搜档网
当前位置:搜档网 › 函数的零点二分法练习题精选

函数的零点二分法练习题精选

函数的零点二分法练习题精选
函数的零点二分法练习题精选

函数的零点二分法练习题精选

一、填空题

1.设f (x )的图象在区间(a ,b )上不间断,且f (a )·f (b )<0,取x 0=a +b 2,

若f (a )·f (x 0)<0,则用二分法求相应方程的根时取有根区间为________.

答案:(a ,a +b 2)

2.一块电路板的AB 线路之间有64个串联的焊接点,如果电路不通的原因是因为焊口脱落造成的,要想用二分法检测出哪一处焊口脱落,至多需要检测________次.

解析:由二分法可选AB 中点C ,然后判断出焊口脱落点所在的线路为AC ,还是BC .然后依次循环上述过程即可很快检测出焊口脱落点的位置,至多需要检测6次.

答案:6

3.根据表中的数据,可以判定方程e x -x -2=0的一个根所在的区间是

解析:设f (x )=e x -x -2,由图表可知f (-1)<0,f (0)<0,f (1)<0,f (2)>0,f (3)>0.所以f (1)·f (2)<0,所以根在(1,2)内.

答案:(1,2)

4

函数f (x )在区间(1,6)内的零点至少有________个.

解析:在区间(2,3),(3,4),(5,6)内至少各有一个.

答案:3

5.设f (x )=3x +3x -8,由二分法求方程3x +3x -8=0在(1,2)内近似解的过程中,得f (1)<0,f (1.5)>0,f (1.25)<0,则方程根所在的大致区间是________.

解析:虽然f (1)·f (1.5)<0,f (1.5)·f (1.25)<0,但(1.25,1.5)比(1,1.5)更精确.

答案:(1.25,1.5)

6.下列方程在区间(0,1)内存在实数解的有________.

①x 2

+x -3=0;②1x +1=0;③12x +ln x =0;④x 2-lg x =0.

解析:0

1x

+1>0,x 2-lg x >0. 答案:③

7.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在

的区间是________(填写序号).

①(0,1) ②(1,2) ③(2,3) ④(3,4)

解析:令g (x )=x 3-22-x ,可求得g (0)<0,g (1)<0,g (2)>0,g (3)>0,g (4)>0.易知函数g (x )的零点所在区间为(1,2).

答案:②

8.函数f (x )=|x 2-2x |-a 有三个零点,则实数a 的取值范围是________.

解析:数形结合可知.

答案:a =1

9.下列函数中能用二分法求零点的是________.

解析:由二分法应用条件知只有③符合题意.

答案:③

10.下面关于二分法的叙述,正确的是________.

①二分法可求函数所有零点的近似值

②利用二分法求方程的近似解时,可以精确到小数点后任一位有效数字

③二分法无规律可循,无法在计算机上实施

④只在求函数零点时,才可用二分法

答案:②

11.方程log3x+x=3的解所在区间是________.解析:构造f(x)=log3x+x-3,∵f(2)<0,f(3)>0,∴x0∈(2,3).

答案:(2,3)

12.方程0.9x-2

21x=0的实数解的个数是________.

解析:令f(x)=0.9x-2

21x,

f(x)为R上的减函数且f(10)<0,f(5)>0,

所以f(x)在(5,10)内有一个根.

答案:1

13.方程x3-lg x=0在区间(0,10)的实数解的个数是________.解析:00.

答案:0

14.方程x2-x-1=0的一个解所在的区间为________.

解析:f(x)=x2-x-1,

f(-1)>0,f(0)<0,f(2)>0.

答案:(-1,0)或(0,2)

15.用计算器求方程ln x+x-3=0在(2,3)内的近似解为________(精确到0.1).

解析:令f(x)=ln x+x-3,因为f(2)=ln2-1<0,

f(3)=ln3>0,所以取(2,3)为初始区间.

答案:2.2

二、解答题

1.已知图象连续不断的函数y=f(x)在区间(a,b)(b-a=0.1)上有惟一零点,如果用“二分法”求这个零点的近似值(精确到0.001),求将区间(a,b)等分的次数.

解:每等分一次区间长度变为原来的一半,n次等分后区间长度

变为原来的1

2n,即1

2n·0.1,要精确到0.001,必有1

2n·0.1<0.001,即2

n>100,从而最小的n为7.

即将区间(a,b)至少等分7次.

2.用二分法求方程x3+5=0的近似解.(精确到0.1)

解:令f(x)=x3+5,由于f(-2)=-3<0,f(-1)=4>0,故取区间[-2,-1]

所以函数的零点的近似值为-1.7,故原方程的近似解为-1.7.

3.求两曲线y=2x与y=-x+4的交点的横坐标(精确到0.1).(用计算器操作)

4.(1)求证:方程(x+1)(x-2)(x-3)=1在区间(-1,0)上有解;

(2)能否判断方程(x+1)(x-2)(x-3)=1其他解的区间.

解:(1)证明:设f(x)=(x+1)(x-2)(x-3)-1,

f(-1)=-1<0且f(0)=5>0,

所以方程(x+1)(x-2)(x-3)=1在区间(-1,0)上有解.

(2)∵f(1)=3>0,f(2)=-1<0,

故方程(x+1)(x-2)(x-3)=1在区间(1,2)上有解,

∵f(3)=-1<0,f(4)=9>0,

故方程(x+1)(x-2)(x-3)=1在区间(3,4)上有解.

综上,方程在区间(1,2),(3,4)上有解.

5.利用函数的图象特征,判断方程2x3-5x+1=0是否存在实数根.

解:设f(x)=2x3-5x+1,则f(x)在R上的图象是一条连续不断的曲线.

又f(0)=1>0,f(-3)=-38<0.

∴f(0)·f(-3)<0,

∴在[-3,0]内必存在一点x0,使f(x0)=0,

∴x0是方程2x3-5x+1=0的一个实数根.

∴方程2x3-5x+1=0存在实数根.

巩固练习题:

1.若二次函数y=x2+mx+(m+3)有两个不同的零点,则m的取值范围是________.

解析:由Δ=m2-4(m+3)>0可得m2-4m-12>0,所以m<-2

或m >6.

答案:{m |m <-2或m >6}

2.若二次函数y =-2x 2-3x +a 的图象与x 轴没有公共点,则实数a 的取值范围是________.

解析:Δ=9+8a <0,所以a <-98.

答案:a <-98

3.函数y =x 2-3x +k 的一个零点为-1,则k =________,函数的另一个零点为________.

解析:x =-1时y =1+3+k =0,所以k =-4,

即y =x 2-3x -4=(x +1)(x -4),所以另一个零点为4. 答案:-4 4

4.方程log

2(x +4)=2x 的根有________个.

解析:作函数y =log 2(x +4),y =2x 的图象

如图所示,两图象有两个交点,且交点横坐标

一正一负,∴方程有一正根和一负根.

答案:2

5.函数f (x )=ln x -1x -1

的零点个数是

________个.

解析:如图可知y =ln x 与y =1x -1

的图象有两个交点.

答案:2

6.观察如图所示的函数y =f (x )的图象.

(1)在区间[a ,b]上 (有/无)零点;f(a)·f(b) 0(填

“<”或“>”).

(2)在区间[b ,c]上 (有/无)零点;f(b)·f(c) 0(填“<”或“>”).

(3)在区间[c ,d]上 (有/无)零点;f(c)·f(d) 0(填“<”或“>”).

答案:(1)有,< (2)有,< (3)有,<

【高考数学专题】函数的零点练习题

函数的零点 班级 ___________ 姓名 __________ 知识必备 1、函数零点定义. 对于函数()D x x f y ∈=,,把使()0=x f 成立的实数x 叫作函数()D x x f y ∈=,的零点。 2、函数的零点与相应方程的根,函数的图像与x 轴交点之间的关系. 方程()0=x f 有实根?函数()x f y =的图像与x 轴交点?函数()x f y =有零点. 3、函数零点的判定(零点存在性定理) 如果函数()x f y =在区间[]b a ,上的图像是一条连续曲线,并且有()()0+-≤-+=0 ,ln 20 ,322x x x x x x f 的零点个数为____________. 5、函数()()2,1≥∈-+=+n N n x x x f n n 在区间?? ? ??121,内的零点个数为______. 6、已知0x 是函数()x x f x -+ =11 2的一个零点,若()()+∞∈∈,,10201x x x x ,则( ) ()()0,0.21<x f x f C ()()0,0. 21>>x f x f D 7、已知a 是()x x f x 2 1log 2-=的零点,若a x <<00,则()0x f 的值满足( ) ()0. 0=x f A ()0.0x f C ()符号不确定 0.x f D 8、若函数()a x x x f -+=2 log 3 在区间()21, 内有零点,则实数a 的取值范围是( ) ()2log 1. 3--,A ()2l o g 0.3,B ()12l o g .3, C ()4l o g 1.3,D 9、若432<<<

函数应用、零点、二分法知识点和练习

一、方程的根与函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。 2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。 即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点. 3、函数零点的求法: ○ 1 (代数法)求方程0)(=x f 的实数根; ○ 2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点. 4、基本初等函数的零点: ①正比例函数(0)y kx k =≠仅有一个零点。 ②反比例函数(0)k y k x =≠没有零点。 ③一次函数(0)y kx b k =+≠仅有一个零点。 ④二次函数)0(2≠++=a c bx ax y . (1)△>0,方程20(0)ax bx c a ++=≠有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点. (2)△=0,方程20(0)ax bx c a ++=≠有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△<0,方程20(0)ax bx c a ++=≠无实根,二次函数的图象与x 轴无交点,二次函数无零点. ⑤指数函数(0,1)x y a a a =>≠且没有零点。 ⑥对数函数log (0,1)a y x a a =>≠且仅有一个零点1. ⑦幂函数y x α=,当0n >时,仅有一个零点0,当0n ≤时,没有零点。 5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把()f x 转化成()0f x =,再把复杂的函数拆分成两个我们常见的函数12,y y (基本初等函数),这另个函数图像的交点个数就是 函数()f x 零点的个数。即f(x)=g(x)的解集 f(x)的图像和g(x)的图像的交点。 6、选择题判断区间(),a b 上是否含有零点,只需满足()()0f a f b <。 7、确定零点在某区间(),a b 个数是唯一的条件是:①()f x 在区间上连续,且()()0f a f b <②在区

高中数学函数的零点和最值

函数的零点 1、函数零点的定义: 对于函数y=f(x),我们把使f(x)=0的实数x 叫做函数y=f(x)的零点。 方程f(x)=0有实数根?函数y=f(x)的图象与x 轴有交点?函数y=f(x)有零点 注意:零点是一个实数,不是点。 练习:函数23)(2 +-=x x x f 的零点是( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2 方程f(x)=0的根的个数就是函数y=f(x)的图象与x 轴交点的个数。 方程f(x)=0的实数根就是函数y=f(x)的图象与x 轴交点的横坐标。 方法:①(代数法)求函数的零点就是求相应的方程的根,一般可以借助求根公式或因式分解等办法,求出方程的根,从而得出函数的零点。 ②(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点. 练习:Ⅰ求零点 ①y=x 3-1, ② y=2^x-1, ③y=lg(x 2-1)-1, ④y=2^|x|-8, ⑤y=2+log 3x Ⅱ结合函数的图像判断函数f(x)=x 3-7x+6的零点 Ⅲ判断函数f(x)=lnx+2x 是否存在零点及零点的个数 2、一元二次方程和二次函数 例,当a>0时,方程ax 2+bx+c=0的根与函数y=ax 2+bx+c 的图象之间的关系如下表: 练习:如果函数f(x)= ax 2-x-1仅有一个零点,求实数a 的范围。 3、零点存在性定理: 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b) 内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根。 例1:观察二次函数f (x)=x 2- 2x - 3的图象: ① 在区间[-2,1]上有零点_______; f (-2)=_____,f (1)=_____, f (-2) · f(1)___0(< 或 > 或 =) ② 在区间[2,4]上有零点_______; f (2) · f(4)___0(< 或 > 或 =) 例1图 例2图 例2:观察函数 y = f (x)的图象: ①在区间[a ,b]上___(有/无)零点; f (a) · f(b)___0(< 或 > 或 =) ②在区间[b ,c]上___(有/无)零点; f (b) · f(c)___0(< 或 > 或 =) 练习:①判断函数f(x)=x2-2x-1在区间(2,3)上是否存在零点? 4、函数最值: 最大值:一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f(x)≤M ;(2)存在x0∈I ,使得f(x0) = M ,那么,称M 是函数y=f(x)的最大值. 方法:利用函数单调性的判断函数的最大(小)值 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b). 练习:①函数 f (x )= )1(11 x x --的最大值是______ ②函数f (x )=ax (a >0,a ≠1)在[1,2]中的最大值比最小值 大2a ,则a 的值为______ ③设a 为实数,函数f (x )=x2+|x -a|+1,x ∈R. (1)讨论f (x )的奇偶性;(2)求f (x )的最小值. ④已知二次函数f (x )=(lga )x2+2x +4lga 的最大值为3,求a 的值.

函数与零点练习题

函数与零点 基础回顾: 零点、根、交点的区别 零点存在性定理:f (x )是连续函数;f (a )f (b )<0 二分法思想:零点存在性定理 一、基础知识—零点问题 1.若函数)(x f y =在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( ) A .若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ; B .若0)()(b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ; D .若0)()(

人教版数学必修一函数与方程练习题

人教版数学必修一函数与方程练习题 重点:掌握零点定理的内容及应用 二次函数方程根的分布 学会利用图像进行零点分布的分析 1. 下列函数中,不能用二分法求零点的是( ) 2. 如果二次函数 )3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) 3. A.()6,2- B.[]6,2- C.{}6,2- D.( )(),26,-∞-+∞ 4. 已知函数22)(m mx x x f --=,则)(x f ( ) A .有一个零点 B .有两个零点 C .有一个或两个零点 D .无零点 5. 已知函数)(x f 的图象是连续不间断的,有如下的)(,x f x 对应值表 x 1 2 3 4 5 6

函数)(x f 在区间]6,1[上的零点至少有( ) A .2个 B .3个 C .4个 D .5个 6. 若方程0=--a x a x 有两个根,则a 的取值范围是( ) A .)1(∞+ B .)1,0( C .),0(+∞ D .? 7. 设函数???>≤++=,0,3,0,)(2x x c bx x x f 若2)2(),0()4(-=-=-f f f ,则函数 x x f y -=)(的零点的个数为( ) A .1 B .2 C .3 D .4 8. 无论m 取哪个实数值,函数)2 3(232--+-=x m x x y 的零点个数都是( ) A .1 B .2 C .3 D .不确定 9. 已知函数).0(42)(2>++=a ax ax x f 若0,2121=+ B .)()(21x f x f = C .)()(21x f x f < D .)(1x f 与)(2x f 大 小不能确定 10. 若一次函数b ax x f +=)(有一个零点2,则二次函数ax bx x g -=2)(的 零点是 11. 根据下表,能够判断方程)()(x g x f =有实数解的区间 是 .

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

苏教版高中数学必修一函数的零点教案

2.5.1函数的零点 教学目标: 1.理解函数的零点的概念,了解函数的零点与方程根的联系. 2.理解“在函数的零点两侧函数值乘积小于0”这一结论的实质,并运用其解决有关一元二次方程根的分布问题. 3.通过函数零点内容的学习,分析解决对一元二次方程根的分布的有关问题,转变学生对数学学习的态度,加强学生对数形结合、分类讨论等数学思想的进一步认识. 教学重点: 函数零点存在性的判断. 教学难点: 数形结合思想,转化化归思想的培养与应用. 教学方法: 在相对熟悉的问题情境中,通过学生自主探究,在合作交流中完成学习任务.尝试指导与自主学习相结合. 教学过程: 一、问题情境 1.情境:在第2.3.1节中,我们利用对数求出了方程0.84x=0.5的近似解; 2.问题:利用函数的图象能求出方程0.84x=0.5的近似解吗? 二、学生活动 1.如图1,一次函数y=kx+b的图象与x轴交于点(-2,0),试根据图象填空: (1)k0,b0; (2)方程kx+b=0的解是; (3)不等式kx+b<0的解集; x y O -2 图1

2.如果二次函数y =ax 2+bx +c 的图象与x 轴交于点(-3,0)和(1,0),且开口方向向下,试画出图象,并根据图象填空: (1)方程ax 2+bx +c =0的解是 ; (2)不等式ax 2+bx +c >0的解集为 ; ax 2+bx +c <0的解集为 . 三、建构数学 1.函数y =f (x )零点的定义; 2.一元二次方程ax 2+bx +c =0(a >0)与二次函数y =ax 2+bx +c 的图象之间关系: △=b 2-4ac △>0 △=0 △<0 ax 2+bx +c =0的根 y =ax 2+bx +c 的图象 y =ax 2+bx +c 的零点 3.函数零点存在的条件:函数y =f (x )在区间[a ,b ]上不间断,且f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )上有零点. 四、数学运用 例1 函数y =f (x )(x [-5,3])的图象如图所示 ,根据图象,写出函数f (x ) 的零点及不等式f (x )>0与f (x )<0的解集. 例2 求证:二次函数y =2x 2+3x -7有两个不同的零点. 例3 判断函数f (x )=x 2-2x -1在区间(2,3)上是否存在零点? 例4 求证:函数f (x )=x 3+x 2+1在区间(-2,-1)上存在零点. 练习:(1)函数f (x )=2x 2-5x +2的零点是_______ . O x 1 x 2 x y O x 1=x 2 x y O x y y x O -5 -3 -1 1 3

高一数学函数的零点与二分法教案

一. 教学内容: 函数的零点与二分法 二. 学习目标 1、理解函数零点的概念与性质,会求函数的零点。 2、理解零点的意义,会求简单函数的零点,了解函数的零点与方程的根的关系; 3、通过具体实例了解二分法是求方程近似解的常用方法,理解用二分法求函数零点的原理,从中体会函数与方程之间的联系及其在实际问题中的应用. 4、在函数与方程的联系中,初步体会事物间相互转化的辩证思想;体验探究的过程、发现的乐趣。 三. 知识要点 1、函数的零点 一般地,如果函数()y f x =在实数a 处的值等于零,即()0f a =,则a 叫做这个函数的零点。 归纳:函数的零点并不是“点”,它不是以坐标的形式出现的。 说明: (1)函数的零点是一个实数,即当函数的自变量取这一实数时函数值为零; (2)对于函数的零点问题我们只在实数范围内讨论; (3)方程的根、函数的图象与x 轴交点的横坐标以及函数的零点是同一个问题的三种不同的表现形式 2、函数零点的意义: 函数)x (f y =的零点就是方程0)x (f =的实数根,亦即函数)x (f y =的图象与x 轴交点的横坐标. 归纳:方程0)x (f =有实数根?函数)x (f y =的图象与x 轴有交点?函数)x (f y =有零点. 3、函数零点存在性的判定方法 对于函数相对应的方程能求解的,可以直接求解方程的实数根,从而确定函数的零点;对于函数相对应的方程不能直接求解的,又该怎样处理? 如果函数)x (f y =在区间[]b ,a 上的图象是连续不断的一条曲线,并且有0)b (f )a (f

高中数学函数的零点教学设计

第4讲与函数的零点相关的问题 函数零点的个数问题 1.函数f(x)=xcos 2x在区间[0,2π]上的零点的个数为( D ) (A)2 (B)3 (C)4 (D)5 解析:要使f(x)=xcos 2x=0,则x=0,或cos 2x=0,而在区间[0,2π]上,通过观察y=cos 2x 的函数图象,易得满足cos 2x=0的x的值有,,,,所以零点的个数为5个. 2.(2015南昌二模)已知函数f(x)=函数g(x)是周期为2的偶函数,且当x∈[0,1]时,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数是( B ) (A)5 (B)6 (C)7 (D)8 解析:函数y=f(x)-g(x)的零点个数就是函数y=f(x)与y=g(x)图象的交点个数.在同一坐标系中画出这两个函数的图象: 由图可得这两个函数的交点为A,O,B,C,D,E,共6个点. 所以原函数共有6个零点.故选B. 3.(2015南昌市一模)已知函数f(x)=若关于x的方程f[f(x)]=0有且只有一个实数解,则实数a的取值范围为. 解析:依题意,得a≠0,令f(x)=0,得lg x=0,即x=1,由f[f(x)]=0,得f(x)=1, 当x>0时,函数y=lg x的图象与直线y=1有且只有一个交点,则当x≤0时,函数y=的图象与直线y=1没有交点,若a>0,结论成立;若a<0,则函数y=的图象与y轴交点的纵坐标-a<1,得-1

答案:(-1,0)∪(0,+∞) 4.(2015北京卷)设函数f(x)= ①若a=1,则f(x)的最小值为; ②若f(x)恰有2个零点,则实数a的取值范围是. 解析:①当a=1时,f(x)=其大致图象如图所示: 由图可知f(x)的最小值为-1. ②当a≤0时,显然函数f(x)无零点; 当01,由二次函数的性质可知,当x≥1时,f(x)有2个零点,则要使f(x)恰有2个零点,则需要f(x)在(-∞,1)上无零点,则2-a≤0,即a≥2.综上可知,满足条件的a的取值范围是[,1)∪[2,+∞). 答案:①-1 ②[,1)∪[2,+∞) 确定函数零点所在的区间 5.(2015四川成都市一诊)方程ln(x+1)-=0(x>0)的根存在的大致区间是( B ) (A)(0,1) (B)(1,2) (C)(2,e) (D)(3,4) 解析:设f(x)=ln(x+1)-, 则f(1)=ln 2-2<0,f(2)=ln 3-1>0, 得f(1)f(2)<0,函数f(x)在区间(1,2)有零点,故选B. 6.(2015河南郑州市一模)设函数f(x)=e x+2x-4,g(x)=ln x+2x2-5,若实数a,b分别是 f(x),g(x)的零点,则( A )

高中数学人教B版必修一第二章2.4.1《函数的零点》 教学设计

《函数的零点》课堂教学设计 一.教学内容 本课内容选自经全国中小学教材审定委员会2004年初审通过的人教版普通高中课程标准试验教科书,数学必修①,B 版第二单元《函数》中的《函数的零点》,新授课,第一课时。 1.知识背景 2.4节《函数与方程》作为新课程改革试验教材中的新增内容,其课程目标是想 通过对本节的学习,使学生学会用二分法求函数零点近似解的方法,从中体会函数与方程之间的联系,同时达到“方法构建、技术运用、算法渗透”这一隐性的教学目标。建立实际问题的函数模型,利用已知函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求函数零点的近似解,是在建立和运用函数模型的大背景下展开的。方程的根与函数的零点的关系、用二分法求函数零点的近似解中均蕴涵了“函数与方程的思想”,这也是本章渗透的主要数学思想. 2.本节内容 《函数的零点》通过对二次函数图像的绘制、分析,得到零点的概念,从而进一步 探索一般函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,对函数图像进行全新的认识,在函数与方程的联系中体验数学中的转化思想的意义和价值。 二.教学目标 知识与技能:(1)通过对二次函数增图像的描绘,理解函数零点的概念,体会我们在 研究和解决问题过程的一般思维方法。 (2)通过对一般函数图像的描绘分析,领会函数零点与相应方程之间的 关系,掌握零点存在的判定条件。 (3)培养学生对事物的观察、归纳能力和探究能力。 过程与方法: 通过画函数图像,分析零点的存在性。 情感态度与价值观: 使学生再次领略“数形”的有机结合,渗透由抽象到具体的思想, 理解动与静的辨证关系,体会数学知识之间的紧密联系。 三.教学重点 重点:理解零点的概念,判定二次函数零点的个数,会求函数的零点. 具体流程设计 一、创设情境 画函数322--=x x y 的图像,并观察其图象与其对应的一元二次方程0322=--x x [师生互动] 师:引导学生通过配方,画函数图象,分析方程的根与图象和x 轴交点坐标的关系。

高中数学《方程的根与函数的零点》公开课优秀教学设计一

2016年全国高中青年数学教师优秀课展示与培训活动交流课案 课 题:3.1.1 方程的根与函数的零点 教 材:人教A 版高中数学·必修1 【教材分析】 本节课的内容是人教版教材必修1第三章第一节,属于概念定理课。“函数与方程”这个单元分为两节,第一节:“方程的根与函数的零点”,第二节:“用二分法求方程的近似解”。 第一节的主要内容有三个:一是通过学生已学过的一元二次方程、二次函数知识,引出零点概念;二是进一步让学生理解:“函数()y f x =零点就是方程()0f x =的实数根,即函数 ()y f x =的图象与x 轴的交点的横坐标”;三是引导学生发现连续函数在某个区间上存在零 点的判定方法:如果函数()y f x =在区间[],a b 上图象是连续不断的一条曲线,并且有 ()()0f a f b ?<,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根。这些内容是求方程近似解的基础。本节课的 教学主要是围绕如何用函数的思想解决方程的相关问题展开,从而使之函数与方程紧密联系在一起。为后续学习二分法求方程的近似解奠定基础,本节内容起着承上启下的作用,承接以前学过的方程知识,启下为下节内容学习二分法打基础。 【教学目标】 1.理解函数零点的概念;掌握零点存在性定理,会求简单函数的零点。 2.通过体验零点概念的形成过程、探究零点存在的判定方法,提高学生善于应用所学知识研究新问题的能力。 3.通过本节课的学习,学生能从“数”“形”两个层面理解“函数零点”这一概念,进而掌握“数形结合”的方法。 【学情分析】 1.学生具备的知识与能力 (1)初中已经学过一元二次方程的根、一元二次函数的图象与x 轴的交点横坐标之间的关系。 (2)从具体到抽象,从特殊到一般的认知规律。 2. 学生欠缺的知识与能力 (1)超越函数的相关计算及其图象性质. (2)通过对具体实例的探究,归纳概括发现的结论或规律,并将其用准确的数学语言表达出

函数零点与方程的根练习题

方程的根与函数的零点 1、函数()? ? ?>+-≤-=1,341 ,442 x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( ) A.4 B.3 C.2 D.1 2、函数12log )(2-+=x x x f 的零点必落在区间( ) A.?? ? ??41,81 B.?? ? ??21,41 C.?? ? ??1,21 D.(1,2) 3、函数()f x 的零点与()422x g x x =+-的零点之差的绝对值不超过0.25, 则()f x 可以是( ) A. ()41f x x =- B. ()2(1)f x x =- C. ()1x f x e =- D.)2 1 ln()(-=x x f 4.若0x 是方程31 )2 1 (x x =的解,则0x 属于区间( ) A .??? ??1,32 . B .??? ??32,21 . C .??? ??21,31 D .?? ? ??31,0 5.若0x 是方程式lg 2x x +=的解,则0x 属于区间( ) A .(0,1). B .(1,1.25). C .(1.25,1.75) D .(1.75,2) 6.函数()x x f x 32+=的零点所在的一个区间是( ) A .()1,2-- B .()0,1- C .()1,0 D .()2,1 7.函数()2-+=x e x f x 的零点所在的一个区间是( ) A .()1,2-- B .()0,1- C .()1,0 D .()2,1 8.已知0x 是函数()x x f x -+ =11 2的一个零点,若()01,1x x ∈,()+∞∈,02x x ,则( ) A .()01x f C .()01>x f ,()02x f ,()02>x f 9.已知以4T =为周期的函 数(1,1] ()12,(1,3] x f x x x ?∈-?=?--∈??,其中0m >。若方程 3()f x x =恰有5个实数解,则m 的取值范围为( )

二分法求函数零点教案

用二分法求方程的近似解 1、二分法的概念 对于在区间[a, b]上连续不断且)(a f ·)(b f < 0的函数)(x f y =, 通过不断把函数 )(x f 的零点所在的区间一分为二, 使区间的两个端点逐步逼近零点,进而得到零点的近似 值的方法叫二分法。 2、用二分法求函数)(x f 的零点的近似值的步骤: (1)确定区间[a, b], 验证:)(a f ·)(b f < 0,确定精确度ε (2)求区间(a , b)的中点1x (3)计算)(1x f 若)(1x f =0, 则就1x 是函数的零点 若)(a f ·)(1x f <0,则令b =1x (此时零点x 0∈(a, 1x )) 若)(1x f ·)(b f <0,则令a =1x (此时零点x 0∈(1x , b)) (4)判断是否达到精确度ε 即若 | a – b | <ε, 则得到零点的近似值为a (或b ),否则重复(2)~(4) 3、用二分法求函数零点的条件: 若函数零点左右两侧函数值符号相反,则此零点为函数的变号零点,从图象来看,若图象穿过零点,则此零点为变号零点。否则为不变号零点。二分法只能求函数的变号零点。 例题讲解: 例1:下列函数图象与x 轴均有交点,其中不能用二分法求图中函数零点的是( ) 解:应选B ,利用二分法求函数零点必须满足零点两侧函数值异号。 例2、 利用二分法求方程x x -=31 的一个近似解(精确到0.1)。 解:设()31-+=x x x f ,则求方程x x -=31 的一个近似解,即求函数()x f 的一个近似零 点。∵()0212<-=f ,()03 1 3>=f ,∴取区间[]3,2作为计算的初始区间。

函数的零点二分法练习题精选

函数的零点二分法练习题精选 一、填空题 1.设f (x )的图象在区间(a ,b )上不间断,且f (a )·f (b )<0,取x 0=a +b 2 ,若f (a )·f (x 0)<0,则用二分法求相应方程的根时取有根区间为________. 答案:(a ,a +b 2 ) 2.一块电路板的AB 线路之间有64个串联的焊接点,如果电路不通的原因是因为焊口脱落造成的,要想用二分法检测出哪一处焊口脱落,至多需要检测________次. 解析:由二分法可选AB 中点C ,然后判断出焊口脱落点所在的线路为AC ,还是BC .然后依次循环上述过程即可很快检测出焊口脱落点的位置,至多需要检测6次. 答案:6 3.根据表中的数据,可以判定方程e x -x -2=0的一个根所在的区间是 解析:设f (x )=e x -x -2,由图表可知f (-1)<0,f (0)<0,f (1)<0,f (2)>0,f (3)>0.所以f (1)·f (2)<0,所以根在(1,2)内. 答案:(1,2) 4 函数f (x )在区间(1,6)内的零点至少有________个. 解析:在区间(2,3),(3,4),(5,6)内至少各有一个. 答案:3 5.设f (x )=3x +3x -8,由二分法求方程3x +3x -8=0在(1,2)内近似解的过程中,得f (1)<0,f (1.5)>0,f (1.25)<0,则方程根所在的大致区间是________.

解析:虽然f (1)·f (1.5)<0,f (1.5)·f (1.25)<0,但(1.25,1.5)比(1,1.5)更精确. 答案:(1.25,1.5) 6.下列方程在区间(0,1)内存在实数解的有________. ①x 2+x -3=0;②1x +1=0;③12 x +ln x =0;④x 2-lg x =0. 解析:00,x 2-lg x >0. 答案:③ 7.设函数y =x 3与y =(12 )x -2的图象的交点为(x 0,y 0),则x 0所在的区间是________(填写序号). ①(0,1) ②(1,2) ③(2,3) ④(3,4) 解析:令g (x )=x 3-22-x ,可求得g (0)<0,g (1)<0,g (2)>0,g (3)>0,g (4)>0.易知函数g (x )的零点所在区间为(1,2). 答案:② 8.函数f (x )=|x 2-2x |-a 有三个零点,则实数a 的取值范围是________. 解析:数形结合可知. 答案:a =1 9.下列函数中能用二分法求零点的是________. 解析:由二分法应用条件知只有③符合题意. 答案:③ 10.下面关于二分法的叙述,正确的是________. ①二分法可求函数所有零点的近似值 ②利用二分法求方程的近似解时,可以精确到小数点后任一位有

数学必修一零点题型总结

第三章 第一节 函数与方程 一、函数的零点 1、实例:填表 2、函数零点的定义:____________________________叫做函数的零点 (注意:________________________) 题型一 求函数的零点 1.y =x -2的图象与x 轴的交点坐标及其零点分别是( ) A .2;2 B .(2,0);2 C .-2;-2 D .(-2,0);-2 2.函数f(x)=x 2+4x +a 没有零点,则实数a 的取值范围是( ) A .a<4 B .a>4 C .a ≤4 D .a ≥4 3.函数f(x)=ax 2+2ax +c(a ≠0)的一个零点是-3,则它的另一个零点是( ) A .-1 B .1 C .-2 D .2 4.函数f(x)=x 2-ax -b 的两个零点是2和3,求函数g(x)=bx 2-ax -1的零点. 5、求下列函数的零点 (1)9 1 27)(-=x x f (2))1(log 2)(3+-=x x f

二、零点定理 1、方程的根与函数零点的关系: 方程f(x)=0的根?函数f(x)的零点?函数与x 轴交点的横坐标 2、零点定理: 如果函数 () y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 ()()0f a f b ?<那么函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得 ()0f c =,这个 c 也就是方程()0f x =的实数根。 问题1:去掉“连续不断”可以吗? 问题2:如果函数 ()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 ()()0f a f b ?<那么函数()y f x =在区间(,)a b 内有一个零点,对不对? 问题3:如果函数 ()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 0)()(>b f a f 那么函数()y f x =在区间(,)a b 上无零点,对不对? 题型二、判断区间内有无零点 1.函数y =f (x )在区间(-2,2)上的图象是连续的,且方程f (x )=0在(-2,2)上仅有一个实根0,则f (-1)·f (1)的值( ) A .大于0 B .小于0 C .等于0 D .无法确定 2. 函数2 ()ln f x x x =- 的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .1 (1,)e 和(3,4) D .(,)e +∞ 3.设函数f(x)=2x -x 2 -2x ,则在下列区间中不存在...零点的是( ) A.(-3,0) B.(0,3) C.(3,6) D.(6,9) 4、方程521 =+-x x 在下列哪个区间内一定有根?( ) A 、(0,1) B 、(1,2) C 、(2,3) D 、(3,4) 5、根据表格中的数据,可以判定方程20x e x --=的一个根所在的区间为( ) D .(2,3)

二分法求函数零点

分法的概念 对于在区间[a, b]上连续不断且f(a) f(b)<0的函数y = f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 由函数的零点与相应方程根的关系,可用二分法来求方程的近似解. 给定精确度占,用二分法求函数-零点近似值的步骤如下: (1)确定区间上,-,验证-■' 「v 0,给定精确度占; ⑵求区间",/的中点& ; ⑶计算:」: 1若丿■■■,则:就是函数的零点; 2若v 0,则令上'=冷(此时零点」八⑺); 3若丿-v 0,则令主=6 (此时零点I _ ■); ⑷判断是否达到精确度卫;即若山_ & | v日,则得到零点近似值吃(或* );否则重复步骤2-4 . 结论:由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解 思考:为什么由'’V己,便可判断零点的近似值为二(或占)? 、能用二分法求零点的条件 例1下列函数中能用二分法求零点的是() 判定一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点?因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.

变式迁移1下列函数图象与x轴均有交点,但不宜用二分法求交点横坐标的是() 、求函数的零点 例2判断函数y = x3-x— 1在区间[1,1.5]内有无零点,如果有,求出一个近似零点(精确度0.1). 分析由题目可获取以下主要信息:①判断函数在区间[1,1.5]内有无零点,可用根的存在性定 理判断;②精确度0.1.解答本题在判断出在[1,1.5]内有零点后可用二分法求解. 解因为f(1) =— 1<0, f(1.5) = 0.875>0 ,且函数y = x3—x — 1的图象是连续的曲线,所以它在区间[1,1.5]内有零点,用二分法逐次计算,列表如下: 由于 |1.375 — 所以函数的一个近似零点为 1.312 5. 点评由于用二分法求函数零点的近似值步骤比较繁琐,因此用列表法往往能比较清晰地表 达.事实上,还可用二分法继续算下去,进而得到这个零点精确度更高的近似值. 变式迁移2求函数f(x) = x3+ 2x2— 3x — 6的一个正数零点(精确度0.1). 解由于f(1) =— 6<0, f(2) = 4>0,可取区间(1,2)作为计算的初始区间,用二分法逐次计算, 列表如下: 由于 |1.75 —

高中数学-函数零点问题

函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(北京)设函数f (x )=????? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (天津)已知函数f (x )=? ??? ? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实 数a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

人教新课标版数学高一-必修一练习方程的根与函数的零点

1.函数f (x )=2x 2-3x +1的零点是( ) A .-12,-1 B.12 ,1 C.12,-1 D .-12 ,1 解析:方程2x 2-3x +1=0的两根分别为x 1=1,x 2=12 ,所以函数f (x )=2x 2-3x +1的零点是12 ,1. 答案:B 2.下列各图象表示的函数中没有零点的是( ) 解析:函数没有零点?函数的图象与x 轴没有交点. 答案:D 3.函数f (x )=x +ln x 的零点所在的区间为( ) A .(-1,0) B .(0,1) C .(1,2) D .(1,e) 解析:法一:∵x >0,∴A 错.又因为f (x )=x +ln x 在(0,+∞)上为增函数,f (1)=1>0,所以f (x )=x +ln x 在(1,2),(1,e)上均有f (x )>0,故C 、D 不对. 法二:取x =1e ∈(0,1),因为f (1e )=1e -1<0,f (1)=1>0,所以f (x )=x +ln x 的零点所在的区间为(0,1). 答案:B 4.若函数f (x )唯一的零点同时在区间(0,16),(0,8),(0,4),(0,2)上,那么下列命题中正确的是( ) A .函数f (x )在区间(0,1)内有零点 B .函数f (x )在区间(0,1)或(1,2)内有零点

C.函数f(x)在区间[2,16)内无零点 D.函数f(x)在区间(1,16)内无零点 解析:由题意可知函数f(x)的零点必在区间(0,2)内. 答案:C 5.方程ln x=8-2x的实数根x∈(k,k+1),k∈Z,则k=__________. 解析:令f(x)=ln x+2x-8,则f(x)在(0,+∞)上单调递增. ∵f(3)=ln 3-2<0,f(4)=ln 4>0, ∴零点在(3,4)上,∴k=3. 答案:3 6.函数f(x)=(x2-1)(x+2)2(x2-2x-3)的零点个数是________. 解析:f(x)=(x+1)(x-1)(x+2)2(x-3)(x+1) =(x+1)2(x-1)(x+2)2(x-3). 可知零点为±1,-2,3,共4个. 答案:4 7.判断下列函数在给定区间上是否存在零点. (1)f(x)=x2-3x-18,x∈[1,8]; (2)f(x)=x3-x-1,x∈[-1,2]; (3)f(x)=log2(x+2)-x,x∈[1,3]. 解:(1)法一:∵f(1)=-20<0,f(8)=22>0, ∴f(1)·f(8)<0.故f(x)=x2-3x-18在[1,8]上存在零点. 法二:令x2-3x-18=0,解得x=-3或x=6, ∴函数f(x)=x2-3x-18在[1,8]上存在零点. (2)∵f(-1)=-1<0,f(2)=5>0, ∴f(-1)·f(2)<0. ∴f(x)=x3-x-1在[-1,2]上存在零点. (3)∵f(1)=log2(1+2)-1>log22-1=0, f(3)=log2(3+2)-3

相关主题