搜档网
当前位置:搜档网 › 气相色谱柱填充柱,毛细管柱

气相色谱柱填充柱,毛细管柱

气相色谱柱填充柱,毛细管柱
气相色谱柱填充柱,毛细管柱

第二章气相色谱柱

第一节气相色谱柱的类型

气相色谱法(gas chromatography, 简称GC)亦称气体色谱法,气相层析法。其核心即为色谱柱。

气相色谱柱有多种类型。从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。色谱柱使用的材料通常有玻璃、石英玻璃、不锈钢和聚四氟乙烯等,根据所使用的材质分别称之为玻璃柱、石英玻璃柱、不锈钢柱和聚四氟乙烯管柱等。在毛细管色谱中目前普遍使用的是玻璃和石英玻璃柱,后者应用范围最广。对于填充柱色谱, 大多数情况下使用不锈钢柱,其形状有U型的和螺旋型的,使用U 型柱时柱效较高。按照色谱柱内径的大小和长度,又可分为填充柱和毛细管柱。前者的内径在24mm,长度为110m左右;后者内径在,长度一般在25100m。在满足分离度的情况下,为提高分离速度,现在也有人使用高柱效、薄液膜的10m短柱。

根据固定液的化学性能,色谱柱可分为非极性、极性与手性色谱分离柱等。固定液的种类繁多,极性各不相同。色谱柱对混合样品的分离能力,往往取决于固定液的极性。常用的固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈醚类等。新近发展的手性色谱柱使用的是手性固定液,主要有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环糊精衍生物等。其中以环糊精及其衍生物为色谱固定液的手性色谱柱,用于分离各种对映体十分有效,是近年来发展极为迅速且应用前景相当广阔的一种手性色谱柱。

在进行气相色谱分析时,色谱柱的选择是至关重要的。不仅要考虑被测组分的性质,实验条件例如柱温、柱压的高低,还应注意和检测器的性能相匹配。有关内容我们将在以后章节中加以详细讨论。

第二节填充气相色谱柱

填充气相色谱柱通常简称填充柱,在实际分析工作中的应用非常普遍。据资料统计,日常色谱分析工作大约有80%是采用填充柱完成的。填充柱在分离效能和分析速度方面比毛细管柱差,但填充柱的制备方法比较简单,定量分析的准确度较高,特别是在某些分析领域(例如气体分析、痕量水分析)具有独特用途。从发展上看,虽然毛细管柱有逐步取代填充柱的趋势(例如已有一些日常分析使用PLOT柱代替过去常用的气固色谱填充柱),但至少在目前一段时期内,填充柱在日常分析中仍是一种十分有价值的分析分离手段。

填充柱主要有气固色谱柱和气液色谱填充柱两种类型。在色谱柱中关键的部分是固定相。在本节我们将首先介绍柱管的选择及其处理方法,然后再分别重点讨论气固色谱柱和

气液色谱填充柱有关固定相的内容。

一、填充柱柱管的选择与处理

用作填充色谱柱柱管的材料通常有不锈钢管、铜管、铝管、铜镀镍管、玻璃管以及聚四氟乙烯管等[1-5]。铜管和铝管由于催化活性太强且易变形已不太常用。分析用的填充柱内径一般采用2~4 mm,制备用的柱内径可大些,一般使用5~10 mm。长度可选择1~5 m。柱子的形状可以是螺旋形的,也可以是U型的。使用后者较易获得较高的柱效。如果使用螺旋形的,应注意柱圈径的大小对柱效会有一定的影响[3-6], 一般柱圈径应比柱内径大15倍。

柱材料的选择应依据待分析的样品性质和实验条件而定。如果待分析的样品易分解或具有腐蚀性,应考虑使用玻璃管或聚四氟乙烯管。玻璃管柱的优点是化学惰性好,制备的柱子柱效高,便于观察柱子的填充情况,但玻璃管易碎是其缺点。聚四氟乙烯管的优点是耐腐蚀,缺点是不耐高温高压。在填充柱中目前最常使用的是不锈钢管。它的最大优点是不破碎,传热性能好,柱寿命长,能满足常见样品分析的要求。缺点是内壁较粗糙,有活性,比较难于清洗干净。

填充柱的柱管在使用前应该经过清洗处理和试漏检查。清洗的方法与柱管材料有关。对于不锈钢管,通常先用10%热氢氧化钠水溶液浸泡,抽洗除去管内壁的油污,然后用自来水洗至中性。如果用1:20的稀盐酸水溶液重复处理一次,则可显著降低柱内壁的吸附作用。玻璃柱的清洗可参照上面所述的方法,不同的是通常使用洗液浸泡。同样,为了减少玻璃内壁的活性,可以用5%二甲基二氯硅烷的甲苯溶液浸泡处理,然后用甲苯和甲醇分别冲洗干净。柱子的检漏方法比较简单: 可将柱子泡在水里,堵死柱的一端,在另一端通气,若无气泡冒出即说明柱子无泄漏现象。

二、气固色谱填充柱

我们知道, 色谱分离的基本原理是试样组分通过色谱柱时与填料之间发生相互作用,这种相互作用大小的差异使各组分互相分离而按先后次序从色谱柱流出。我们把色谱柱内不移动、起分离作用的填料称为固定相。气固色谱填充柱常采用固体物质作固定相。这些固体固定相包括具有吸附活性的无机吸附剂、高分子多孔微球和表面被化学键合的固体物质等。

(一)无机吸附剂

这一类吸附剂包括具有强极性的硅胶、中等极性的氧化铝、非极性的炭素及有特殊吸附作用的分子筛。它们大多数能在高温下使用,吸附容量大,热稳定性好,是分析永久性气体及气态烃类混合物理想的固定相。但使用时应该注意: ⑴吸附剂的吸附性能与其制备、活化条件有密切关系。不同来源的同种产品或者同一来源而非同批的产品,其吸附性能可能存在较大的差异;⑵一般具有催化活性,不宜在高温和存在活性组分的情况下使用;⑶吸附等温线通常是非线性的,进样量较大时易出现色谱峰形不对称。

(1)硅胶

硅胶是一种氢键型的强极性固体吸附剂,其化学组成为SiO2nH2O。品种有细孔硅胶、粗孔硅胶和多孔硅球等。气相色谱使用较多的是粗孔硅胶,其孔径为80~100 nm,比表面积近300 m2/g,可用于分析N2O、SO2、H2S、SF6、CF2Cl2以及C1~C4烷烃等物质。硅胶的分离能力主要取决于孔径大小和含水量。用前通常需要经过处理。方法: 对市售的色谱专用硅胶,可在200℃下活化处理2h后使用;如果使用市售的非色谱专用硅胶, 则先将硅胶用6 mol/L盐酸浸泡2h,然后用水冲洗至无Cl-离子。晾干后置于马弗炉内,在200~500℃温度下灼烧活化2h后降温取出,贮存于干燥器中备用。

(2)氧化铝

氧化铝有五种不同的晶型,气相色谱常用的主要是γ型,具有中等极性,主要用于分析C1~C4烃类及其异构体,在低温下也能用于分离氢的同位素。氧化铝具有很好的热稳定性和机械强度,但其活性随含水量有较大的变化[7]。故使用前通常需对其进行活化处理(在450~ 1350℃灼烧2h)。为保持使用过程中含水量稳定,可将载气先通过含结晶水的硫酸钠(或硫酸铜)后再进入色谱柱。经过氢氧化钠处理改性的氧化铝,能在320~380℃柱温下分析C36以下的碳氢化合物,峰形很好。

(3)碳素

碳素是一类非极性的固体吸附剂,主要有活性碳、石墨化碳黑和碳分子筛等品种。活性碳是无定形碳,具有微孔结构,比表面积大(800~1000 m2/g),可用于分析永久性气体和低沸点烃类。若涂少量固定液,可用来分析空气、一氧化碳、甲烷、二氧化碳、乙炔、乙烯等混合物。石墨化碳黑是碳黑在惰性气体保护下经高温(2500~3000℃) 煅烧而成的石墨状细晶,特别适用于分离空间和结构异构体,也可用于分析硫化氢、二氧化硫、低级醇类、短链脂肪酸、酚、胺类。上述两种碳素固定相用前都需进行活化处理。方法是先用等体积的苯(或甲苯、二甲苯)冲洗2~3次,然后在350℃通水蒸汽洗涤至无浑浊, 最后在180℃活化2h即可使用。

碳分子筛又称为炭多孔小球,是聚偏二氯乙烯小球径高温热解处理后的残留物,比表面积800~1000 m2/g,孔径约~2 nm,主要用于稀有气体、空气、二氧化碳、氧化亚氮、C1~C3烷类分析。多孔炭黑国内外都有商品出售,如由中国科学院化学所研制、天津化学试剂二厂生产的TDX-01和TDX-02,国外的产品Carbon Sieve B等即属于这类。使用前通常在180℃通氮气活化3~4h,降温后存于干燥器内备用。

(4)分子筛

分子筛是一类人工合成的硅铝酸盐,其基本化学组成为,其中M代表Na+、K+、Li+或Ca2+、Sr2+、Ba2+等金属阳离子。分子筛具有均匀分布的孔穴,其大小取决于M金属离子的半径和其在硅铝构架上的位置。一般认为,分子筛的性能主要取决于孔径的大小和表面特性。当试样分子经过分子筛时,比孔径小的分子可进入孔内,比孔径大的分子则被排除于孔外。气相色谱分析中应用的分子筛通常有4A、5A和13X等三种类型。前面的数字表示分子筛的平均孔径,例如4A指的是该分子筛的平均孔径为 nm(10-8 cm)。A、X表示类型,其化学组成稍有差异。A型中Al2O3与SiO2的比例为1∶2,而X型的硅铝比则高一些。分子筛的表面积很大,内表面积通常有700~800 m2/g,外表面积为1~3 m2/g。在气相色谱中主要用于分离H2、O2、N2、CO、CH4以及低温下分析惰性气体等。

分子筛极易因吸水而失去活性。因此,用前应在550~600℃或在减压条件下350℃活化2h,降温后贮存于干燥器内。使用过程中要对载气进行干燥处理,样品中如果存在水分也应设法除去。此外使用时还应注意,某些物质如氨、甲酸、二氧化碳等会被分子筛不可逆吸附。分子筛是否失效通常可从氮、氧的分离情况来判断。失活后的分子筛可以采用上述方法重新活化使用。常见的分子筛及其性能见表2-1。

表2-1 常用分子筛及其性能[1-3,7]

分子

筛化学组成

比表面

(m2/g)

孔径

(nm)

最高使用

温度(℃)

可吸附的物质

产地及国外

相似品牌

4A

.

3~80004000

He Ne Ar Kr Xe H2 O2

N2 CH4 CO CO2 H2O

NH3 H2S CS2 N2O2 C2H4 C2H2

CH3OH CH2Cl

CH3Br CH3CN

大连红光厂

上海试剂厂

美国Davison 4A

美国Linde 4A.

俄国Zeolit NaA

法国Siliporite K-1

5A 8 C以上正构烷烯烃

C2H5Cl C2H2OH C2H6NH2 CH2Cl2及

4A分子筛可吸附者

大连红光厂

上海试剂厂

美国Davison

美国Linde 5A

俄国Zeolit CaA

法国Siliporite

K-20

13X

.异构烷烯烃、异构醇类苯类

环烷类及5A 分子筛可吸附者

大连红光厂

上海试剂厂

美国Davison 10A

美国Linde 13X

俄国Zeolit NaX

(二)高分子多孔小球

高分子多孔小球(GDX)是以苯乙烯等为单体与交联剂二乙烯苯交联共聚的小球。这种聚合物在有些方面具有类似吸附剂的性能,而在另外一些方面又显示出固定液的性能[8]。因此,它本身既可以作为吸附剂在气固色谱中直接使用,也可以作为载体涂上固定液后用于分离。在烷烃、芳烃、卤代烷、醇、酮、醛、醚、脂、酸、胺、腈以及各种气体的气相色谱分析中已得到广泛应用。其优点主要有: ⑴吸附活性低。无论对非极性物质还是极性物质,使用这种固定相通常都可以获得对称色谱峰;⑵对含羟基的化合物具有相对低的亲和力。羟基作用力越强,亲和力越弱。在非极性固定相上出峰次序基本上按分子量大小分离,故特别适合有机物中痕量水的快速测定; ⑶可选择的范围大。不仅可以依据样品性质选择合适的孔径大小和表面性质的产品直接使用,还可以涂上固定液,使亲油性化合物的保留时间缩短,极性组分的保留时间适当延长,从而增加色谱柱的选择性。此外,高分子小球在高温时不流失,机械强度好,圆球均匀,较易获得重现性好的填充柱。由中国科学院化学研究所研制、天津化学试剂二厂生产的GDX-系列高分子小球产品即属于此类。

在交联共聚过程中,使用不同的单体或不同的共聚条件,可获得不同分离效能、不同极性的产品。从表面化学性质上可将它们分为极性和非极性两种。为方便读者选用,表2-2简要列出国内外一些重要的高分子多孔小球产品及其性能。详细情况也可参考有关手册[7]。

高分子多孔微球有一个缺点是小球经常带有“静电”,易贴附于仪器和器皿上而难以清理,通常可用润湿过丙酮的纱布擦拭来消除。

表2-2 一些重要高分子多孔小球产品及其性能[3,7,9]

名称组成颜色

堆密度

(g/ml)比表面

(m2 /g)

极性

最高使用

温度(℃)

主要分析用途生产厂

GDX-101

二乙烯苯、苯乙

烯等共聚物白330

非极

270

烷烃、芳烃、卤代烷、醇、

酮、醛、醚、脂、酸、胺、

腈及各种气体

天津化学

试剂二厂

GDX-102同上白680

非极

270高沸点物质同上

GDX-103同上白670

非极

性270

同上, 还可分离正丙醇-

叔丁醇

同上

GDX-104同上

半透

明590

非极

270气体分析同上

GDX-105同上透明610

非极

270微量水及体分析同上GDX-201同上白510

非极

270较高沸点化合物同上

GDX-202同上白480

非极

性270

同上, 还可分离正丙醇/

叔丁醇体系

同上

GDX-203同上白800

非极

性270

同上, 还可分离乙酸/苯

/乙酐体系

同上

GDX-301

二乙烯苯、三氯

乙烯共聚物白460

弱极

250乙炔/氯化氢同上

GDX-401

二乙烯苯含氮杂

环单体共聚物乳白370中等250

乙炔/氯化氢/水, 氨水,

甲醛水溶液

同上

GDX-403同上乳白280中等250水/低级胺/甲醛等同上GDX-501同上淡黄80较强270C4烯烃异构体同上GDX-502同上白-170较强250C1~C2烯烃, CO, CO2同上

GDX-601

含强极性基团的

聚二乙烯苯黄90

强极

200环己烷/苯等

科学院化

学所

401

二乙烯苯、苯乙

烯等共聚物白300~400

非极

270相当于GDX-101

上海试剂

一厂

402同上白400~500

非极

270相当于GDX-102同上

403同上白300~500

非极

270相当于GDX-103同上404

二乙烯苯、含氮

极性单体共聚物

--<80较强270相当于GDX-105同上405

二乙烯苯、三氯

乙烯共聚物

--<150较强--同上

406

二乙烯苯、苯乙

烯共聚物-----

乙烯、乙炔、烷烃、芳烃、

卤代烃、含氧有机化合物

同上

407

二乙烯苯、乙基

乙烯共聚物-----

同上, 还可用于正丙醇

与叔丁醇分离

同上

408二乙烯苯、苯乙

烯、极性单体共

聚物

-----

活泼化合物, 如氯化氢

及氯中的水

同上

A101

二乙烯苯、乙基

乙烯苯共聚物白-

非极

250

气体、芳烃同系物、含氯

化合物、脂类

A102同上白-

非极

性250同上

浙江黄岩

分析化学

材料厂

A101S硅烷化的A101白-

非极

250同上同上A102S硅烷化的A102白-

非极

250同上同上

B101二乙烯苯、苯乙

烯、乙基苯乙烯

共聚物

白-

非极

250相当于GDX-101同上

B102同上白-

非极

250相当于GDX-102同上B101S硅烷化的B102白-

非极

250相当于GDX-101同上B102S硅烷化的B102白-

非极

250相当于GDX-102同上C101

二乙烯苯、含氮

极性单体共聚物

--较强250相当于GDX-501同上C102同上--较强250同上D101二乙烯苯、苯乙---较强250腈类、醛类同上

烯、含氮极性单

体共聚物

D102同上---较强250同上同上

Chromo-s orb 101苯乙烯、二乙烯

苯共聚物

白30-40弱275

酸、二元醇、烷、脂、酮

醛、醚、氟化物

Macherey

Nagel

Chromo-s

orb 102同上白300-400中等250

低沸点化合物、永久气

体、水、醇

同上

Chromo-s

orb 103

交联聚苯乙烯白15-25中等275C1-C6胺类、醇、醛、酮同上

Chromo-s orb 104丙烯腈、二乙烯

苯共聚物

白100-200强250

硫化氢水溶液、氨、腈、

硝基烷、氮氧化物

同上

Chromo-s

orb 105聚芳族高聚物白600-700中等250

甲醛、乙炔、水、沸点低

于2000C的有机物

同上

Chromo-s

orb 106

交联聚苯乙烯白700-800弱250C2-C5脂肪酸和醇同上Chromo-s

orb 107

交联聚丙烯酸酯白400-500中等250甲醛水溶液同上Chromo-s

orb 108

同上白100-200中等250水、醇、醛、酮、气体同上

Porapak P

苯乙烯、二乙烯

苯共聚物白100-200弱250

乙烯、乙炔、烷烃、芳烃、

含氧有机物、卤代烷等

Waters

Ass℃iate

d Inc. (美

国)

Porapak

P s

硅烷化的

Porapak P

白--弱250同上同上

Porapak Q

乙基乙烯苯、二

乙烯苯共聚物黄

非极

250同上同上

Porapak

Q s

硅烷化的

Porapak Q

白--

非极

250同上同上

Porapak R 苯乙烯、二乙烯

苯、极性单体共

聚物

白450-600中等250

氯与氯化氢等活性物质

中的水

同上

Porapak S同上白350-450中等250醇类、极性气体同上Porapak T同上白250-350很强200同上同上Porapak N同上白437中等200甲醛水溶液组分同上

(三)化学键合固定相

化学键合固定相又称化学键合多孔微球固定相。这是一种以表面孔径度可人为控制的球形多孔硅胶为基质,利用化学反应方法把固定液键合于载体表面上制成的键合固体相。这种键合固定相大致可以分为以下三种类型:

⑴硅氧烷型。这是以有机氯硅烷或有机烷氧基硅烷与载体表面硅醇基反应,生成Si-O-Si-C 键合相。这种键合相的最大特点是热稳定性好。在气相色谱和液相色谱中广泛使用。

⑵硅脂型。通常利用扩孔后的硅珠表面羟基与醇类的酯化反应生成Si-O-C键合相。这种键合相在一定条件下有水解和醇解的可能性,热稳定性比硅氧烷型稍差。

⑶硅碳型。将载体表面的硅醇基用SiCl4等氯化后,再与有机锂或格氏(Griynard)试剂反应可制得Si-C键合相。这样制备出来的键合相,其最大的特点是对极性溶剂不起分解作用,耐高温。在高达300℃下使用也不容易发生水解。缺点是制备手续比较麻烦。除了上述三种类型,还有一些其它类型的键合相,例如将表面氯化的硅胶与伯胺反应,可以制得-Si-N-C键合相,其稳定性和选择性也很好。

与载体涂渍固定液制成的固定相比较,化学键合固定相主要有下述优点: ⑴具有良好的热稳定性。例如采用一般涂渍法时,β,β-氧二丙腈,PEG 400和正辛烷在80~90℃就开始流失。若选用Porasil-S为骨架得到的键合相,则流失温度可提高到200℃;⑵适合于做快速分析。键合相的H/U-U图中,有一长的平滑最小H/U区域,即线速增加,板高不变;⑶对极性组分和非极性组分都能获得对称峰。这种固定相具有较均匀的液相结合型分布,在载体表面上的液膜很薄,因此液相传质阻力小,柱效高;⑷耐溶剂。特别是耐极性溶剂的抽提。化学键合固定相在气相色谱分析中常用于分析C1~C3烷烃、烯烃、炔烃、CO2、卤代烃及有机含氧化合物。国产商品主要有上海试剂一厂的500硅胶系列与天津试剂二厂的HDG系列产品, 国外的品种主要有美国Waters公司生产的Durapak系列。

三、气液色谱填充柱

气液色谱填充柱中所用的填料是液体固定相。它是由惰性的固体支持物和其表面上涂渍的高沸点有机物液膜所构成。通常把惰性的固体支持物称为“载体”, 把涂渍的高沸点有机物称为“固定液”。

(一)载体

载体又称担体,是一种化学惰性的物质, 大部分为多孔性的固体颗粒。它的作用是使固定液和流动相间有尽可能大的接触面积。一般对载体有以下要求: 即有较大的表面积;孔径

分布均匀;化学惰性好,即不与固定液或样品组分起化学反应;热稳定性好;有一定的机械强度;表面没有吸附性或吸附性能力很弱。在实际工作中要找出完全满足上述要求的载体比较困难,只能根据具体分析对象选出性能比较优良的载体。

(1)载体的种类与性能

能用于气相色谱的载体品种很多,大致可分为无机载体和有机聚合物载体二大类。前者应用最为普遍的主要有硅藻土型和玻璃微球载体。后者主要包括含氟塑料载体以及其它各种聚合物载体。国内一些常见的重要载体及其性能见表2-3。

表2-3一些重要的载体及其性能[1-3,7-9]

名称组成及处理颜色催化吸附性能产地

上试101硅藻土载体白有上海试剂一厂

上试101酸洗经盐酸处理的上试101白小上海试剂一厂

上试101硅烷化经HMDS处理的上试101白小上海试剂一厂

上试102硅藻土载体白有上海试剂一厂

上试102酸洗经盐酸处理的上试102白小上海试剂一厂

上试102硅烷化经HMDS处理的上试102白小上海试剂一厂

上试201硅藻土载体红有上海试剂一厂

上试201酸洗经盐酸处理的上试201红小上海试剂一厂

上试201硅烷化经HMDS处理的上试201红小上海试剂一厂

上试202硅藻土保温砖载体浅红有上海试剂一厂

上试202酸洗经盐酸处理的上试202浅红小上海试剂一厂

上试301釉化经B2O3处理的上试201红小上海试剂一厂

上试302釉化经B2O3处理的上试202浅红小上海试剂一厂

上试303釉化经B2O3处理的上试101白小上海试剂一厂

上试304釉化经B2O3处理的上试102白小上海试剂一厂

5701硅藻土载体红有中科院大化所

6201硅藻土载体红有大连催化剂厂

6201硅烷化经HMDS处理的6201红小大连催化剂厂

6201釉化经釉化处理的6201红小大连催化剂厂

405-白小大连催化剂厂

玻璃微球特种高硅玻璃无小上海试剂一厂

聚四氟乙烯聚四氟乙烯烧结塑料白小上海试剂一厂

Chromosorb A硅藻土载体白有John-Manville Chromosorb C 48560硅藻土载体白有同上同上Chromosorb G硅藻土载体白有同上Chromosorb G AW Chromosorb G经过酸洗粉红有同上

Chromosorb G AW-DMCS Chromosorb G经过酸洗、DMCS

处理

粉红很小同上

Chromosorb P NAW非酸洗硅藻土载体红有同上Chromosorb P AW酸洗硅藻土载体红有同上

Chromosorb P AW-DMCS 硅藻土载体经过酸洗、DMCS

处理

红小同上

Chromosorb P AW-HMDS 硅藻土载体经过酸洗、HMDS

处理

红小同上

Chromosorb R硅藻土载体白有同上Chromosorb T聚四氟乙烯载体白小同上Chromosorb W硅藻土载体白有同上Chromosorb W AW Chromosorb W经过酸洗白有同上

Chromosorb W AW-DMCS Chromosorb W经过酸洗、DMCS

处理

白小同上

Chromosorb W

AW-DMCS-HP

同上,高效载体白很小同上Chromosorb W HMDS Chromosorb W 经过HMDS处理白很小同上Chromosorb White硅藻土载体白有May & Baker Ltd. Gas Chrom A酸洗的Celaton载体白有Applied science

Laboratories Inc Gas Chrom CL非酸洗的Celite载体白有同上

Gas Chrom CLA酸洗的Gas Chrom CL白有同上

Gas Chrom CLH Gas Chrom CLA经过HMDS处理白小同上

Gas Chrom CLP Celite载体经过酸洗、碱洗白有同上

Gas Chrom CLZ Celite载体经过酸洗、DMCS

处理

白很小同上

Gas Chrom P Gas Chrom A 经过碱醇溶液处理白有同上

Gas Chrom Q Gas Chrom P 经过DMCS处理白很小同上

Gas Chrom R非酸洗保温砖载体红有同上

Gas Chrom RA Gas Chrom R 经过酸洗红有同上

Gas Chrom RP Gas Chrom R 经过酸洗、碱醇

红有同上

溶液处理

红小同上

Gas Chrom RZ Gas Chrom R 经过酸洗、DMCS

处理

Gas Chrom S非酸洗的Celaton载体白有同上

白很小同上

Gas Chrom Z Gas Chrom A 经过酸洗、DMCS

处理

白小美国

Gas Pak F表面涂全氟聚合物的

硅藻土载体

Anaport Tee Six白小Analabs Inc. Chemalite TF氟树脂载体白小日本

C-22硅藻土载体红有美国

①硅藻土型

硅藻土型载体使用的历史最长,应用也最普遍。这类载体绝大部分是以硅藻土为原料制成的。在天然硅藻土中加入木屑及少量粘合剂于900℃左右煅烧,就得到红色硅藻土载体,如国产的6201载体及国外的C-22火砖和Chromosorb P即属于这一类。如果将天然硅藻土经盐酸处理后干燥,再加入少量碳酸钠助熔剂在1100℃左右煅烧,就得到白色硅藻土载体。属于这一类载体的有国产的101白色载体、405载体,国外的Celite和Chromosorb W载体。

红色和白色硅藻土载体的化学组成基本相同,内部结构相似,都是以硅、铝氧化物为主体,以水合无定形氧化硅和少量金属氧化物杂质为骨架。但是它们的表面结构差别很大,红色载体和硅藻土原来的细孔结构一样,表面孔隙密集,孔径较小,表面积大,能负荷较多的固定液。由于结构紧密,因而机械强度较好。与此相反,白色硅藻土载体在烧结时由于助熔剂的作用,硅藻土原来的细孔结构大部分被破坏,变成了松散的烧结物。此种载体孔径较粗,表面积小,能负荷的固定液小,机械强度不如红色载体。但是和红色载体相比,它的表面吸附作用和催化作用比较小,能用于高温分析,特别是应用于分析极性组分时易获得对称峰。

②玻璃微球

玻璃微球是一种有规则的颗粒小球。它具有很小的表面积,通常把它看做是非孔性、表面惰性的载体。为了得到较为理想的表面特性,增大表面积,使用时往往在玻璃微球上涂敷一层固体粉末,如硅藻土、氧化铁、氧化锆等[11,12]。也有人用含铝量较高的碱石灰玻璃制成蜂窝状结构的低密度微球;或用硅酸钠玻璃制成表面具有纹理的微球;或用酸、碱腐蚀法制

成表面惰性、多孔性的微球等。这类载体的优点是能在较低的柱温下分析高沸点物质,使某些热稳定性差但选择性好的固定液获得应用。缺点是柱负荷量小,只能用于涂渍低配比固定液。另外,柱寿命较短。国产玻璃微球性能很好,已有各种筛目的多孔玻璃微球载体可供选择。

③氟载体

这类载体的特点是吸附性小、耐腐蚀性强,适合用于强极性物质和腐蚀性气体分析。其缺点是表面积较小,机械强度低,对极性固定液的浸润性差,涂渍固定液的量一般不超过5%。这类载体主要有两种,常用的是聚四氟乙烯载体,通常可以在200℃柱温下使用。随着聚合和加工条件的变化,不同型号的聚四氟乙烯载体其表面结构略有差异。国外的产品有Teflon, Chromosorb T, Halopart F等,国内上海试剂总厂也有产品。除聚四氟乙烯载体外,还有聚三氟氯乙烯等氟氯载体,如国外的产品Ekatlurin, Daiflon, Kel-F300和Halopart K等。与聚四氟乙烯载体相比,氟氯载体的颗粒比较坚硬,易于填充操作,但表面惰性和热稳定性较差,使用温度不能高于160℃。

(2)载体的表面活性和去活方法

一种理想的载体,其表面应该无吸附性和催化性,在操作条件下不与固定液和样品组分反应。但是实际上载体表面完全没有吸附性能和催化性能是不可能的。实验表明,经过灼烧后制成的硅藻土类载体,其表面既有催化活性,也有吸附活性。当载体表面存在氢键活性作用点时,分析能与硅醇、硅醚形成氢键的物质例如水、醇、胺等一类化合物时就会观察到相应组分色谱峰的拖尾;同样,用具有酸性(或碱性)作用点的载体分离碱性(或酸性)化合物时也会引起相应色谱峰的拖尾,甚至发生一些醇类、萜类、缩醛类等化合物的催化反应。引起载体表面活性的原因主要有三:

⑴表面硅醇基团。载体表面存在的硅醇基团(-Si-OH )能与醇、胺、酸类等极性化合物形成氢键,发生吸附,引起色谱峰的拖尾;

⑵无机杂质。载体中通常存在少量金属氧化物,在表面形成酸性或碱性活性基团。酸性活性基团能吸附碱性化合物甚至发生催化反应。碱性活性基团可以引起酸类及酚类物质的吸附,造成色谱峰严重拖尾。

⑶微孔结构。硅藻土载体本身有许多孔隙,孔隙的分布与孔径的大小对载体性质有很大影响。孔径小于1m的微孔会妨碍气体扩散,还会产生毛细管凝聚现象。例如红色载体存在许多这种微孔,它是产生吸附的主要原因。

为了取得好的分离效果,特别是在分析极性、酸碱性以及氢键型样品时获得对称的色谱

峰,人们常采用下述方法对载体进行预处理:

⑴酸洗: 通常用6 mol/L盐酸浸泡载体,加热处理20~30 min,然后用水冲洗至中性,用甲醇淋洗、烘干、过筛。也可以用王水或硝酸进行酸洗处理。载体经酸洗后可除去无机杂质,减小吸附性能,适用于分析酸性物质和脂类。使用中应当注意,经酸洗的载体催化活性较大。例如在高温下会使SE-30的硅氧链断裂,PEG-400裂解。不宜分析碱性化合物和醇类。

⑵碱洗: 将酸洗载体用10%NaOH-甲醇溶液浸泡或者回流,再用水冲洗至中性,最后用甲醇淋洗、烘干备用。碱洗载体的表面酸性作用点较低,适合于胺类等碱性化合物的分析。但碱洗载体的表面仍残留有微量游离碱,可能会引起非碱性物质(如脂类)的分解。

⑶硅烷化: 硅烷化是消除载体表面活性最有效的办法之一。它可以消除载体表面的硅醇基团,减弱生成氢键作用力,使表面惰化。一般的方法是将载体用5~8%硅烷化试剂的甲苯溶液浸泡或回流,然后用无水甲醇洗至中性,烘干备用。常用的硅烷化试剂有二甲基二氯硅烷(DMCS)、三甲基氯硅烷(TMCS)和六甲基二硅氨烷(HMDS)。以DMCS的硅烷化效果最好,HMDS其次,TMCS较差。如果用酸洗的载体进行硅烷化,其效果比末酸洗的更好。硅烷化载体适用于分析水、醇、胺类等易形成氢键而产生拖尾的物质。载体经硅烷化处理后,表面由亲水性变成了疏水性,比表面也相应缩小2~3倍。因此,一般只能涂渍非极性或弱极性固定液,操作温度也应控制在270℃以下。

⑷釉化: 目的是堵塞载体表面的微孔,改善表面性质。通常将欲处理的载体置于%的

Na2CO3-K2CO3 (1∶1)水溶液中浸泡两昼夜,烘干后在870℃灼烧,再升温到980℃灼烧约40 min。经过这样处理后,载体表面产生了一层玻璃状的釉质,从而屏蔽或惰化了载体表面的活性中心,增加了机械强度。釉化载体适于分析醇、酸类极性较强的物质,但分析甲醇、甲酸时有不可逆的化学吸附,分析非极性物质时柱效较低。

以上几种经过表面处理的色谱载体国内都有产品出售。

(3)载体的选择原则与评价

载体性能的优劣对样品的分离起着重要的作用,实际工作中主要依据分析对象、固定液的性质和涂渍量来选择载体:

⑴固定液: 当固定液的涂渍量大于5%时,可以选用白色或红色硅藻土载体;若涂渍量小于5%,则应选用处理过的硅烷化载体;

⑵分析对象: 当样品为酸性时,最好选用酸洗载体,样品为碱性时用碱性载体。对于高沸点组分,一般选用玻璃微球载体,分析强腐蚀性组分时应选用氟载体。

常用的载体粒度一般在80~100目范围,为提高柱效也可使用100~120目。

对载体进行评价是为了比较不同处理方法或处理前后的效果,确定最佳处理条件。方法之一是将不涂固定液的裸载体填装到色谱柱中,选用丙酮、苯等有代表性的组分进行考察,测定相应的保留值、峰形和柱效。载体的吸附性越强,相应组分的保留时间则越长,峰形拖尾越严重,柱效越低。 (二)固定液

固定液是气液色谱柱的关键组成部分。它的种类繁多, 应用极其广泛。与气固色谱柱中的吸附剂相比,固定液的优点主要是在通常的操作条件下, 组分在两相间的分配等温线多是线性的,因此比较容易获得对称峰。

(1)对固定液的要求

适合用作气相色谱固定液的物质应能满足以下一些基本要求:

①在操作温度下呈液态,粘度越低越好。组分在粘度高的固定液中传质速度慢,柱效下降。这决定了固定液的最低使用温度。

②蒸气压低,热稳定性好。这样可以减少固定液的流失,延长色谱柱的使用寿命。这两者决定了固定液的最高使用温度。

③化学惰性高,润湿性好。化学惰性高是指固定液不与组分、载体、 载气发生不可逆化学反应。润湿性好则可以使固定液均匀涂布在载体表面或毛细管柱内壁,形成结构稳定的薄层。

④有良好的选择性。选择性好的固定液对沸点相同或相近而类型不同的物质具有分离能力,即保留一种类型化合物的能力大于另一种类型。

固定液的选择性取决于被分析组分与固定液两者分子之间的相互作用力[14]

。这种作用力

有以下几种

[13]

:

i 、静电力: 这是极性分子永久偶极间的作用力,由此力形成的平均势能(E k )为:

6

2

2

2132kTR E k μμ-

=

(2—1)

式中k 为玻兹曼常数,T 是开尔文温度,负号表示吸引力。从式2—1可见,静电作用能与两极性物质分子间的距离R 的六次方及绝对温度T 成反比,与两物质的偶极距μ1,μ2的平方成正比。

ii 、诱导力: 这是非极性分子受极性分子永久偶极电场作用而产生诱导偶极时二者之间的作用力。由此力产生的平均作用能(E D )为:

6

212221R

E D μαμα+= (2—2)

式中μ1,μ2分别是固定液与组分的偶极矩。由式2—2可见,若两个分子的偶极距越大,诱导作用能则越大。如果两个分子越接近或分子体积越小,则诱导作用越强。

iii 、色散力: 这是非极性分子(弱极性分子)间由于分子内电子振动所产生的瞬时偶极而引起的相互作用力。这种力的相互作用能(E L )可表达为:

6

21212123R I I I I E L αα+-

=

(2—3)

式中I 1,I 2是固定液和组分分子的电离能,α1与α2分别为其分子的极化率, R 为分子间距。色散力不受温度影响,具有加和性。对于非极性(弱极性)的物质而言,分子间的作用力主要是色散力。

iv 、氢键作用力: 这是与电负性原子(如N ,O ,F 等) 形成共价键的氢原子又和另一个电负性原子所生成的一种有方向性的相互作用力,常称为范德华力。这种作用力介于化学键力和色散力之间,通常在5~10 KCal/mol 。

有机化合物形成氢键的能力按下列顺序递降: ⑴能形成三维空间结构的强氢键的化合物。如水、多元醇、氨基醇、羟基酸、多元酸、酰胺、多元酚等。⑵含α-活泼氢原子和带自由电子对的原子(O ,N ,F)的化合物。如醇、脂肪酸、酚、伯胺、仲胺、肟、硝基化合物、有α-氢的腈、以及氨、肼、氟化氢等。⑶含电负性原子(O ,N ,F)但不带活泼氢原子的化合物。如醚、酮、醛、酯、叔胺、以及有α-氢原子的腈和硝基化合物。⑷含有活泼氢原子但不带电负性原子的化合物。如二氯甲烷、三氯甲烷、芳烃、烯烃等。⑸不能形成氢键的化合物。如饱和烃、二硫化碳、硫醇、四氯化碳等。

“极性”一词常用来描述或评价固定液的性质。气相色谱中的所谓极性,是指含有不同功能团的固定液与分析物质的功能团和亚甲基之间相互作用的程度。如果一种固定液保留某种化合物的能力大于另一类,则认为这种固定液对于前一类化合物有较高的选择性。人们最初用来描述和区别固定液分离特性的方法是罗胥耐德(Rohrschneider)于1959年提出的相对极性方法。他首先规定固定液β,β-氧二丙腈的相对极性为100,角鲨烷为零, 选用正丁烯与正丁烷或环已烷与苯作为物质对,然后分别测定物质对在氧二丙腈、角鲨烷以及被测固定液柱上的相对调整保留值并取对数,被测固定液的相对极性(P x )按下式计算:

2

11)(100100q q q q P x x ---

= (2—4)

式中q 1, q 2, q x 分别是物质对在氧二丙腈、角鲨烷、被测固定液柱上的相对调整保留值的对数。

P x 值越大,说明极性越大。这种方法主要反映的是组分和固定液分子间的诱导力。考虑到固

定液与组分分子之间相互作用的复杂性(偶极矩、色散力、氢键作用力等),1966年他又提出采用某标准物质(M)在某一固定液(P)和非极性固定液(S) 的保留指数之差(I)来衡量该固定液(P)相对极性的大小,即:

I p M

= I p - I s

(2—5)

式中I p 及I s 分别为标准物质M 在被测固定液(P)和非极性固定液(S)上的Kovats 保留指数。S 通常选用角鲨烷,并规定在100℃下进行实验。为了全面反映被测固定液的分离特征,选用的标准物是5种不同性质的物质,其中用苯作为电子给予体,乙醇作为质子给予体,甲乙酮代表定向偶极力,硝基甲烷代表电子接受体,吡啶代表质子接受体。根据分子间作用力的相加性,被测固定液的极性则用下式表示:

I p M

= I p - I s = aX + bY + cZ + dU + eS

(2—6)

式中a, b, c, d, e 是标准物的各种极性因子,叫做组分常数。X ,Y ,Z ,U ,S 是固定液各种作用力的极性因子,叫做固定液常数。组分常数随标准物的不同而异,对不同的固定液则为常数。由于5种标准物质分别代表不同的作用力, 故人为规定它们的“组分常数”如表2-4。 表2-4 5种标准物的组分常数

[3]

━━━━━━━━━━━━━━━━━━━━━━━━━━ 组 分 常 数 标准物质

a b c d e ────────────────────────── 苯 100 0 0 0 0 乙醇 0 100 0 0 0 甲乙酮 0 0 100 0 0 硝基甲烷 0 0 0 100 0 吡啶 0 0 0 0 100 ━━━━━━━━━━━━━━━━━━━━━━━━━━

如果将表2-4中标准物的组分常数代入式2-6,则可得到相应的固定相常数为:

100/苯I X ?=;100

乙醇I Y ?=;

100甲乙酮I Z ?=

100硝基甲烷I U ?=

100

吡啶I S ?=

(2—6)

求得的X ,Y ,Z ,U ,S 值,即表示固定相极性的罗氏常数。数值越大极性越强。

对于罗氏所建议的方法,有些人仍认为不够完善。1970年麦克雷诺(McReynolds)对这一方法提出改进方案。他采用丁醇、 2-戊酮和硝基丙烷分别取代罗氏所用的乙醇、甲乙酮和硝基甲烷,实验温度改为120℃。为了与罗氏常数相区别,相应的麦氏常数用X',Y',Z',U',S'表示。许多色谱手册都列有这两种常数,但罗氏常数现在人们已经不太常用,使用比较广泛的是麦氏常数。

固定相的评价是一个比较复杂的问题。不论是罗氏常数还是麦氏常数,许多人认为都还有不少缺点[13-15]。为了寻求比较完美的表征方法,近年来Abraham等人[16-19 ]提出了一种“溶剂化参数模型”(solvation parameter model)。这一模型将溶质分子从气相溶解到固定相的过程分为三个阶段:(1)在固定相中形成一定大小的空穴。这一过程要打破溶剂-溶剂分子间的“键”,是一个吸收能量的过程。溶质分子越大,需要打破的溶剂-溶剂分子间的“键”越多,吸收的能量也越多。如果仅考虑这一阶段,溶质分子越大,其保留值越小;(2)孔穴周围的溶剂分子重新排列。这一过程虽然与熵及焓有关,但对Gibbs自由能的贡献不大;(3)溶质进入孔穴。这一过程产生溶质和溶剂之间的各种作用力。所有作用力都会导致释放能量,有利于溶质的溶解。根据这一模型,Abraham提出某溶质在某固定相上的保留值用下式表示:

Log K L = C + r R2 +s∏H2 + aαH2 + bβH2 + l㏒L16(2-7)

式中K L为比保留体积;R2、∏H2、αH2、βH2、㏒L16是描述溶质性能的参数:R2:溶质修正的摩尔折光指数;∏H2:溶质的偶极;αH2:溶质的氢键酸性(给质子性);βH2 :氢键碱性(受质子性);㏒L16:溶质在正十六烷烃上25℃时的保留值。这些溶质性能的参数可以从平衡常数或从气相色谱测定的数据计算而得到。而式中的c、r、s、a、b、l是表征固定相保留能力的常数,每种固定相有其特定值。其中c为常数;r是表示溶剂与n-电子对及-电子对作用能力的常数;s表示溶剂参与静电和诱导作用能力的常数;a是度量溶剂参与氢键碱性作用能力的常数;b为度量溶剂参与氢键酸性作用能力的常数;l则是溶剂孔穴形成和溶剂-溶质间色散力大小的常数。从色谱角度它表示分离同系物能力的大小。

溶剂化参数模型有其科学性的方面,但是要确定一个新的固定相的溶剂化参数,其实验和计算过程不如测定麦氏常数的方法那样简单易行,得到的表征固定相保留能力的常数c、r、s、a、b、l,其代表性是否优于麦氏常数,仍有待人们继续作进一步深入探索。

(2)选择固定液的原则和方法

到目前为止,固定液的选择尚无严格规律可循,多数情况下往往是根据文献的记载再经过实验比较才能最后确定。这里仅讨论固定液选择的一般原则和方法。

对于日常分析的样品,通常可知道大多数组分的性质,初步确定难分离物质对。此时固定液的选择应遵循“相似相溶”的基本原则。即对于非极性的样品,应首先考虑用非极性固定液分离。这时固定液与被分离组分间主要靠色散力起作用,固定液的次甲基越多,则色散力越强,各组分基本上按沸点顺序彼此分离,沸点低的组分先流出。如果被分离的组分是极性和非极性的混合物,则同沸点的极性物质先流出。对于极性物质的分离,应首先考虑选用极性固定液。这类固定液分子中含有极性基团,组分与固定液分子间的作用力主要为静电力,诱导力和色散力处于次要地位。各组分流出色谱柱的次序按极性排列,极性小的先流出,极性大的后流出。如果样品是极性和非极性的混合物,则非极性组分先流出,而且固定液极性越强,非极性组分流出越快,极性组分的保留时间就越长。对于分离能形成氢键的样品,如水、醇、胺类物质,一般可选择氢键型固定液。此时组分与固定液分子间的作用力主要为氢键作用力,样品组分主要按形成氢键能力的大小顺序分离。

利用固定液与被分离组分分子间生成弱的化学键这种特殊的作用力,有时也能实现一些组分的分离。例如在极性和氢键型固定液中加入硝酸银,由于固定液中的银离子能和样品分子中的不饱和键生成松散的化学加成物,增大了烯烃在色谱柱内的保留,使其在同碳数的烷烃之后流出。又如使用硬脂酸锌等重金属脂肪酸脂作固定液时,由于脂肪胺与这种固定液的络合能力存在差异,故可选择地分离胺类。此外,某些固定液对芳烃具有特殊选择性,在实际工作中常有一定价值。常用的这类固定液有: 聚乙二醇、磷酸三甲酚酯、四氯代邻苯二甲酸脂、3,5—二硝基苯甲酸乙二醇脂等。这些固定液往往与被分离的芳烃形成所谓的π-络合物,固而对芳烃产生选择性保留,而脂肪烃则较快地流出色谱柱。

(3)常用固定液

可以用作气相色谱固定液的物质很多,已被采用的有近千种。按我国国家标准GB2991-82的规定,根据化学结构的不同,这些固定液可被分为烃类、聚硅氧烷类、聚二醇及聚烷基氧化物、酯类、其它含氧化合物、含氮化合物、含硫及硫杂环化合物、含卤素化合物及其聚合物、无机盐、其它固定液,共10类。在这些已被使用的近千种固定液中,实际上有许多固定液其色谱分离性能相同或者近似,我们可以限定少数几种或几十种固定液代替种类繁多的固定液,使人们在有限的几种固定液范围内进行选择,使分析工作简化。

1970年,Preston等[20 ]依据文献资料的统计,提出了21种最为常用的固定液。后来Leary 等[ 21]采用“最相邻技术”考察了各种固定液的相似程度,认为12种可以作为常用固定液。Leary 确定常用固定液的标准是,色谱性能具有代表性;便于重复制备与精制;热稳定性好,使用温度范围宽;具有各种类型的作用力,极性范围广。现在文献中出现次数最多,使用几率最

大,即可以认为最常使用的固定液为: OV-101(甲基聚硅氧烷);OV-17(50%苯基的甲基聚硅氧烷);OV-210(50%三氟丙基的甲基聚硅氧烷);Carbowax 20M(聚乙二醇,平均分子量2万);DEGS(二乙二醇脂丁二酸)。这组常用固定液性能稳定,极性间距均匀,应用面广,可从解决大量的一般性分析问题。

表2-5 五种常用固定液的性能

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

固定液型号麦氏平均极性常用溶剂使用温度类似型号

────────────────────────────────────

甲基聚硅氧烷 OV-101 43 氯仿 0/350 SE—30

────────────────────────────────────

苯基(50%)甲 OV-17 177 已烷 0/350

基聚硅氧烷

────────────────────────────────────

三氟丙基(50%) OV-210 300 氯仿 0/275 QF—1

甲基聚硅氧烷

────────────────────────────────────

聚乙二醇-200M Carbowax 20M 462 氯仿 60/250

────────────────────────────────────

二乙二醇丁 DEGS 586 丙酮 20/200

二酸脂

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

(4)新型高选择性固定液

新型高选择性固定液是一类特殊固定液,主要用于一些特殊样品的分析,例如不对称

选择合成中对映体纯度及过剩量的测定,手性药物中对映体纯度以及天然产物绝对构象的

测定等。这类特殊固定液不仅在毛细管气相色谱中应用广泛,在填充柱气相色谱中也有不

错的应用效果。

新型高选择性固定液主要有过渡金属混合物、液晶、手性化合物及有机盐类等。过渡金属混合物通常用于分离顺反异构体,被称为“超选择性”的填料。将其涂敷在载体或吸附剂的表面可用于各种顺反异构体的分离。液晶是“液态晶体”的简称。是某些有机物在

气相色谱-DBFFAP毛细管柱测定工作场所空气中1,4—丁二醇

气相色谱-DBFFAP毛细管柱测定工作场所空气中1,4—丁二醇 发表时间:2014-04-28T14:56:15.513Z 来源:《中外健康文摘》2013年第44期供稿作者:罗诚程剑盛荣健轩杰 [导读] 为了满足现场测定的需要,可用活性碳管采样,便于携带,方法简单,快速,灵敏。 罗诚程剑盛荣健轩杰(江苏省南京鼓楼医院集团仪化医院预防保健中心 211900) 【摘要】目的:建立工作场所空气中丁二醇的采样和测定方法。方法:用活性碳管采样,气相色谱仪测定。结果:方法的检出限为0.4μg/ml,当标准溶液浓度为50~400μg/ml时,相对标准偏差为4.6%~1.5%,相关系数为0.999。测定范围为50~400μg/ml。活性碳管解吸效率为88%~95%。样品在采样管中能稳定7d。结论:测定的各项指标均符合“工作场所空气中有毒物质监测研究规范”和劳动卫生检测的要求。 【关键词】丁二醇甲醇气相色谱仪超声解吸仪 【中图分类号】R122.1 【文献标识码】A 【文章编号】1672-5085(2013)44-0271-02 化学物质:1,4-丁二醇(简称BDO)CH2OH-CH2-CH2-CH2OH是一种重要的有机和精细化工原料,它被广泛应用于医药、化工、纺织、造纸、汽车和日用化工等领域。由BDO可以生产四氢呋喃(THF)、聚对苯二甲酸丁二醇酯(PBT)、γ-丁内脂(GBL)和聚氨酯树脂(PUResin)、涂料和增塑剂等,以及作为溶剂和电镀行业的增亮剂等。目前检测1.4-丁二醇的方法有:玩具材料中1,4-丁二醇的检测方法气相色谱-质谱法。为了满足现场测定的需要,可用活性碳管采样,便于携带,方法简单,快速,灵敏。 1 仪器 活性碳管(溶剂解吸型),分别装100 mg/50 mg活性炭。采样器,流量范围:0~1L /min解吸管2ml。气相色谱仪。 1.1试剂丁二醇(分析纯)标准溶液配制:称取一定量的丁二醇,用10%甲醇溶解并定量。计算溶液中丁二醇的浓度,临用前用10%甲醇稀释成400μg /ml浓度的标准溶液。 2 样品的采集、运输和保存。现场采样按照GBZ 159执行 2.1短时间采样:在采样点,打开活性碳管两端,以500ml/min 流量采集15min空气样品。 2.2长时间采样:在采样点,打开活性碳管两端,以50ml/min 流量采集2~8h空气样品。 2.3个体采样:打开活性碳管两端,佩戴在采样对象的前胸上部,尽量接近呼吸带,以50ml/min 流量采集2~8h空气样品。 3 分析步骤 3.1对照试验:将活性碳管带至采样点,除不连接采样器采集空气样品外,其余操作同样品,作为样品的空白对照。 3.2样品处理:将采过样的活性碳前后段分别倒入溶剂解吸瓶中,加入2.0ml 解吸液,封闭后,超声解吸30min。解吸液供测定。若样品液中待测物的浓度超过测定范围,可用解吸液稀释后测定,计算时乘以稀释倍数。 3.3气相色谱仪操作条件毛细管柱:DBFFAP(30m×0.25mm×0.25um);毛细管柱流速5ml/min;毛细管柱压力28.931psi;毛细管柱平均流速78.448cm/sec。进样口:加热器220℃;压力28.931psi;隔热吹扫流量3ml/min;模式:不分流;柱箱温度210℃;保持5min。检测器300℃。氢气:30ml/min;空气:400ml/min;尾吹25mL/min. 3.4样品测定:用测定标准系列的操作条件测定样品和空白对照解吸液,测得的样品峰高或峰面积值减去空白对照的峰高或峰面积值后,由标准曲线得丁二醇的浓度(μg/ml)。 3.5标准曲线的绘制:用10%甲醇稀释标准溶液成0.0μg/ml、50.0μg/ml、100.0μg/ml、200.0μg/ml、400.0μg/ml丁二醇标准系列。参照仪器操作条件,将气相色谱仪调节至最佳测定状态,分别进样1.0ml,测定各标准系列。每个浓度重复测定3次。以测得的峰高或峰面积均值对相应的丁二醇浓度(μg/ml)绘制标准曲线。 3.6计算按下公式计算空气中1.4丁二醇的含量 2(c 1+c2)v C = ———————— Vo D 4 讨论 4.1方法的检出限。在本法选定的最佳测定条件下,方法的检测限为0.4μg /ml,最低检测浓度为0.4mg/m3 (采样体积为7.5L) 4.2活性碳管解吸效率试验。取18支碳管,加入高低(10mg,5mg)浓度的丁二醇,放置过夜,供其平衡。测得解吸效率为88% ~95%。 4.3线性范围。本法的线性范围是0~400mg/L,当采样体积为7.5升时相当空气中丁二醇浓度0~40mg/m3。 4.4稳定性试验。标准溶液在室温放置可保存15d。冰箱可放置1个月 4.5方法精密度。取50、100、2000mg/L三个浓度分别重复测定5次,其相对标准偏差分别为3.6%、2.7%、2.1%。 4.6干扰试验。在生产现场,存在1.3丁二醇,苯醚,乙醛,1.2-乙二醇等均不干扰其测定。 5 小结 毛细管柱检测空气中丁二醇时所用时间一般都要4分钟左右走完所有的色谱峰,主峰一般在平均2.5分钟左右出现,所以做低浓度丁二醇时,一定要分清楚是否是1,4-丁二醇,可根据出峰时间点作出判断,一般1,3丁二醇出峰时间比1,4丁二醇快一些。还有关于分流是否打开也做了研究。建议不开分流峰形也很稳定并且灵敏度很高。还可以根据色谱柱流速的大小调节出峰的快慢,这次研究因色谱柱原因最高可以调节流速为5ml/min。出峰时间在4min以内。可根据仪器性能的不同适当调节。 参考文献 [1]中国卫生检验杂志2008年10月第18卷第10期Chinese Joumal of Health Laboratory Technology,Oct 2008:Vol 18 No 10 [2]Deborah L Zvosec,Stephen W Smiht ,J Rod MeCutcheon,et al Adverse events ,including death ,associated with the ues of 1.4-Butancdiol [J].N Eng J Med ,2001, (344):87-94 [3]Roopa Kapadia ,Mark Bahlke ,Timath J ,Maher .Detection of r-hydroxybutyrale in striatal microdialysates following peripheral 1.4-butanedionl administradion in rats [J] .Life Sei ,2007,80(11):1046-1050

常用毛细管色谱柱对应表

毛细管柱应用范围及使用温度 一、SPB-1型非极性柱(键合,聚二甲基硅氧烷) 对照品牌:HP-1,DB-1,BP-1,CP-SIL 5CB,UItra-1,007-1,RTx-1,AT-1 类似固定相:SE-30,SP-2100,OV-1,OV-101 使用温度:-60℃-320℃ 应用范围:烷烃,芳烃,多环芳烃,醇,酚,酮,酯,醛,胺,卤代烃,吡啶,糖衍生物,氨基酸衍生物,维生素衍生物,镇痛药,农药,溶剂,胆固醇,香料,咖啡,食品添加剂等 二、SPB-5型弱极性柱(键合,5%苯基,95%甲基聚硅氧烷) 对照品牌:HP-5,DB-5,BP-5,CP-SIL 8CB,UItra-2,007-2,RTx-5,AT-5 类似固定相:SE-54,SE-52,OV-73 使用温度:-60℃-320℃ 应用范围:烷基苯,多环芳烃,醇,酚,酮,脂肪酸酯,苯二甲酸酯,硝基芳烃,芳胺,烷基胺,联苯胺,卤代烃,多氯联苯,糖类衍生物,维生素衍生物,有机酸,镇痛药,农药,抗组胺药,溶剂,生物碱,防腐剂,香料等

三、SUPELCOWAX 10型极性柱(键合,聚乙二醇二万) 对照品牌:HP-Wax,DB- Wax,BP-20,CP- Wax 52CB,HP-INNO Wax,AT- Wax 类似固定相:PEG-20M,CARBOWAX-20M 使用温度:35℃-280℃ 应用范围:低沸点芳烃,醇,酮,酯,醛,醚,乙二醇,丙二醇,甘油,吡啶,胺,亚硝胺,卤代烃,胆汁酸衍生物,冰片,薄荷,精油,香料,酒,苯乙烯,茶,溶剂等 四、SPB-50型中等极性柱(键合,50%二苯基,50%二甲基聚硅氧烷) 对照品牌:HP-50,HP-17,DB-17,007-17,RTx-50,AT-50 类似固定相:OV-17,SP-2250 使用温度:30℃-310℃ 应用范围:烷烃,低沸点芳烃,多环芳烃,醇,甘油三酸酯,喹啉,卤素化合物,精油,香料,农药,酯,镇痛药,除草剂等 五SPB-1701型中等极性柱(键合,14%氰丙基,86%二甲基聚硅氧烷) 对照品牌:HP-1701,DB-1701,007-1701,RTx-1701,AT-1701,BP-10,CP-Sil 19CB 类似固定相:OV-1701,SP-2250 使用温度:室温-280℃ 应用范围:醇,卤素化合物,有机氯农药,酸性药物,有机磷,除草剂等

气相色谱毛细管柱使用知识

气相色谱毛细管柱使用知识 气相色谱毛细管柱因其高分离能力、高灵敏度、高分析速度等独特优点而得到迅速发展。随着弹性石英交联毛细管柱技术的日益成熟和性能的不断完善,已成为分离复杂多组分混合物、及多项目分析的主要手段,在各领域应用中大有取代填充柱的趋势。现在新型气相色谱仪、气相色谱-质谱联用仪基本上都是采用毛细管色谱柱进行分离分析。但是,毛细管色谱柱柱内径较小,固定液的膜薄,用于食品中残留物分析时,若使用不当,色谱柱性能很快就会下降。 毛细管柱只能安装在配有专用毛细管柱连接装置的气相色谱仪上。现在购买仪器时最常规的配置是配毛细管分流/不分流进样口。 毛细管色谱柱的类型 毛细管色谱柱的类型有很多种,但目前最常用和商品化的,是开口熔融石英交联毛细管色谱柱。下面介绍此类毛细管色谱柱的性能特点。 一、熔融石英毛细管柱 (1) 熔融石英毛细管柱材料 现在市售商品化的气相色谱用毛细管柱几乎都是由熔融石英制作的,简称石英毛细管柱。制作毛细管柱用的石英纯度非常高,几乎无其它杂质。它具有熔点高(近2000℃)、热膨胀系数低、化学稳定性好和抗张强度高等特点,是制备毛细管柱的理想材料。

毛细管柱内壁存在有许多具有吸附活性的基团,这些基团的存在直接影响固定相涂渍效果,所以,在涂渍固定相之前,柱表面必须经过适当预处理,以期得到较高的柱效和对称的色谱图形。 (2) 石英毛细管柱的聚酰亚胺外涂层 石英毛细管柱很脆,只有在毛细管柱外涂一层聚酰亚胺保护材料后才具有很好的弹性,在使用这样的色谱柱时应十分小心,避免将聚酰亚胺涂层损坏,导致毛细管柱易折断。 通常商品毛细管柱出厂时都固定在一个金属丝制作的柱架上,柱架的直径与毛细管柱的直径成正比,即:毛细管柱的直径越大,固定架的直径也就越大。对于0.53mm 内径的毛细管柱,过度弯曲很容易折断,使用安装时要格外小心。 石英毛细管柱外涂层还有采用镀铝膜的,这类柱子适用于高温分析。但日常分析工作中使用较少,这里不作详细介绍。 二、液体固定相 将固定相均匀涂渍在毛细管柱的内壁,制成壁涂型毛细管柱,这类毛细管柱属非交联型毛细管柱。现在只有少部分的非交联固定相的毛细管柱在使用。非交联毛细管柱的固定相容易流失,不能清洗,因此使用寿命较短,但制作成本较低,涂渍相对较容易,往往在毛细管柱研制前期过程中采用此方法。在使用这类毛细管色谱柱时,应注意使用温度不要超过液体固定相的最高使用温度。建议不要在气相色谱-质谱联用仪上使用。 三、交联固定相 现在市售的商品毛细管色谱柱基本上均采用交联技术,将固定相与石英表面结合起来,在毛细管柱表面形成一层不溶的类似橡胶的非常稳固的涂层。被交联的固定相与涂渍的固定相相比,流失低,抗污染,热稳定性好,使用寿命长。

安捷伦公司毛细管色谱柱

安捷伦公司毛细管色谱柱 安捷伦公司的毛细管色谱柱自从Agilent公司合并了JW公司后其品质已达到世界一流水准就连它的价格也和DB系列完全一致。 HP-1-二甲基聚硅氧烷柱 说明:这是最常用的非极性键合固定相,HP-1(二甲基聚硅氧烷),具有极好的热稳定性并且在高温下流失很小,具有低的检测限 相似的固定相:DB-1,Rtx-1,SPB-1,CP Sil5CB,MDN-1,DB-1h.t.,AT-1007-1 恒温/程序升温温度范围:-60至325/350℃,-60至300/320℃0.53内径,-60至260/280℃>2.0mm 液膜 应用:胺类、烃类、农药、多氯联苯、酚类、含硫化合物 HP-125m,0.20mm,0.33um HP-130m,0.32mm,0.25um HP-115m,0.25mm,0.25um HP-130m,0.32mm,1.0um HP-130m,0.25mm,0.25um HP-160m,0.32mm,0.25um HP-160m,0.25mm,0.25um HP-115m,0.53mm,1.5um HP-130m,0.53mm,2.65um HP-35-二苯基-65%-二甲基硅氧烷共聚物 说明:HP-35柱是用苯基取代甲基的聚硅氧烷固定相柱。EPA(美国环保暑)方法8081和UPS(美国药典)G-42中已经指定用此固定相。HP-35的中极性使其成为分析杀虫剂、除草剂、药物和胺的良好选择。 相似的固定相:DB-35,Rtx-35,SPB-35,AT-35,Sup-herb 等温/程序升温温度范围:-40至300/320℃40至280/300℃ 应用:芳氯物(Aroclors)、胺类、杀虫剂、药品 HP-3515m,0.25mm,0.25um HP-3530m,0.32mm,0.15um HP-3530m,0.25mm,0.25um HP-3530m,0.32mm,0.25um HP-35,60meter,0.25mm,0.25um HP-3530m,0.32mm,0.5um HP-FFAP(键合和改性的交联聚乙二醇) 说明:HP-FFAP柱主要特点是能够分析有机酸、游离脂肪酸或用于一些需要定量分析微量酸样品。这一固定相经过改性并具有很强惰性,适合于分析溶于水的酸,碳数高达C24的脂肪酸可以用此柱进行分析,而无需费时费钱的衍生化处理。HP-FFAP柱是交联又键合的色谱柱,可以避免在进水样是色谱柱被毁坏,操作在60℃到260℃之间,不需要事先进行预处理即可得到好的结果,此柱可以用溶剂冲洗,延长寿命。 相似的固定相:DB-FFAP Stabilwax,OP WAX58cb,Nukol SP1000D 等温/程序升温温度范围:60至240/250℃对0.35mm内径柱,60℃到230/240℃ 应用:磷类、醇类、醛类、酮类、腈类。 HP-FFAP25m,0.20mm,0.3um HP-FFAP,30m,0.32mm,0.25um HP-FFAP,30m,0.25mm,0.25um HP-FFAP30m,0.53mm,1.0um HP-FFAP25m,0.32mm,0.5um HP-PLOT分子筛色谱柱 说明:对于需要分离氩气和氧气而不用昂贵的低温冷却的应用实验中,选择厚膜HP-PLOT Molesieve/5A柱。对大部分应用来说,经济的厚膜柱比较理想,包括在不到10秒的常规空气检测和分析。薄膜柱可在次低温下分离氩气和氧气。 相似的固定相:CP Molesieve5A,GS Molesieve,RT-Msieve13X,Mol Sieve5A-PLOT 等温/程序升温温度范围:350℃ 应用:稀有气体,永久气体。

选择毛细管柱的几个指标

选择毛细管柱的几个指标 本部分介绍了毛细管柱的固定液、内径、柱长度和膜厚的内容。 一、固定液使用 固定相: AT SE-30,AT OV-1 组成100%甲基聚硅氧烷 极性非极性 应用碳氢化合物 同类型号DB(HP) -1、AC1、SPB-1、CPSIL5、DM-1、RT-1 使用温度50—300℃ 固定相: AT OV-101 组成100%甲基聚硅氧烷(胶体) 极性非极性 应用氨基酸、基油 同类型号HP-101、AC1 、SP-2100 使用温度0—350℃ 固定相: AT SE-52AT SE-54 组成5%苯基甲基聚硅氧烷,1%乙烯基5%苯基甲基聚硅氧烷 极性非极性 应用多核芳烃、酚、酯、碳氢化合物、药物、醇 同类型号DB(HP)-5、AC5、SPB-5、DM-5、CPSiL8、Rtx-5 使用温度50—350℃ 固定相: AT OV-1701 组成7%氰丙基7%苯基甲基聚硅氧烷 极性非极性 应用药物、醇、酯、硝基化合物 同类型号DB(HP)-1701、AC10、DB-1701、SPB-1701、RT-1701、CP-Sil 19CB 使用温度0—280℃ 固定相: AT XE-60 组成25%氰乙基甲基聚硅氧烷 极性中极性 应用酯、硝基化合物 同类型号DB (HP) -225、AC225 使用温度0—280℃ 固定相: AT OV-17 组成50%苯基甲基聚硅氧烷 极性中极性

应用药物、农药 同类型号DB(HP)-17、AC10 使用温度0—250℃ 固定相: AT FFAP 组成聚乙二醇—TPA改性 极性极性 应用酸、醇、醛、酯、腈、酮、基油 同类型号DB (HP) –FFAP、SP-1000、Supecl-NUKOL、AC20 使用温度50—250℃ 固定相: AT PEG-20M 组成聚乙二醇—20M 极性极性 应用 同类型号HP- Wax、DB-Wax、AC20 使用温度50—200℃ 固定相: AT 农残Ⅰ号AT 农残Ⅱ号 组成 极性 应用六六六、DDT等八种含氯农药拟除虫菊酯类、含磷类农药 同类型号SPB-608、HP-608 使用温度25—300℃ 二、毛细管柱内径 0.53mm 具有近似填充柱的负荷量,总柱效则远远超过填充柱。达到同样的分离度时,0.53mm大口径柱的分析时间显著快于填充柱。可方便的采用柱上进样或直接进样技术,适合于分析不太复杂的样品,是填充柱理想的替代柱。 0.32mm 柱效稍低于0.25mm常规柱,负荷量大于常规柱的60%,用特制注射针可做柱上进样。 0.25mm 最常用的内径规格。有较高的柱效,负荷量较低,必须分流进样或无分流进样。用于复杂多组份样品分析。 0.20mm 柱效高,负荷量低,流失较小,适合与质谱等灵敏检测器联用。 三、毛细管柱长度 5—12m 短柱:分离少于10个组份(不包含难分离物质对)的简单样品。 25—30m 中长柱:分离10—50个组份的样品。 50m 长柱:分离大于50个组份或包含有难分离物质对的复杂样品。 四、膜厚 0. 1—0. 2μm 薄液膜:低负荷量,高温下流失较小,适合于高沸点化合物的分析,适于配高灵敏检测器。 0.25—0.33μm 标准液厚:一般商品柱的标准液膜。 0.5—5.0μm 厚液膜:较高的样品负荷量,在高温下流失较大,适于分析低沸点样品。

气相色谱柱和毛细管柱结构特点

气相色谱柱和毛细管柱结构特点,它们有什么不同点,主要是结构上,还有实验应用上,一定详细,谢谢啊 最佳答案 气相色谱柱分填充柱和毛细管柱。填充柱的填料可以是多孔性粒状系缚剂或在惰性载体颗粒表面均匀的涂敷一层很薄的固定液膜。填充柱常用内径2-5mm,长0.5-10m的金属管或玻璃管。填充柱制备简单,可供选用的载体、固定液、吸附集种类很多,因而具有广泛的选择性,有利于解决各种各样组分的分离分析问题,应用比较普遍。此外,填充柱的样品负荷量大,可用于制备色谱其缺点是柱渗透性较小,传质阻力较大,柱子不能过长,因而分离效率较低。柱效的选择问题,视试样组分而定,许多分析并不需要很高的分离效率,因此填充柱仍有其广泛的应用前景。如工业废水中硝基苯的分析、苯系物的分析等用填充柱气象色谱法足以满足分析要求。现在的填充柱一般只分析气体用。毛细管柱则又可分为空心毛细管柱和填充毛细管柱两种。空心毛细管柱是将固定液直接涂在内径只有0.1~0.5mm的玻璃或金属毛细管的内壁上,填充毛细管柱是近几年才发展起来的,它是将某些多孔性固体颗粒装入厚壁玻管中,然后加热拉制成毛细管,一般内径为0.25~0.5mm。 气相色谱柱选择指南 1)柱长度的选择 分辨率与柱长的平方根成正比。在其他条件不变的情况下,为取得加倍的分辨率需有4倍的柱长。较短的柱子适于较简单的样品,尤其是由那些在结构、极性和挥发性上相差较大的组分组成的样品。 一般来说: 15m的短柱用于快速分离较简单的样品,也适于扫描分析; 30m的色谱柱是最常用的柱长,大多数分析在此长度的柱子上完成; 50m、60m或更长的色谱柱用于分离比较复杂的样品。 应该注意,柱长增加分析时间也增加。 2)柱内径的选择 柱径直接影响柱子的效率、保留特性和样品容量。小口径柱比大口径柱有更高柱效,但柱容量更小。 0.25mm:具有较高的柱效,柱容量较低。分离复杂样品较好。 0.32mm:柱效稍低于0.25mm的色谱柱,但柱容量约高60%。 0.53mm:具有类似于填充柱的柱容量,可用于分流进样,也可用于不分流进样,当柱容量是主要考虑因素时(如痕量分析),选择大口径毛细管柱较为合适。 3)液膜厚度的选择 液膜厚度影响柱子的保留特性和柱容量。厚度增加,保留也增加。 0.1~0.2μm :薄液膜厚度的毛细管柱比厚液膜的毛细管柱洗脱组分快,所需柱温度低,且高温下柱流失较小,适用高沸点的化合物的分析。 0.25~0.5μm :常用的液膜厚度。 厚液膜:对分析低沸点的化合物较为有利。

毛细管柱选择与各种毛细管柱介绍

一、固定液使用 固定相: AT SE-30,AT OV-1 组成100%甲基聚硅氧烷 极性非极性 应用碳氢化合物 同类型号DB(HP) -1、AC1、SPB-1、CPSIL5、DM-1、RT-1 使用温度50—300℃ 固定相: AT OV-101 组成100%甲基聚硅氧烷(胶体) 极性非极性 应用氨基酸、基油 同类型号HP-101、AC1 、SP-2100 使用温度0—350℃ 固定相: AT SE-52AT SE-54 组成5%苯基甲基聚硅氧烷,1%乙烯基5%苯基甲基聚硅氧烷极性非极性 应用多核芳烃、酚、酯、碳氢化合物、药物、醇 同类型号DB(HP)-5、AC5、SPB-5、DM-5、CPSiL8、Rtx-5 使用温度50—350℃ 固定相: AT OV-1701 组成7%氰丙基7%苯基甲基聚硅氧烷 极性非极性

应用药物、醇、酯、硝基化合物 同类型号DB(HP)-1701、AC10、DB-1701、SPB-1701、RT-1701、CP-Sil 19CB 使用温度0—280℃ 固定相: AT XE-60 组成25%氰乙基甲基聚硅氧烷 极性中极性 应用酯、硝基化合物 同类型号DB (HP) -225、AC225 使用温度0—280℃ 固定相: AT OV-17 组成50%苯基甲基聚硅氧烷 极性中极性 应用药物、农药 同类型号DB(HP)-17、AC10 使用温度0—250℃ 固定相: AT FFAP 组成聚乙二醇—TPA改性 极性极性 应用酸、醇、醛、酯、腈、酮、基油 同类型号DB (HP) –FFAP、SP-1000、Supecl-NUKOL、AC20 使用温度50—250℃

毛细管柱知识总汇

毛细管柱知识总汇 选择毛细管柱的几个指标 本部分介绍了毛细管柱的固定液、内径、柱长度和膜厚的内容。 一、固定液使用 固定相: AT SE-30,AT OV-1 组成 100%甲基聚硅氧烷 极性非极性 应用碳氢化合物 同类型号 DB(HP) -1、AC1、SPB-1、CPSIL5、DM-1、RT-1 使用温度 50—300℃ 固定相: AT OV-101 组成 100%甲基聚硅氧烷(胶体) 极性非极性 应用氨基酸、基油 同类型号 HP-101、AC1 、SP-2100 使用温度 0—350℃ 固定相: AT SE-52AT SE-54 组成 5%苯基甲基聚硅氧烷,1%乙烯基5%苯基甲基聚硅氧烷 极性非极性 应用多核芳烃、酚、酯、碳氢化合物、药物、醇 同类型号 DB(HP)-5、AC5、SPB-5、DM-5、CPSiL8、Rtx-5 使用温度 50—350℃ 固定相: AT OV-1701 组成 7%氰丙基7%苯基甲基聚硅氧烷 极性非极性 应用药物、醇、酯、硝基化合物 同类型号 DB(HP)-1701、AC10、DB-1701、SPB-1701、RT-1701、CP-Sil 19CB 使用温度 0—280℃

固定相: AT XE-60 组成 25%氰乙基甲基聚硅氧烷 极性中极性 应用酯、硝基化合物 同类型号DB (HP) -225、AC225 使用温度 0—280℃ 固定相: AT OV-17 组成 50%苯基甲基聚硅氧烷 极性中极性 应用药物、农药 同类型号 DB(HP)-17、AC10 使用温度 0—250℃ 固定相: AT FFAP 组成聚乙二醇—TPA改性 极性极性 应用酸、醇、醛、酯、腈、酮、基油 同类型号DB (HP) –FFAP、SP-1000、Supecl-NUKOL、AC20 使用温度 50—250℃ 固定相: AT PEG-20M 组成聚乙二醇—20M 极性极性 应用 同类型号 HP- Wax、DB-Wax、AC20 使用温度 50—200℃ 固定相: AT 农残Ⅰ号AT 农残Ⅱ号 组成 极性 应用六六六、DDT等八种含氯农药拟除虫菊酯类、含磷类农药 同类型号 SPB-608、HP-608 使用温度 25—300℃ 二、毛细管柱内径 0.53mm 具有近似填充柱的负荷量,总柱效则远远超过填充柱。达到同样的分离度时,0.53mm大口径柱的分析时间

毛细管气相色谱柱的使用及常见故障分析(精)

毛细管气相色谱柱的使用及常见故障分析 王波 (安徽省淮北市农业环境监测保护站淮北235000) 摘要根据多种毛细管气相色谱柱在国内外多种品牌的气相色谱系统的实际应用情 况,结合与其相关的文献资料,对毛细管气相色谱柱的使用及常见故障进行专业、细致 的分析与研究。 关键词气相色谱毛细管柱常见故障 现在的气相色谱系统中,毛细管色谱柱已被广泛的应用。大部分的检测工作可能只需几根柱子(OV-1、PEG-20M、OV-210)即可很好的完成,特别是大口径(0.53mm)柱的使用已逐步替代填充柱。掌握毛细管气相色谱柱的正确使用的方法,以及在其使用过程中故障处理的方法是非常必要的。 1 毛细管色谱柱的安装 在整个毛细管气相色谱中,柱子的安装尤为重要,柱子安装的好坏直接影响到检测结果。 1.1 毛细管柱与进样器的连接 对于分流进样,毛细管柱的入口端一定要伸过分流进样器的分流出口(见图1a),就是使毛细管柱的入口处于载气的高流速区域。如果毛细管柱的入口在分流进样器的分流出口以下(见图1b),处于载气的低流速区域,得到的色谱图就不理想,所以必须将毛细管的入口伸过分流进样器的分流出口,这样才会得到尖锐的峰形。对于分流/ 不分流进样,毛细管的入口应接到进样器的底部(见图1c),这样可以使汽化管中的样品完全进入柱子,也不会出现气流清洗不到的“死区”。 对于有些有特殊要求的气相色谱,毛细管气相色谱柱与进样器的连接,可以按仪器使用说明书的要求进行安装。 1.2 毛细管色谱柱与检测器的连接 在毛细管气相色谱柱连接到检测器之前,先接通载气,看一下柱子的出口是否有载气通过,(将柱子的出口浸入乙醇中看是否有气泡出现)如果没有载气从柱子出来,说明柱前的系统中有的地方漏气或柱子堵塞,应找出原因加以解决。然后将柱子的未端尽可能的伸到检测器(FID)的喷嘴以下的1~2mm 处,并使柱子的出口处于气流的最高流速区域(即氢气引入口以上),如果柱子不能直接伸到检测器的喷嘴下1~2mm 处,但必须伸到尾吹气入口的上部使柱子的末端处于气流的高速区域。

毛细管柱气相色谱法

第六章毛细管柱气相色谱法 第一节毛细管气相色谱仪 现代的实验室用的气相色谱仪大都既可用作填充柱气相色谱又可用作毛细管色谱仪。毛细管色谱仪应用范围广,可用于分析复杂有机物,如石油成分,天然产物,环境污染,农药残留等。图6-1是毛细管气相色谱仪示意图,与填充柱色谱仪比,毛细管色谱仪在柱前多一个分流-不分流进样器,柱后加一个尾吹气路。由于毛细管柱体积很小,柱容量很小,出峰快,所以死体积一定要小,要求瞬间注入极小量样品,因此柱前要分流。对进样技术要求高,对操作条件要求严。尾吹的目的是减小死体积和柱末端效应。毛细管柱对固定液的要求不苛刻,一般2-3根不同极性的柱子可解决大部分的分析问题。毛细管柱一般配有响应快,灵敏度高的质量型检测器。 高分辨率毛细管气相色谱仪的三要素是:要选择好的毛细管柱及最佳分析条件;按样品选择合适的毛细管进样系统;选择高性能的毛细管气相色谱仪。 图6-1 毛细管气相色谱仪示意图 第二节毛细管色谱柱 1957年,美国科学家Golay提出毛细管柱的气相色谱法。Golay称毛细管色谱柱为开管柱。因这种色谱柱中心是空的。毛细管柱是内径为Φ0.1-0.5mm左右、长度为10-300m的毛细柱,虽然每米理论板数约为2000-5000,与填充柱相当,但由于柱子很长,总柱效可高达106。 一、毛细管色谱柱组成 通常来说,一根毛细管色谱柱由管身和固定相两部分组成。管身采用熔融二氧化硅(熔融石英),通常在其表面涂上一层聚酰亚胺保护层。涂层后的熔融石英毛细管呈褐色:但是涂层后的毛细管之间

的颜色却不尽相同。色谱柱的颜色对于其色谱性能没有什么影响。经过持续的较高温度处理后.聚酰亚胺涂层管的的温度会变得比以前更深:标准的聚酰亚胺涂层管熔融石英管的温度上限为360℃,高温聚酰亚胺涂层管的温度上限为400℃。固定相种类很多,大部分的固定相是热稳定性好的聚合物,常用的有聚硅氧烷和聚乙二醇。另外还有一类是小的多孔粒子组成的聚合物或沸石(例如氧化铝、分子筛等)。 熔融石英管的内表面会用一些化学方法进行处理,尽量的减小样品和管壁之间可能存在的相互作用。所用的试剂和处理方法一般是依据将要涂在内壁上的固定相种类来确定的。硅烷化处理则是最为常用的处理方式,使用硅烷类的试剂和管壁内表面上的硅基醇基团进行反应,使其变为甲基硅烷基或苯甲基甲基硅烷基。 当实验要求更高的使用温度时,我们可以来用不锈钢毛细柱来代替熔融石英毛细柱。不锈钢毛细柱在使用温度(耐高温)及日常维护(不易折断等)的性能和指标上都优于熔融石英毛细柱。但是不锈钢材质的惰性没有熔融石英好,它可以和许多的化合物相互作用,产生反应。所以通常可以用化学方法对其进行处理,或者是在它的内壁再涂上薄薄的一层熔融石英,以增加不锈钢管的隋性:经过适当处理后,不锈钢毛细柱的惰性与熔融石英毛细柱的不相上下。 二、毛细管色谱柱固定相 (一)气-液色谱固定相 1.聚硅氧烷 聚硅氧烷有优良的稳定性, 用途广,是目前最为常用的固定相。标准的聚硅氧烷是由许多单个的硅氧烷重复联接构成,每个硅原子与两个功能基团相连,功能基团的类型和数量决定了固定相总体类型和性质,常见的四种功能基团为甲基、氰丙基、三氟丙基和苯基。最基本的聚硅氧烷是由100%甲基取代的。当有其他种类的取代基出现时,该基团的数量将由一个百分数来表示。例如:5%二苯基—95%二甲基聚硅氧烷表示其包含有5%的苯基基团和95%的甲基基团。“二”是表示每个硅原子包含有两个特定基团,但当两个特定基团完全相同时,我们有时也会省略这种叫法。如果甲基的百分数没有表征,则表示它的含量可能是100%(如50%苯基—甲基聚硅氧烷表示甲基的含量为50%)。有时我们可能对氰丙基苯基的百分含量产生错误的理解,如14%氰丙基苯基—二甲基聚硅氧烷表示的是其含有7%氰丙基和7%苯基(另有86%的甲基),因为一个氰丙基和一个苯基连接于同一个硅原子上,所以14%是一种加和的表征方式。 我们有时会用低流失来表征一类固定相。这一类固定相是在硅氧烷聚合物中链接一定数量的苯基或苯基类的基团,通常我们称之为“亚芳基”。由于它们的加入,聚合物的链接变得更加坚固稳定,保证了在较高温度时,固定相不会产生降解。也就是说,进一步降低了色谱柱的柱流失,提高了色谱柱的使用温度。与原始的非亚芳基类型的固定相相比,亚芳基固定相不仅拥有相同的分离指数,而且在色谱柱的维护等方面也有许多的调整(例如SE-52和SE-54)。尽管同类普通型和低流失型固定相的分离性能相同或极为相似,但是在某些方面还有微小的区别。另外,我们也使用一些独特低流失固定相。 2.聚乙二醇 聚乙二醇是另外一类广泛应用的固定相。有时我们称之为“WAX”或“FFAP”。聚乙二醇不像聚硅氧烷那样有多种取代基团,它是100%固定基质的聚合物。相对于聚硅氧烷,聚乙二醇固定相色谱柱的寿命较短,而且容易受温度和环境(有氧环境等)的影响。另外,聚乙二醇固定相在相应的GC实验条件下需保持液态。但由于其独特的分离性能,聚乙二醇仍是我们常用的固定相之一。

GE中低压层析柱-柱效测定方法-详解

GE中低压层析柱柱效测定方法 柱效测定是一项经常使用的操作,对于定量表征层析柱的工作状态是否良好, 工艺的验证具有重要的意义。但是实际工作中很多朋友都遇到不会测柱效或者 测出来注销过低的状况,不知道如何解决。所以今天我就给大家详细介绍一下 柱效的正确测定方法,以及经常遇到的问题如何解决。 本方法适用于所有GE公司中低压液相色谱的预装柱及自己填装的层析柱。 介绍分为5个部分,测前准备、试剂选择、测柱效操作、测试结果积分、经常 发生的问题。 1. 测前准备: ⑴?KTA层析设备。要求设备的型号与层析柱大小匹配,从上样阀门到紫外和电 导检测器之间的体积要做到最小(管路内径尽量细,管路尽量短),这对于准确测量实验室小层析柱的柱效非常重要。 ⑵测试平衡溶液及样品。这个部分在试剂选择中单独细说。 ⑶装填好的层析柱。使用平衡缓冲液在测柱效的流速下至少平衡1.5 CV(柱体积),平衡方向与测柱效方向必须一致 ⑷样品环。容积大于1%柱体积。 2. 试剂选择 测柱效主要有两种测试系统:1 NaCl 测试系统;2 丙酮测试系统。只要操作正确,两个系统测出来的结果是基本一致的。但是要注意:各试剂的浓度不能随意改变,否则影响测试结果。 ⑴NaCl测试系统 对于所有种类的柱子和填料,都可以使用氯化钠系统测柱效 平衡液: 0.4 M NaCl水溶液 样品: 0.8 M NaCl水溶液 3. 测柱效操作 测柱效全程使用30 cm/h线性流速。平衡层析柱至少1.5 CV,将1% CV的样品(NaCl或丙酮)注射进入层析柱,使用平衡液冲洗直至电导或紫外280nm出 现响应峰。 4. 测试结果积分 以UNICORN6版本为例演示给大家看如何操作(各UNICORN版本操作基本一致)。以NaCl系统测柱效的所有操作针对电导曲线,以丙酮系统测柱效的所有操作 针对UV 280曲线(手头没有测柱效结果,所以随便找了一个图,里面有两个峰。大家测柱效的结果只有一个峰) 1) 在Evaluation窗口中打开测柱效结果文件,在Curve窗格中点击右键,选 择Customize 2) 勾选复选框去掉不需要显示的曲线

毛细管色谱柱知识

毛细管气相色谱简单知识 一、毛细管柱与填充柱的区别 与填充柱相比,毛细管柱的特点为: 1.分离效能高 2.分析速度快 3.样品用量少 可在几十分钟内分离出包含几百种化合物的汽油馏分,然而样品用量仅有数微克在快速分析方面,可在几秒钟内分离含十几个组份的样品。 其独特的特点在于: 渗透性大,分析速度快 传质阻力小,可用长柱,并得高的总柱效。 色谱动力学认为:填充柱可看作是一束长毛细管的组合,其内径约等于粒子粒度,因其弯曲,多径扩散严重,故理论板数少。 毛细管柱完全没有这些缺陷,故理论板数可高大106数量级。 用毛细管柱,有利于: 提高色谱分离能力, 加快色谱分析速度, 促进色谱的应用都是十分必要的: 二、毛细管色谱法的相关理论 在毛细管柱,柱内只有一个流路,故多径项2ldp为0,弯曲因子g=1,且用其液膜厚代替了填充柱中载体的颗粒直径dp。 2.毛细管柱的最小理论板高 毛细管柱的H—U图也是一个双曲线,在U值是最佳值时,H值最小。 式中Cg、C1的大小取决于分配系数及柱的几何性(以相比β为代表),但一般毛细管柱液膜薄,β值较大,液相传质阻力C1项不起控制作用。 当被测物质的k﹥10时,如果每米理论板数大于1000/d时,则所用柱子的性能较好 表中为K值很大时最好柱效(每米板数)值,其值由H/L = 1000 / d 一般认为直径在0.1—0.7mm较好 小于0.1mm,入口压力增加,柱负荷减少 大于0.7mm,虽柱负荷增大,但柱效下降 目前流行0.53mm的大口径管,不必分流。 3.载气线速 从速率方程可知,最小板高时的最佳线速为: 如果Cl很小,则有: 可见,细管径,轻载气更适合于快速分析。 4.样品容量 一根色谱柱的最大允许进样量,约为一块理论板的有效体积。 可见最大允许进样量与柱半径、柱长、分配比成正比,与塔板数成反比 比较填充柱和毛细管柱的柱容量 一根长20米,内径为0.25毫米的毛细管柱,一般可涂上6 mg的固定液,柱内体积 而一根长两米,内径3毫米的不锈钢填充柱,柱内体积 按12:100的液载比,可涂上800mg固定液。 可见,一根2米长的填充柱中固定液的含量是一根20米长毛细管柱中固定液含量约150倍,故允许进样量也在一百倍以上。

高效液相色谱(HPLC)柱效测定

实验六高效液相色谱(HPLC)柱效测定 093858 张亚辉 一. 实验目的 1、学习高效液相色谱仪的基本操作方法。 2、了解高效液相色谱仪原理和条件设定方法。 3、了解高效液相色谱法在日常分析中的应用。 二. 实验原理 高效液相色谱法是以液体作为流动相,借助于高压输液泵获得相对较高流速的液流以提高分离速度、并采用颗粒极细的高效固定相制成的色谱柱进行分离和分析的一种色谱方法。 在高效液相色谱中,若采用非极性固定相,如十八烷基键合相,极性流动相,即构成反相色谱分离系统。反之,则称为正相色谱分离系统。反相色谱系统所使用的流动相成本较低,应用也更为广泛。 定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。分离度(R)的计算公式为: R= 2[t(R2)-t(R1)] /1.7*(W1+W2) 式中 t(R2)为相邻两峰中后一峰的保留时间; t(R1)为相邻两峰中前一峰的保留时间; W1及W2为此相邻两峰的半峰宽。除另外有规定外,分离度应大于1.5。 本实验对象为邻苯二甲酸酯,又称酞酸酯,缩写PAE,常被用作塑料增塑剂。它被普遍应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品,如指甲油、头发喷雾剂、香皂和洗发液等数百种产品中。但研究表明,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,是一类内分泌干扰物。待测物性质见表1。 表1色谱柱测试条件

如果要检测不同条件对谱图分离的影响,可按表1配制几种物质的混合溶液,在不同条件下进行HPLC分离检测。 三.仪器与试剂 1、仪器 Agilent 1100高效液相色谱仪,50ul微量注射器。 2、试剂 甲醇(色谱专用),高纯水 四. 实验步骤 1、色谱条件 色谱柱:辛烷基硅烷键合硅胶(C8) 柱温:室温 流动相:初始为高纯水:20%,甲醇:80% 检测器:DAD检测器; 检测波长:220nm; 进样体积:20μl定量环,实际注射每次可控制在40μl。 2、待测溶液的配制 首先用甲醇做溶剂配制储备液:邻苯二甲酸二甲酯(0.3880g/L),邻苯二甲酸二乙酯(0.2770g/L),邻苯二甲酸二丁酯(0.3776g/L)。然后各取1mL储备液用水和甲醇(20:80)稀释至10mL,作为待测溶液。 3、色谱测定 (1) 按操作规程开启电脑,开启脱气机、泵、检测器等的电源,启动Agilent 1100在线工作软件,设定操作条件。流量为1.000ml/min。 (2) 待仪器稳定后,开始进样。将进样阀柄置于“LOAD”位置,用微量注射器吸取混合物溶液40ul,注入仪器进样口,顺时针方向扳动进样阀至“INJECT”位置,此时显示屏显示进样标志。 (3) 记下各组分色谱峰的保留时间及峰面积及分离比。 (4) 实验完毕,清洗系统及色谱柱。依次用甲醇-水(60:40)、甲醇-水(70:30)……直到纯甲醇作流动相清洗,每次清洗至基线走稳,至少清洗15min。 五.实验结果

常用毛细管色谱柱对应表

常用毛细管色谱柱对应表

毛细管柱应用范围及使用温度 一、 SPB-1型非极性柱(键合,聚二甲基硅氧烷) 对照品牌:HP-1,DB-1,BP-1,CP-SIL 5CB,UItra-1,007-1,RTx-1,AT-1 类似固定相:SE-30,SP-2100,OV-1,OV-101

使用温度:-60℃-320℃ 应用范围:烷烃,芳烃,多环芳烃,醇,酚,酮,酯,醛,胺,卤代烃,吡啶,糖衍生物,氨基酸衍生物,维生素衍生物,镇痛药,农药,溶剂,胆固醇,香料,咖啡,食品添加剂等 二、SPB-5型弱极性柱(键合,5%苯基,95%甲基聚硅氧烷) 对照品牌:HP-5,DB-5,BP-5,CP-SIL 8CB,UItra-2,007-2,RTx-5,AT-5 类似固定相:SE-54,SE-52,OV-73 使用温度:-60℃-320℃ 应用范围:烷基苯,多环芳烃,醇,酚,酮,脂肪酸酯,苯二甲酸酯,硝基芳烃,芳胺,烷基胺,联苯胺,卤代烃,多氯联苯,糖类衍生物,维生素衍生物,有机酸,镇痛药,农药,抗组胺药,溶剂,生物碱,防腐剂,香料等 三、 SUPELCOWAX 10型极性柱(键合,聚乙二醇二万) 对照品牌:HP-Wax,DB- Wax,BP-20,CP- Wax 52CB,HP-INNO Wax,AT- Wax 类似固定相:PEG-20M,CARBOWAX-20M

使用温度:35℃-280℃ 应用范围:低沸点芳烃,醇,酮,酯,醛,醚,乙二醇,丙二醇,甘油,吡啶,胺,亚硝胺,卤代烃,胆汁酸衍生物,冰片,薄荷,精油,香料,酒,苯乙烯,茶,溶剂等 四、 SPB-50型中等极性柱(键合,50%二苯基,50%二甲基聚硅氧烷) 对照品牌:HP-50,HP-17,DB-17, 007-17,RTx-50,AT-50 类似固定相:OV-17,SP-2250 使用温度:30℃-310℃ 应用范围:烷烃,低沸点芳烃,多环芳烃,醇,甘油三酸酯,喹啉,卤素化合物,精油,香料,农药,酯,镇痛药,除草剂等 五 SPB-1701型中等极性柱(键合,14%氰丙基,86%二甲基聚硅氧烷) 对照品牌:HP-1701,DB-1701, 007-1701,RTx-1701,AT-1701,BP-10,CP-Sil 19CB 类似固定相:OV-1701,SP-2250 使用温度:室温-280℃

毛细管气相色谱法

毛细管气相色谱法条件及定量分析 指导老师:李建国 实验人:王壮 同组实验:陆潇、戈畅 实验时间:2016.4.18 一、实验目的 1.熟悉色谱分析的原理及色谱工作站的使用方法; 2、掌握气相色谱仪操作方法与氢火焰离子化检测器的原理; 3.用保留时间定性;用归一化法定量;用分离度对实验数据进行评价。 二、实验原理 不同组分在同一分离色谱柱上,在相同实验条件下有不同的保留行为,其保留时间的差异可以用来定性分析,每一组分的质量与相应色谱峰的积分面积成正比,因此可以公式计算,用归一化方法测定每一组分的质量百分含量。 1122100A is i i A A A s s ns n f A w f A f A f A =?++???+% 本实验是用气相色谱测定乙酸乙酯、乙酸丁酯及其混合试样,检测器用FID 。用色谱软件进行谱图处理和定量计算,让学生掌握用已知物对照定性、用归一化法测定混合物组分定量的实验。 混和试样的成功分离是气相色谱法定量分析的前提和基础,衡量一对色谱峰分 离的程度可用分离度:12121()2 R R t t R W W -=?+,式中1R t 、2R t 和1W 、2W 分别指两组分的保留时间和峰底宽度,R=1.5时两组分完全分离,实际中R=1.0(分离度98%)即可满足要求。 三、仪器与试剂 仪器:GC7890F 型气相色谱仪、氢火焰离子化检测器(FID )、氮气钢瓶、空气钢瓶、氢气发生器,微量注射器、3mm x 200cm 的10% SE-54不锈钢分离柱。GC5400型气相色谱仪、空气发生器、氮气发生器、氢气发生器,微量注射器、15m 毛细管分离柱。 试剂:乙酸乙酯、乙酸丁酯标准试样及其未知混合试样。 四、实验内容 1.按操作说明书使色谱仪正常运行,并调节至如下条件: 柱温:110C ? 检测器温度:120C ? 气化温度:120C ? 载气、氢气和空气流量分别为30、50和200mL/min 。 2.分别改变柱温至80、90、100、110、120C ?。每改变一次柱温,注入0.5L μ混合

相关主题