搜档网
当前位置:搜档网 › 证明平行与垂直1

证明平行与垂直1

证明平行与垂直1
证明平行与垂直1

教学过程

一、知识整合

1.直线的方向向量与平面的法向量的确定

(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB

平行的任意非零向量也是直线l 的方向向量.

(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求

法向量的方程组为?

????

n ·a =0,n·b =0. 2.用向量证明空间中的平行关系

(1)设直线l 1和l 2的方向向量分别为ν1和ν2,则l 1∥l 2(或l 1与l 2重合)?ν1∥ν2?v 1=λν2.

(2)设直线l 的方向向量为ν,与平面α共面的两个不共线向量ν1和ν2,则l ∥α或l α?存在两个实

数x ,y ,使ν=x ν1+y ν2.

(3)设直线l 的方向向量为ν,平面α的法向量为u ,则l ∥α或l α?ν⊥u ?u ·ν=0.

(4)设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2?u 1=λu 2.

3.用向量证明空间中的垂直关系

(1)设直线l 1和l 2的方向向量分别为ν1和ν2,则l 1⊥l 2?ν1⊥ν2?ν1·ν2=0.

(2)设直线l 的方向向量为ν,平面α的法向量为u ,则l ⊥α?ν∥u ?v =λu .

(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0.

二、考点分析与变式训练

考点一 利用空间向量证明平行问题

【例1】如图所示,平面P AD⊥平面ABCD,ABCD为正方形,△P AD是直角三角形,且P A=AD

=2,E,F,G分别是线段P A,PD,CD的中点.求证:PB∥平面EFG.

【训练1】如图,平面P AC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,

F,O分别为P A,PB,AC的中点,AC=16,P A=PC=10.

设G是OC的中点,证明:FG∥平面BOE;

考点二利用空间向量证明垂直问题

【例2】(2015·济南质检)如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,

垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.

(1)证明:AP⊥BC;

(2)若点M是线段AP上一点,且AM=3.试证明平面AMC⊥平面BMC.

【训练2】(2013·陕西卷节选)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,

O为底面中心,A1O⊥平面ABCD,AB=AA1= 2.

证明:A1C⊥平面BB1D1D.

考点三利用空间向量解决探索性问题

【例3】在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,

E,F分别是AB,PB的中点.(1)求证:EF⊥CD;

(2)在平面P AD内是否存在一点G,使GF⊥平面PCB.若存在,求出点G坐标;若不存在,试说明理由.

【训练3】(2014·上饶调研)如图所示,四棱锥P-ABCD的底面是边长为1的正方形,P A⊥CD,P A =1,PD=2,E为PD上一点,PE=2ED.

(1)求证:P A⊥平面ABCD;

(2)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并

证明;若不存在,说明理由.

三、课堂小结:

利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

立体几何中的向量方法(一)——证明平行与垂直

立体几何中的向量方法(一)——证明平行与垂直 1.直线的方向向量与平面的法向量的确定 (1)直线的方向向量:在直线上任取一非零向量作为它的方向向量. (2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为???? ? n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =x v 1+y v 2. (3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1 ∥u 2. 3.用向量证明空间中的垂直关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( ) (2)平面的单位法向量是唯一确定的.( ) (3)若两平面的法向量平行,则两平面平行.( ) (4)若两直线的方向向量不平行,则两直线不平行.( ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( ) (6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( ) 1.下列各组向量中不平行的是( )

平行线证明题

第一篇:平行线证明题 平行线证明题 直线ab和直线cd平行 因为,∠aef=∠efd.所以ab平行于cd 内错角相等,两直线平行 em与fn平行因为em是∠aef的平分线,fn是∠efd的平分线,所以角mef=1/2角aef,角efn=1/2角efd 因为,∠aef=∠efd,所以角mef=角efn 所以em与fn平行,内错角相等,两直线平行 2 第五章相交线与平行线试卷 一、填空题: 1、平面内两条直线的位置关系可能是或。 2、“两直线平行,同位角相等”的题设是,结论是。 3、∠a和∠b是邻补角,且∠a比∠b大200,则∠a=度,∠b=度。 4、如图1,o是直线ab上的点,od是∠cob的平分线,若∠aoc=400,则 ∠bod= 0。 5、如图2,如果ab‖cd,那么∠b+∠f+∠e+∠d=0。 6、如图3,图中abcd-是一个正方体,则图中与bc所在的直线平行的直线有条。 7、如图4,直线‖,且∠1=280,∠2=500,则∠acb=0。 8、如图5,若a是直线de上一点,且bc‖de,则∠2+∠4+∠5=0。 9、在同一平面内,如果直线‖,‖,则与的位置关系是。 10、如图6,∠abc=1200,∠bcd=850,ab‖ed,则∠cde0。 二、选择题:各小题只有唯一一个正确答案,请将正确答案的代号填在题后的括号内 11、已知:如图7,∠1=600,∠2=1200,∠3=700,则∠4的度数是 a、700 b、600 c、500 d、400 12、已知:如图8,下列条件中,不能判断直线‖的是 a、∠1=∠3 b、∠2=∠3 c、∠4=∠5 d、∠2+∠4=1800 13、如图9,已知ab‖cd,hi‖fg,ef⊥cd于f,∠1=400,那么∠ehi= a、400 b、450 c、500 d、550 14、一个角的两边分别平行于另一个角的两边,则这两个角 a、相等 b、相等或互补 c、互补 d、不能确定

极限的计算、证明

极限的论证计算,其一般方法可归纳如下 1、 直接用定义()等δεε--,N 证明极限 例、试证明01 lim =∞→n n 证:要使ε<-01n ,只须ε 1 >n ,故 0>?ε,11 +?? ? ???=?εN ,N n >?,有ε<-01 n 2、 适当放大,然后用定义或定理求极限或证明极限 例、证明:0! lim =∞→n a n n ,0>a 证:已知0>a 是一个常数 ?∴正整数k ,使得k a ≤ ()ε 1!,01+???? ????=?>?∴+εεk a N k ,当N n >时,有 ε<-0! n a n 3、用两边夹定理在判定极限存在的同时求出极限 例、求()() n n n n 264212531lim ??-??∞ → 解: ()()()()n n n n n 212264212753264212531?-??-??=??-?? ()()()()n n n n n n 41 125312642211253264?-????=?-??> ∴ ()()n n n 41 2642125312 >??? ? ????-??

两边开n 2次方: ()()121 21412642125311222→?=>??-??>n n n n n n n n 由两边夹:()() 1264212531lim =??-??∞ →n n n n 4、 利用等价性原理把求一般极限的问题化为无穷小量的极限问 题 例、设0≠→l S n ()∞→n ,0>p 为常数,求证:p p n l S →()∞→n 证:00→-≤-≤l S l S n n ,得 l S n →()∞→n 记 n n l S α+=,其中 0→n α()∞→n 再记n n l S α+=()n n l l l βα+=??? ? ? ?+=11,其中0→=l n n αβ()∞→n 则有()p n p p n l S β+=1。 若取定自然数p K >,则当1

空间几何——平行与垂直证明

c c ∥∥b a b a ∥?一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那 么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β b a a =??βαβ α∥b a ∥? b a b a ////??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα∥?a β ∥a ?b ∥a b a αα??α ∥a ?

2020年平行线的有关证明单元测试题

2020年平行线的有关证明单元测试题 时间: 120分钟满分:120分姓名: 一、选择题:(共12个小题,每小题4分,共48分) 1.下列命题中,是真命题的是() A.两直线被第三条直线所截,截得的同位角相等 B. 两直线被第三条直线所截,截得的内错角相等 C.两直线被第三条直线所截,截得的同旁内角相等 D.垂直于同一直线的两条直线平行 2.如图1,直线AC∥BD,AO,BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是 ( ) A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补 C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等 3.下列条件能判断直线a∥b的是() A.∠1=∠2 B.∠4=∠2 C. ∠3=∠4 D.∠1=∠3 4.如图3,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹, 则下列结论错误的是() A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC 5.已知a∥b,一块含30°角的直角三角板如图4所示放置,∠2=45°,则∠1等于()A.100°B.135° C.155° D.165°

6.下列命题是真命题的是() A.相等的角一定是同位角 B.互补的角一定是同旁内角 C.同位角一定相等 D.平行线于同一直线的两直线平行 7.如图5,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30° B.40°C.60°D.70° 8.如图6所示,已知AB∥CD,则下列结论正确的是() A.∠A =∠D B.∠A =∠B C.∠A +∠1=180° D.∠DFA=∠D 9.下列说法中,正确的是() A.两直线被第三条直线所截,截得的同位角相等 B.对顶角相等,两直线平行 C.两直线平行,内错角互补 D.和平行线中的一条直线垂直的直线,必垂直另一条 10.如图7,已知AB∥CD,∠A=50°,∠C=30°,则∠AEC等于()A.20°B.50° C.80° D.100°

立体几何中的向量方法—证明平行和垂直

2017届高二数学导学案编写 审核 审批 课题:立体几何中的向量方法—证明平行和垂直 第 周 第 课时 班 组 组评 姓名 师评 【使用说明】 1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】 理解空间向量的概念;掌握空间向量的运算方法 【学习方法】学案导学法,合作探究法。 【自主学习·梳理基础】 1、 考点深度剖析 利用空间向量证明平行或垂直是高考的热点,内容以解答题为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向. 2.【课本回眸】 1.直线的方向向量与平面的法向量的确定 ①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB → 为直线l 的方向向量,与AB → 平行的任意非零向量也是直线l 的方向向量. ②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量, 则求法向量的方程组为??? ?? n·a =0, n·b =0. 2.用向量证明空间中的平行关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =xv 1+yv 2. ③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3. 用向量证明空间中的垂直关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 4.共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R), a ⊥ b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 【课堂合作探究】 探究一:如图,在棱长为2的正方体1111D C B A ABCD -中, N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在 棱 1DD ,1BB 上移动,且()20<<==λλBQ DP . 当1=λ时,证明:直线//1BC 平面EFPQ . 探究二:如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明: (1)AE ⊥CD ; (2)PD ⊥平面ABE .

极限计算方法总结

极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且; 5)13(lim 2=-→x x ;??? ≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。

立体几何平行与垂直经典证明题

N M P C B A 新课标立体几何常考证明题汇总 考点:证平行(利用三角形中位线),异面直线所成的角 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若BD=23,AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 考点:线面垂直,面面垂直的判定 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面平行的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 考点:线面垂直的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 考点:线面平行的判定(利用平行四边形) 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 考点:线面垂直的判定,三角形中位线,构造直角三角形 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2 EF AC =, 90BDC ∠=,求证:BD ⊥平面ACD 考点:三垂线定理 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的 A E D 1 C B 1 D C B A A H G F E D C B A E D B C S D C B A A 1 A B 1 C 1 C D 1 D G E F D 1 O D B A C 1 B 1 A 1 C

(完整版)七年级数学平行线经典证明题

平行线经典证明题 一、选择题: 1.如图,能与∠α构成同旁内角的角有( ) A . 5个 B .4个 C . 3个 D . 2个 α 2.如图,AB ∥CD ,直线MN 与AB 、CD 分别交于点E 和点F ,GE ⊥MN ,∠1=130°,则∠2等于 ( ) A .50° B .40° C .30° D .65° 3.如图,DE ∥AB ,∠CAE= 3 1 ∠CAB ,∠CDE=75°,∠B=65°则∠AEB 是 ( ) A .70° B .65° C .60° D .55° 4.如图,如果AB ∥CD ,则α∠、β∠、γ∠之间的关系是( ) A 、0180=∠+∠+∠γβα B 、0180=∠+∠-∠γβα C 、0180=∠-∠+∠γβα D 、0270=∠+∠+∠γβα 5.如图所示,AB ∥CD,则∠A+∠E+∠F+∠C 等于( ) A.180° B.360° C.540° D.720° 6.如图,OP ∥QR ∥ST ,则下列各式中正确的是( ) A 、∠1+∠2+∠3=180° B 、∠1+∠2-∠3=90° C 、∠1-∠2+∠3=90° D 、∠2+∠3-∠1=180° 7.如图,AB ∥D E ,那么∠BCD 于( ) A 、∠2-∠1 B 、∠1+∠2 C 、180°+∠1-∠2 D 、180°+∠2-2∠1 二、填空题: 8.把一副三角板按如图方式放置,则两条斜边所形成的钝角α=_______度. α 45° 30° 9.求图中未知角的度数,X=_______,y=_______. 10.如图,AB ∥CD ,AF 平分∠CAB ,CF 平分∠ACD .(1)∠B+∠E+∠D=________;(2)∠AFC=________. 11.如图,AB ∥CD ,∠A=120°,∠1=72°,则∠D 的度数为__________.

立体几何中平行与垂直证明方法归纳

c c ∥∥b a b a ∥?本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。是一份不可多得的好资料。 一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β a b a =?? βαβ α ∥b a ∥?b a b a //// ??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα ∥?a β ∥a ?α αββ////∩??b a P b a b a =α β//?α β b a P b ∥a b a αα ??α ∥a ?

很好的平行线证明题

1.如图,EF ∥AD ,∠1=∠2,∠BAC =70°.将求∠AGD 的过程填写 完整. ∵EF ∥AD ( ) ∴∠2= .( ) 又∵∠1=∠2,( ) ∴∠1=∠3.( ) ∴AB ∥ .( ) ∴∠BAC + = 180°.( ) 又∵∠BAC =70°,( ) ∴∠AGD = .( ) 2.如图,46BAF =∠,136ACE =∠,CE CD ⊥.问CD AB ∥吗?为什么? 3.已知:如图,∠ABC =∠ADC ,BF 、DE 是∠ABC 、∠ADC 的角平分线,DE // BF . 求证:DC // AB . 4.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光 线与平面镜所夹的锐角相等. (1) 如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若 被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °. (2) 在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °. (3) 由(1)、(2),请你猜想:当两平面镜a 、b 的夹角∠3= °时,可以使任何 射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射 光线n 平行.请简要说明理由. 321n m b a

5. 如图,已知:∠A +∠C =∠E . 求证: AB //CD . 6. 如图, 已知:AD ⊥BC 于D ,EG ⊥BC 于G ,∠E =∠1,求证:AD 平分∠BAC . E C B A 3 21 5题图 6题图 7.如图,已知: AB ∥DE ,∠1=∠ACB ,AC 平分∠BAD .求证:AD ∥BC . 8.如图,已知: ∠1+∠2=180°,∠3=∠B ,试判断∠AED 和∠ACB 的大小关系,并写出推理过程. 9. 如图, 已知: ∠1+∠2=180°,∠A =∠C ,AD 平分∠BDF ,求证:BC 边平分∠DBE .

用向量法证明直线与直线平行

用向量法证明直线与直线平行、直线与平面平行、 平面与平面平行导学案 一、知识梳理 1、设直线l 1和l 2的方向向量分别是为1v 和2v ,由向量共线条件得l 1∥l 2或l 1与l 2重合?1 v ∥2v 。 2、直线与平面平行的条件 已知两个不共线向量1v 、2v 与平面a 共面(图(2)), 一条直线l 的一个方向向量为1v ,则由共面向量定理, 可得l ∥a 或l 在平面a 内?存在两个实数x 、y ,使 1v =x 1v +y 2v 。 3、平面与平面平行的条件 已知两个不共线的向量1v 、2v 与平面a 共面,则由两个平面平行的判定定理与性质得 a ∥β或a 与β重合?1v ∥β且2v ∥β 4、点M 在平面ABC 内的充要条件 由共面向量定理,我们还可得到:如果A 、B 、C 三点不共线,则点M 在平面ABC 内的充分 必要条件是,存在一对实数x 、y ,使向量表达式AM x AB y AC =+ 成立。 对于空间任意一点O ,由上式可得(1)O M x y O A xO B yO C =--++ ,这也是点M 位于平 面ABC 面内的充要条件。 知识点睛 用向量法证明直线与直线平行、直线与平面平行、平面与平面平行时要注意: (1)若l 1、l 2的方向向量平行,则包括l 1与l 2平行和l 1与l 2重合两种情况。 (2)证明直线与平面平行、平面与平面平行时要说明它们没有公共点。 例1:如图3-28,已知正方体ABCD -A ′B ′C ′D ′,点M ,N 分别是面对角线A ′B 与面对角线A ′C ′的中点。 求证:MN ∥侧面AD ′;MN ∥AD ′,并且MN =12 AD ′。

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+ →1 )1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如: 133sin lim 0=→x x x ,e x x x =--→21 0)21(lim ,e x x x =+∞→3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

立体几何中平行与垂直的证明(整理好)

D 1 B 1D A B C E 1A 1C 立体几何中平行与垂直的证明 姓名 例1.已知正方体ABCD —A 1B 1C 1D 1, O 是底ABCD 对角线的交点. 求证:(1)C 1O//平面AB 1D 1; (2)A 1C ⊥平面AB 1D 1. 【变式一】如图,在长方体1111D C B A ABCD -中,1,11>==AB AA AD ,点E 在棱AB 上移动。 求证:E D 1⊥D A 1; 【变式二A 】如图平面ABCD ⊥平面ABEF , ABCD 是正方形,ABEF 是矩形,且,22 1== AD AF G 是EF 的中点,(1)求证平面AGC ⊥平面BGC ; (2)求空间四边形AGBC 的体积。

B C A D E F M C 1 B 11B A 【变式二B 】. 如图,在直三棱柱111ABC A B C -中,8AB =,6AC =,10BC =,D 是BC 边的中点.(Ⅰ)求证: 1AB A C ⊥; (Ⅱ)求证:1A C ∥ 面1AB D ; 【变式三】如图组合体中,三棱柱111ABC A B C -的侧面11ABB A 是圆柱的轴截面,C 是圆柱底面圆周上不与A 、B 重合一个点. (Ⅰ)求证:无论点C 如何运动,平面1A BC ⊥平面1A AC ; (Ⅱ)当点C 是弧AB 的中点时,求四棱锥111A BCC B -与圆柱的体积比. 【变式四】如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥BE ; (2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE.

初中数学:《平行线的证明(一)》测试题

初中数学:《平行线的证明(一)》测试题 一、填空题 1.命题“任意两个直角都相等”的条件是______,结论是______,它是______(真或假)命题. 2.已知,如图,直线AB、CD相交于O,OE平分∠BOD且∠AOE=150°,∠AOC的度数为______. 3.如图,如果∠B=∠1=∠2=50°,那么∠D=______. 4.如图,直线l 1、l 2 分别与直线l 3 、l 4 相交,∠1与∠3互余,∠3的余角与∠2互补,∠4=125°, 则∠3=______. 5.如图,已知AB∥CD,∠C=75°,∠A=25°,则∠E的度数为______度. 6.如图,AB∥CD,∠1=∠2,∠3=∠4,试说明AD∥BE 解:∵AB∥CD(已知) ∴∠4=∠______(______) ∵∠3=∠4(已知) ∴∠3=∠______(______) ∵∠1=∠2(已知) ∴∠1+∠CAF=∠2+∠CAF(______)

即∠______=∠______(______) ∴∠3=∠______ ∴AD∥BE(______). 二、选择题 7.如图,平行直线AB、CD与相交直线EF、GH相交,图中的同旁内角共有() A.4对B.8对C.12对D.16对 8.如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是() A.∠2=45°B.∠1=∠3 C.∠AOD与∠1互为补角D.∠1的余角等于75°30′ 9.下列语言是命题的是() A.画两条相等的线段 B.等于同一个角的两个角相等吗? C.延长线段AO到C,使OC=OA D.两直线平行,内错角相等. 10.下列命题是假命题的是() A.对顶角相等 B.﹣4是有理数

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .00 x g x f x g x f x x x x x →→→± = ± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?= ? 又若0)(lim 0 ≠→x g x x ,则 ) ()(x g x f 在0x x →时也存在,且有 ) ()() ()(lim lim lim x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、 0等情况,都不能直接用四则运算法则, 必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 例1:求2 42 2 lim --- →x x x 解:原式=()() ()022 22lim lim 2 2 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有 ()() 1sin lim =→x g x g x x 或()() 1sin lim =∞ →x g x g x

七年级平行线的证明练习题

七年级平行线的证明练习题(8) 1、已知∠1与∠2是对顶角,且∠1=30o,则∠2= 。 2、如果两个锐角的和是 ,则这两个角互为余角,如果两个角的和是 ,则这两个角互为补角。 3、若∠1=30o,则它的余角是 ,它的补角是 。 4、若∠1=50o,则它的余角是 ,它的补角是 。 5、若∠2=110o,则它的补角是 ,它的补角的余角是 。 6、若∠1与∠2互余,∠3和∠2互补,且∠3=120o,那么∠1= 。 7、在同一平面内,两条直线的位置关系有 和 两种。 8、平面内,过一点 一条直线与已知直线垂直。 9、直线外一点与直线上各点连接的所有线段中, 最短。 10.如图,若直线a ,b 被直线c 所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角? (1)∠1与∠3是 ;(2)∠5与∠7是 _; (3)∠1与∠5是 ;(4)∠5与∠3是 ; (5)∠5与∠4是 ;(6)∠8与∠4是 ; (7)∠4与∠6是 _;(8)∠6与∠3是 ; (9)∠3与∠7是 ;(10)∠6与∠2是 _. 11、如图,∠1 =∠2=55°,∠3等于多少度?直线AB 、CD 平行吗?说明你的理由。 解:AB ∥CD. 理由:∵∠1=∠2=55° (已知) ∴∠3= = (对顶角相等) ∴∠1=∠3 (等量代换) ∴ ∥ (同位角相等,两直线平行) 12、如图,在△ABC 中,∠B=38°,∠C=62°,AD 是△ABC 的角平分线,求∠ADB 的度数。 13、如图所示。 (1) ∠1与 是同位角。 (2) ∠1与 是同旁内角。 (3) ∠1与 是内错角。 14、如图所示, (1)∵∠1=∠4 (已知) ∴ ∥ ( ) (2)∵∠2=∠4 (已知) ∴ ∥ ( ) (3)∵∠1+∠3=1800 (已知) ∴ ∥ ( ) 15、推理填空: (1)∵∠A =∠ (已知), ∴AC∥ED ( ); (2)∵∠2 =∠ (已知), ∴AC∥ED ( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( )。

立体几何中的向量方法—证明平行和垂直

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积 的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与 垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】理解空间向量的概念;掌握空间向量的运算方法 在四棱锥 设直线,则 v

的正方体 I 2. 如图,在棱长为a (1) 试证:A1、G、C三点共线; (2) 试证:A1C⊥平面 3.【改编自高考题】如图所示,四棱柱 的正方形,侧棱A (1)证明:AC⊥A1B; (2)是否在棱A1A上存在一点P,使得C1【学后反思】 本节课我学会了 掌握了那些? 还有哪些疑问? 2017届高二数学导学案编写邓兴明审核邓兴明审批

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别.3.体会求空间角中的转化思想、数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角. 【教学重点】灵活地运用各种方法求空间角 【教学难点】灵活地运用各种方法求空间角 —l—β的两个面α,β的法向量,则向量 的大小就是二面角的平面角的大小(如图②③). 【课堂合作探究】 利用向量法求异面直线所成的角 B1C1,∠ACB=90°,CA=CB=CC1,D 的正方体ABCD—A1B1C1D1中,求异面直线

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

相关主题