Rx,Ry --- 分别为X,Y向的长细比 * * (Icn)N,Mx,My --- 钢柱验算的验算控制内力(kN,kN-m) *

PKPM问题解析

1、在PKPM的JCCAD中设计剪力墙下的桩基和承台,如何建模? 答:剪力墙下承台,可按非承台桩布置,由围桩承台方式生成,也可以用布置筏板的方式生成,最后用桩筏有限元计算。 2、请问底层柱子配筋比上层小, 这种情况正常吗? 答:正常。如果底层柱为大偏心受压,起控制作用的内力为弯矩大、轴力小的组合内力,这样底层柱的配筋就可能比上层柱的配筋大。 3、SATWE内力与配筋计算,怎么运行到VSS模态分析时就运行不下去了? 答:如果选择模拟施工3或VSS求解,可能会出现计算到“VSS模态分析”停止,表明振 型数取的过多,超过了VSS求解器的限制。降低振型数试试看,再不行,选择“模拟施工1+LDLT分解”计算。 4、08版PKPM,独立基础怎么没有标注尺寸和独基编号了呢? 答:在基础施工图的下拉菜单,在“标注构件”与“标注字符”中分别标注独基尺寸与独基编号。 5、筏板后浇带如何设置? 答:在新版JCCAD,基础人机交互输入中筏板菜单下增加“布后浇带”功能,可直接输入后浇带宽度后进行布置。 6、08版PMCAD中楼板层间复制如何使用? 答:选择当前标准层,勾选需要复制的目标标准层号,即可把当前标准层的楼板开洞和板厚等信息复制到目标标准层里。 7、PKPM里面生成的吊筋有没有考虑人防荷载? 答:没有考虑。SATWE内力作整体分析,按照等效静力荷载考虑人防荷载,而次梁集中力属于局部内力计算,可以不考虑。目前程序只是考虑1.2恒+1.4活工况组合下的次梁集中力来计算次梁箍筋加密与吊筋。 8、PKPM楼梯建模,可以建剪刀梯吗? 答:楼梯布置菜单下暂时没有剪刀梯的楼梯类型,可按照斜杆来近似模拟剪刀梯板的作用。 9、请问WDISP.OUT文件中竖向恒载作用下的楼层最大位移为星号是什么原因? 答:模型输入有问题,请检查。局部构件没有竖向构件的支撑,形成长悬臂结构而导致恒载作用下竖向位移超大的现象。 10、用JCCAD筏板有限元计算的土最大反力出现超大的异常情况? 答:地质资料输入不完整,该部分筏板下无地质资料,增加孔点使输入的地质资料范围扩大至筏板所有区域。 11、混凝土梁做成型钢混凝土梁后,梁施工图中挠度反而变大? 答:型钢混凝土梁挠度的计算与内部型钢及配筋均有关。虽然变为型钢砼梁,但相应配筋也减小,导致挠度变化不大。可使用“考虑楼板作为翼缘的作用“来计算型钢混凝土梁的挠度,考虑会挠度有较明显减小。

PKPM如何根据SATWE计算结果配筋

PKPM如何根据SATWE计算结果配筋

如何根据SATWE计算结果配筋(剪力墙) 如何根据SATWE计算结果来给剪力墙进行配筋? 假设此楼层是不是加强层,剪力墙厚度为200, 问题如下: 1.剪力墙下面的“H0.8”根据帮助文件那里说是指Swh范围内水平分布筋面积,我想问问“Swh范围内”是不是指SATWE参数设置里面的“墙水平分布筋间距”?同时这个面积是指两侧的吧?假如是,那根据“H0.8”我配Φ10@200(面积为392,我在SATWE里面设置墙水平分布筋间距为200的),这样对吗? 两侧面积加起来低于0.8cm2呀!!!各位大侠你们觉得该怎么配! 2.我找了半天都没见到竖向分布钢筋的计算结果面积,我想问是不是剪力墙上面显示“0”表示暗柱按构造配筋,那么墙的竖向分布钢筋面积就按照SATWE参数设置里面的“墙竖向分布筋配筋率0.3%进行计算”?计算过程是不是:1000X200X0.3%=600mm2,这样那配Φ12@180(面积为628)这样对吗? 或者我的想法是错误的,那该怎么计算墙的竖向分布钢筋 H0.8是指Swh范围内的水平分布筋面积,Swh范围指的就是Satwe参数中的墙水平分布筋间距!双侧。。。不放心就配Φ8@150 剪力墙显示0是指暗柱按构造配筋。。。。。。。你的竖向筋配筋率高了,看结果显示,你的竖向筋配筋率可以按照规范最小配筋率来配。。。。 我知道规范对剪力墙竖向分布筋配筋率是0.25%墙竖向分布筋配筋率0.3%进行计算”?计算过程是不是:1000X200X0.3%=600mm2? 剪力墙的竖向分布筋没有根据计算结果进行配筋的吗?H0.8是指Swh范围内的水平分布筋面积,Swh范围指的就是Satwe参数中的墙水平分布筋间距,是指的双侧的,那么单侧就是0.8/2=0.4cm^2,而一根8为0.503,已远大于0.4,所以 Φ8@200足够,不必加大。 竖向:计算过程是:1000X200X0.3%=600mm^2,但同样是指双侧,除以2就是 300mm^2. Φ10@200(面积393mm^2)足够,而不需要Φ12@180(面积为628)。 先换算成1米内的配筋值再来配比如你输入的间距是200 mm 计算结果是H0.8 那就用0.8*100*1000/200=400mm2 再除以2 就是200mm2 再查板配筋表就可以了所以配8@200面积250>200 满足要求了! 首先要明白剪力墙的主筋是水平筋,竖向钢筋是分布筋,端头除外,一般都是 按构造配。 Satwe参数中的竖向配筋率是可根据工程需要调整的,当边缘构件配筋过大时, 可提高竖向配筋率。

SATWE软件计算结果分析一、位移比

SATWE 软件计算结果分析 一、位移比 规范条文: 新高规3.4.5规定:结构平面布置应减少扭转的影响。在考虑偶然偏心影响的规定水平地震力作用下,楼层竖向构件最大的水平位移和层间位移,A 级高度高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.5倍;B 级高度高层建筑、超过A 级高度的混合结构及本规程第10章所指的复杂高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.4倍。 基本概念:位移比包含两项内容 (1)楼层竖向构件的最大水平位移与平均水平位移的比值; (2)楼层竖向构件的最大层间位移与平均层间位移的比值; 计算位移比仅考虑墙顶,柱顶等竖向构件上节点的最大位移,不考虑其他节点的位移。位移比可以用结构刚心与质心的相对位置(偏心率)表示,二者相距较远的结构在地震作用下扭转效应较大,位移比是控制结构整体抗扭特性和平面不规则性的重要指标。 钢筋混凝土高层建筑结构的最大适用高度应区分为A 级和B 级: A 级高度钢筋混凝土乙类和丙类高层建筑最大适用高度 B 级高度钢筋混凝土乙类和丙类高层建筑最大适用高度 操作要点:位移比在<结构位移>(WDISP.OUT )中输出,各楼层位移比为Ratio(X)和Radio(Y)。其中,Ratio(X)=Max(X)/Ave(X) 位移比不满足,简便的调整方法: 1)程序调整:satwe 程序不能实现 2)人工调整:只能人工调整改变结构平面布置,使结构规则,刚度均匀,减小结构刚心与 结构体系 非抗震设计 抗震设防烈度 6度 7度 8度 9度 0.20g 0.30g 框架 70 60 50 40 35 ------- 框架-剪力墙 150 130 120 100 80 50 剪力墙 全部落地剪力墙 150 140 120 100 80 60 部分框支剪力墙 130 120 100 80 50 不应采用 筒体 框架-核心筒 160 150 130 100 90 70 筒中筒 200 180 150 120 100 80 板柱-剪力墙 110 80 70 55 40 不应采用 结构体系 非抗震设计 抗震设防烈度 6度 7度 8度 0.20g 0.30g 框架-剪力墙 170 160 140 120 100 剪力墙 全部落地剪力墙 180 170 150 130 110 部分框支剪力墙 150 140 120 100 80 筒体 框架-核心筒 220 210 180 140 120 筒中筒 300 280 230 170 150

PKPM计算结果,PKPM计算书合理性判定

PKPM计算结果,PKPM计算书合理性判定 PKPM计算结果,PKPM计算书合理性决定到设计的成败,要做到PKPM计算准确无误需要有PKPM计算结果,PKPM计算书合理性判定!我们杭州绿树结构施工图设计室在PKPM软件计算,提取计算书时对PKPM计算结果,PKPM计算书合理性判定有如下总结: 1.检查原始数据是否有误,特别是是否遗漏荷载; 2.计算简图是否与实际相符,计算程序是否选则正确 3.7大指标判定: (1).柱及剪力墙轴压比是否满足要求,主要为控制结构延性;见抗规6.3.7和6.4.6 (2).剪重比:主要为控制各楼层最小地震剪力,确保结构安全性;见抗规5.2.5 剪重比也就是地震剪力系数,由《抗规》(GB50011-2001)对5.2.5条的条文说明知,“对于扭转效应时显或基本周期小于3.5S的结构,剪力系数取0.2amax”,由此可据《抗规》表 5.1.4-1推算出各地震列度下的剪力系数:9度为0.2*0.32=0.064,8度为0.2*0.16(0.24)=0.032(0.048),7度为0.2*0.08(0.12)=0.016(0.024),6度为0.2*0.04=0.008。在计算时应注意《抗规》5.2.5条,对于6度区可不要求该剪力系数,可详读该条的条文说明。即6度区按0.8%较好,这样对结构来说是更安全的(类似于最小配筋率的概念)。 剪重比主要是考虑基本周期大于3s的长周期结构。地震对于此类结构的破坏相比短周期的结构有更大影响,但规范用的振型分解反应普法无法作出估计;而且对于此类长周期结构计算所得的水平地震作用下的结构效应可能偏小,这可能就是规范设定最小剪重比的原因。另外不要忘了对竖向不规则结构的薄弱层的水平剪力应增大1.15倍,即楼层最小剪力系数不小于《高规》表3.3.13(即上表)中相应数值的1.15倍。在抗震规范的抗震截面验算的条文说明中,明确指出,剪重比是一个调整系数,即这不是一个指标,计算结果出来后,若剪重比大于规定的最小值,计算结果不作调整,若小于,将地震剪力调大,使剪重比达到规定的最小值.类似框剪结构的0.2Qo,在satwe的结果文件Wmass.out,给出这一调整的信息,多看看这

PKPM结果输出文件说明

结构设计信息输出文件(WMASS ·OUT) 运行第二项菜单“结构整体分析”项时,首先计算各层的楼层质量和质心座标等有关信息,并将其存放在WMASS ·OUT 文件中,在整个结构整体分析计算中,各步所需要的时间亦写在该文件的最后,以便设计人员核对分析。 WMASS ·OUT 文件包括六部分容,其输出格式如下: 第一部分为结构总信息 这部分是用户在“参数定义”中设定的一些参数,把这些参数放在这个文件中输出,目的是为了便于用户存档。 第二部分为各层质量质心信息,其格式如下: Floor Tower X-Center Y-Center Dead-Mass Live-Mass Mass Moment 其中: Floor —— 层号 Tower —— 塔号 ? ??--center y center x —— 楼层质心座标(m) Dead-Mass —— 该楼层恒载产生的质量,其中包括结构自重和外加恒载(单位t) Live-Mass —— 该楼层活荷载产生的质量(已乘过活荷质量折减系数,单位t) Mass-Moment —— 该楼层的质量矩(t*m 2 ) 接后输出 Total Mass of Dead Load Wd —— 恒载产生的质量 Total Mass of Live Load Wl —— 活荷产生的质量 Total Mass of the Structure Wt —— 结构的总质量 第三部分为各层构件数量、构件材料和层高等信息,输出格式如下: Floor Tower Beams Columns Walls Height Total-Height 其中: Floor —— 层号 Tower —— 塔号 Beams (Icb ) —— 该层该塔的梁数,括号的数字为梁砼标号 Columns (Icc )—— 该层该塔的柱数,括号的数字为柱砼标号 Walls (Icw ) —— 该层该塔墙元数,括号的数字为墙砼标号 Height —— 该层该塔的层高(单位m), Total-Height —— 到该层为止的累计高度。 第四部分为风荷载信息 Floor Tower Wind-X Shear-X Moment-X Wind-Y Shear-Y Moment-Y 其中: Floor —— 层号 Tower —— 塔号

PKPM 软件计算结果分析详细说明

PKPM软件计算结果分析详细说明 一、位移比、层间位移比控制 规范条文: 《高规》JGJ3-2010中第3.4.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、 B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层 平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层 平均值的1.4倍。 《高规》JGJ3-2010的第3.7.3条规定,高度不大于150m的高层建筑,其楼层层间最大 位移与层间之比(即最大层间位移角)Δu/h应满足以下要求: 结构休系Δu/h限值 框架 1/550 框架-剪力墙,框架-核心筒 1/800 筒中筒,剪力墙 1/1000 框支层 1/1000 《抗规》GB50011-2010中第3.4.4条第1款第一条:“扭转不规则时,应计入扭转影响, 且楼层竖向构件最大的弹性水平位移和层间位移分别不宜大于楼层两端弹性水平位移和层 间位移平均值的1.5倍,当最大层间位移远小于规范限值时,可适当放宽。” 名词释义: (1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。 (2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。 其中: 最大水平位移:墙顶、柱顶节点的最大水平位移。 平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。 层间位移角:墙、柱层间位移与层高的比值。 最大层间位移角:墙、柱层间位移角的最大值。 平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的: 高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点: 1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。 2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。 3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。 结构位移输出文件(WDISP.OUT) Max-(X)、Max-(Y)----最大X、Y向位移。(mm) Ave-(X)、Ave-(Y)----X、Y平均位移。(mm) Max-Dx ,Max-Dy : X,Y方向的最大层间位移 Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移 Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。 Ratio-Dx,Ratio-Dy : 最大层间位移与平均层间位移的比值 即要求: Ratio-(X)= Max-(X)/ Ave-(X) 最好<1.2 不能超过1.5 Ratio-Dx= Max-Dx/ Ave-Dx 最好<1.2 不能超过1.5 Y方向相同 电算结果的判别与调整要点: 1.若位移比(层间位移比)超过1.2,则需要在总信息参数设置中考虑双向地震作用;

PKPM结果输出文件说明

结构设计信息输出文件(WMASS ·OUT) 运行第二项菜单“结构整体分析”项时,首先计算各层的楼层质量和质心座标等有关信息,并将其存放在WMASS ·OUT 文件中,在整个结构整体分析计算中,各步所需要的时间亦写在该文件的最后,以便设计人员核对分析。 WMASS ·OUT 文件包括六部分内容,其输出格式如下: 第一部分为结构总信息 这部分是用户在“参数定义”中设定的一些参数,把这些参数放在这个文件中输出,目的是为了便于用户存档。 第二部分为各层质量质心信息,其格式如下: Floor Tower X-Center Y-Center Dead-Mass Live-Mass Mass Moment 其中: Floor —— 层号 Tower —— 塔号 ? ??--center y center x —— 楼层质心座标(m) Dead-Mass —— 该楼层恒载产生的质量,其中包括结构自重和外 加恒载(单位t) Live-Mass —— 该楼层活荷载产生的质量(已乘过活荷质量折减系数,单位t) Mass-Moment —— 该楼层的质量矩(t*m 2) 接后输出 Total Mass of Dead Load Wd —— 恒载产生的质量 Total Mass of Live Load Wl —— 活荷产生的质量 Total Mass of the Structure Wt —— 结构的总质量 第三部分为各层构件数量、构件材料和层高等信息,输出格式如下: Floor Tower Beams Columns Walls Height Total-Height 其中: Floor —— 层号 Tower —— 塔号 Beams (Icb ) —— 该层该塔的梁数,括号内的数字为梁砼标号 Columns (Icc )—— 该层该塔的柱数,括号内的数字为柱砼标号 Walls (Icw ) —— 该层该塔墙元数,括号内的数字为墙砼标号 Height —— 该层该塔的层高(单位m), Total-Height —— 到该层为止的累计高度。 第四部分为风荷载信息 Floor Tower Wind-X Shear-X Moment-X Wind-Y Shear-Y Moment-Y

SATWE软件计算结果分析与调整过程

SATWE软件计算结果分析与调整 规范条文:高规的4.3.5 新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。 名词释义: (1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。Ratio-(X)、Ratio-(Y)---- X、Y 向最大位移与平均位移的比值 (2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。Ratio-Dx,Ratio-Dy : 最 大层间位移与平均层间位移的比值 其中: 最大水平位移:墙顶、柱顶节点的最大水平位移。 平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。 层间位移角:墙、柱层间位移与层高的比值。 最大层间位移角:墙、柱层间位移角的最大值。 平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。 控制目的: 高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点: 1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。 2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。 结构位移输出文件(WDISP.OUT) Max-(X)、Max-(Y)----最大X、Y向位移。(mm) Ave-(X)、Ave-(Y)----X、Y平均位移。(mm) Max-Dx ,Max-Dy : X,Y方向的最大层间位移 Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移 Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。 Ratio-Dx,Ratio-Dy : 最大层间位移与平均层间位移的比值 即要求: Ratio-(X)= Max-(X)/ Ave-(X) 最好<1.2 不能超过1.5 Ratio-Dx= Max-Dx/ Ave-Dx 最好<1.2 不能超过1.5 Y方向相同 电算结果的判别与调整要点: 1.若位移比(层间位移比)超过1.2,则需要在总信息参数设置中考虑双向地震作用; 2.验算位移比需要考虑偶然偏心作用,验算层间位移角则不需要考虑偶然偏心; 3.验算位移比应选择强制刚性楼板假定,但当凸凹不规则或楼板局部不连续时,应采用符合楼板平面内实际刚度变化的计算模型,当平面不对称时尚应计及扭转影响 4.最大层间位移、位移比是在刚性楼板假设下的控制参数。构件设计与位移信息不是在同一条件下的结果(即构件设计可以采用弹性楼板计算,而位移计算必须在刚性楼板假设下获得),故可先采用刚性楼板算 出位移,而后采用弹性楼板进行构件分析。 5.因为高层建筑在水平力作用下,几乎都会产生扭转,故楼层最大位移一般都发生在结构单元的边角部位。

PKPM结果合理性判定

PKPM结果合理性判定 原文地址:PKPM结果合理性判定作者:kobeduan 1.检查原始数据是否有误,特别是是否遗漏荷载; 2.计算简图是否与实际相符,计算程序是否选则正确 3。7大指标判定: (1).柱及剪力墙轴压比是否满足要求,主要为控制结构延性;见抗规6.3.7和6.4.6(2).剪重比:主要为控制各楼层最小地震剪力,确保结构安全性;见抗规5.2.5 剪重比也就是地震剪力系数,由《抗规》(GB50011-2001)对5.2.5条的条文说明知,“对于扭转效应时显或基本周期小于3.5S的结构,剪力系数取0.2amax”,由此可据《抗规》表5.1.4-1推算出各地震列度下的剪力系数:9度为 0.2*0.32=0.064,8度为0.2*0.16(0.24)=0.032(0.048),7度为0.2*0.08(0.12)=0.016(0.024),6度为0.2*0.04=0.008。在计算时应注意《抗规》5.2.5条,对于6度区可不要求该剪力系数,可详读该条的条文说明。即6度区按0.8%较好,这样对结构来说是更安全的(类似于最小配筋率的概念)。 剪重比主要是考虑基本周期大于3s的长周期结构。地震对于此类结构的破坏相比短周期的结构有更大影响,但规范用的振型分解反应普法无法作出估计;而且对于此类长周期结构

计算所得的水平地震作用下的结构效应可能偏小,这可能就是规范设定最小剪重比的原因。另外不要忘了对竖向不规则结构的薄弱层的水平剪力应增大1.15倍,即楼层最小剪力系数不小于《高规》表3.3.13(即上表)中相应数值的 1.15倍。在抗震规范的抗震截面验算的条文说明中,明确指出,剪重比是一个调整系数,即这不是一个指标,计算结果出来后,若剪重比大于规定的最小值,计算结果不作调整,若小于,将地震剪力调大,使剪重比达到规定的最小值.类似框剪结构的0.2Qo,在satwe的结果文件Wmass.out,给出这一调整的信息,多看看这一信息,对剪重比的理解会更深刻. 注意剪重比和剪压比是两个截然不同的概念,不可混淆。剪重比是对整个结构体系一个宏观概念,而剪压比是针对单个构件的一个控制指标(类似于剪跨比)。一般的转换梁的截面尺寸是由剪压比计算确定,以避免脆性破坏和具有合适的 含箍率.剪压比计算公式:μv=Vmax/fcbho.其中Vmax为转换梁支座截面处最大组合剪力设计值,fc为转换梁混凝土抗压 强度设计值,fc为转换梁的宽度,ho为转换梁截面的有效高度. 关于有没有上限的问题,首先要明白在地震作用下影响建筑水平地震剪力的内在原因是什么,这个明白了此问题也就有解了这个原因就是结构刚度,结构刚度越大产生的剪力就越大,有些建筑不满足剪重比要求多是因为建筑过柔的缘故。结构刚度的大小可参考层间位移比,只要这个比值合适就不

相关主题