搜档网
当前位置:搜档网 › 基因测序的原理及应用

基因测序的原理及应用

DNA测序原理和方法.

DNA测序原理和方法 DNA序列测定分手工测序和自动测序,手工测序包括Sanger双脱氧链终止法和Maxam-Gilbert化学降解法。自动化测序实际上已成为当今DNA序列分析的主流。美国PE ABI公司已生产出373型、377型、310型、3700和3100型等DNA测序仪,其中310型是临床检测实验室中使用最多的一种型号。本实验介绍的是ABI PRISM 310型DNA测序仪的测序原理和操作规程。 【原理】ABI PRISM 310型基因分析仪(即DNA测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司专利的四色荧光染料标记的ddNTP(标记终止物法),因此通过单引物PCR测序反应,生成的PCR产物则是相差1个碱基的3''''末端为4种不同荧光染料的单链DNA混合物,使得四种荧光染料的测序PCR产物可在一根毛细管内电泳,从而避免了泳道间迁移率差异的影响,大大提高了测序的精确度。由于分子大小不同,在毛细管电泳中的迁移率也不同,当其通过毛细管读数窗口段时,激光检测器窗口中的CCD(charge-coupled device)摄影机检测器就可对荧光分子逐个进行检测,激发的荧光经光栅分光,以区分代表不同碱基信息的不同颜色的荧光,并在CCD摄影机上同步成像,分析软件可自动将不同荧光转变为DNA序列,从而达到DNA测序的目的。分析结果能以凝胶电泳图谱、荧光吸收峰图或碱基排列顺序等多种形式输出。 它是一台能自动灌胶、自动进样、自动数据收集分析等全自动电脑控制的测定DNA片段的碱基顺序或大小和定量的高档精密仪器。PE公司还提供凝胶高分子聚合物,包括DNA测序胶(POP 6)和GeneScan胶(POP 4)。这些凝胶颗粒孔径均一,避免了配胶条件不一致对测序精度的影响。它主要由毛细管电泳装置、Macintosh电脑、彩色打印机和电泳等附件组成。电脑中则包括资料收集,分析和仪器运行等软件。它使用最新的CCD摄影机检测器,使DNA 测序缩短至2.5h,PCR片段大小分析和定量分析为10~40min。 由于该仪器具有DNA测序,PCR片段大小分析和定量分析等功能,因此可进行DNA测序、杂合子分析、单链构象多态性分析(SSCP)、微卫星序列分析、长片段PCR、RT-PCR(定量PCR)等分析,临床上可除进行常规DNA测序外,还可进行单核苷酸多态性(SNP)分析、基因突变检测、HLA配型、法医学上的亲子和个体鉴定、微生物与病毒的分型与鉴定等。【试剂与器材】 1.BigDye测序反应试剂盒主要试剂是BigDye Mix,内含PE专利四色荧光标记的ddNTP 和普通dNTP,AmpliTaq DNA polymerase FS,反应缓冲液等。 2.pGEM-3Zf (+) 双链DNA对照模板0.2g/L,试剂盒配套试剂。 3.M13(-21)引物TGTAAAACGACGGCCAGT,3.2μmol/L,即3.2pmol/μl,试剂盒配套试剂。 4.DNA测序模板可以是PCR产物、单链DNA和质粒DNA等。模板浓度应调整在PCR 反应时取量1μl为宜。本实验测定的质粒DNA,浓度为0.2g/L,即200ng/μl。 5.引物需根据所要测定的DNA片段设计正向或反向引物,配制成3.2μmol/L,即3.2pmol/μl。如重组质粒中含通用引物序列也可用通用引物,如M13(-21)引物,T7引物等。 6.灭菌去离子水或三蒸水。 7.0.2ml或和0.5ml的PCR管盖体分离,PE公司产品。 8.3mol/L 醋酸钠(pH5.2) 称取40.8g NaAc·3H2O溶于70ml蒸馏水中,冰醋酸调pH至5.2,定容至100ml,高压灭菌后分装。 9.70%乙醇和无水乙醇。 10.NaAc/乙醇混合液取37.5ml无水乙醇和2.5ml 3mol/L NaAc混匀,室温可保存1年。11.POP 6测序胶ABI产品。

DNA测序技术发展简史

DNA测序技术发展简史 摘要:本文回顾了1965年一来DNA测序技术的发展,重点介绍了双脱氧链终止测序法及Maxam-Gillbert DNA化学降解法的出现,以及其他的一些相关技术的发展,以简练清晰的脉络梳理了DNA测序技术的发展史。 关键词:DNA测序;双脱氧链终止测序法;Maxam-Gillbert DNA化学降解法 l953年,Watson和Crick提出DNA双螺旋结构模型以后,人们就开始探索研究DNA 一级结构的方法。1965年,美国Cornell大学以Rober Holley为首的科学家小组,第一次完成了长度为75个核苦酸的酵母丙氨酸tRNA的全序列测定并将结果发表在Science杂志上。其办法是利用各种RNA酶把tRNA降解成寡核苷酸,经分离纯化之后,再分别测定这些寡核苷酸短片段的核苷酸顺序掀开了DNA测序技术研究的序幕[1]。但那时由于没有找到分别降解四种脱氧核糖核酸的专一酶,只能通过测定RNA 的序列来推测DNA的序列,即先将RNA用酸水解或外切酶降解,再经双向电泳同系层析将其分开(小片段重叠法)。 1971年,华裔分子生物学家吴瑞博士(Dr.Ray Wu)在1968年独创性地设计了一种崭新的引物-延伸测序策略,发展出了测定DNA核苷酸序列的第一个方法,提高了DNA序列分析的速度,并于1971年首次成功地测定了λ噬菌体两个粘性末端的完整序列[2]。 l977年,英国剑桥大学分子生物学实验室的Fred Sanger领导的研究小组在吴瑞博士的基础上分别在Nature和PNAS发表文章,提出DNA聚合酶的双脱氧链终止原理测定核苷酸序列的方法,Sanger作为世界上第一个解决DNA测序的科学家,再一次荣获诺贝尔奖(1980年)[3]。DNA双脱氧链终止测序法,也称酶法或末端终止法,是利用2’,3’-双脱氧三磷酸核苷(2’,3’-ddNTP或简称ddNTP)来终止DNA的复制反应。ddNTP可以在DNA聚合酶作用下通过其5’-磷酸基团掺入到正在增长的DNA链中,但由于ddNTP在脱氧核糖的3’位置缺少一个羟基,它们不能同后续的dNTP形成磷酸二酯键(由M.R.Atkinson等人于1969年发现),从而中断延伸反应。该法将待测DNA样品分成四组,在每组DNA合成反应混合物的四种普通dNTP中加入少量的一种ddNTP,这样一来,链延伸将与偶然发生但却十分特异的链终止展开竞争,最终得到反应一系列的核苷酸链,其长度取决于从用以起始DNA合成的引物末端到出现过早链终止的位置之间的距离,由于这四组独立的酶反应中分别采用四种不同的ddNTP,将产生四组分别终止于模板链的每一个A、G、C或T的位置上的寡核苷酸,使用变性测序凝胶电泳分析这四组反应的产物,即可从放射自显影片上直接读出DNA的序列[4]。 而美国哈佛的Alan Maxam和Walter Gilbert领导的研究小组也几乎同时发明出DNA序列测定方法——Maxam-Gillbert DNA化学降解法测序,其基本原理是用特异的化学试剂修饰DNA分子中的不同碱基,然后用哌啶切断反应碱基的多核苷酸链。该法设计四组特异的反应:①G反应,用硫酸二甲酯使鸟嘌呤上的N7甲基化,加热引起甲基化鸟嘌呤脱落,导致多核苷酸链可在该处断裂;②G+A反应,用甲酸使A和G嘌呤环上的N原子质子化,从而使其糖苷键变得不稳定,再用哌啶使键断裂;③T+C反应,用肼使T和C的嘧啶环断裂,再用哌啶除去碱基;④C反应,在有盐存在时,只有C与肼反应,并被哌啶除去。这样一来,同一个末端标记的DNA片段在四组互相独立的化学反应中分别得到部分降解,每一组反应特异地针对某一种或某一类碱基,生成四组放射性标记的分子,从共同起点(放射性标记末端)延续到发生化学降解的位点,每组混合物中均含有长短不一的DNA分子,其长度取决于该组反应所针对的碱基在原DNA全片段上的位置。最后,通过聚丙烯酰胺凝胶电泳进行分离此后组产物,再从放射自显影片上即可读出序列[5]。

基因测序技术的优缺点及应用

基因测序技术的优缺点及应用 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以 Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到 2005 年,以Illumina 公司的 Solexa技术和 ABI 公司的 SOLiD 技术为标志的新一代测序 (next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过 NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着 NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用 NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过 NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种 DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和 Walter Gibert 发明了 Sanger 测序法,并在此后的 10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当 DNA 链加入分子 ddNTP,延伸便终止。每一次 DNA 测序是由 4个独立的反应组成,将模板、引物和 4 种含有不同的放射性同位素标记的核苷酸的ddNTP 分别与DNA 聚合酶混合形成长短不一的片段,大量起始点相同、终止点不同的 DNA 片段存在于反应体系中,具有单个碱基差别的 DNA 序列可以被聚丙烯酰胺变性凝胶电泳分离出来,得到放射性同位素自显影条带。依据电泳条带读取DNA 双链的碱基序列。 人类基因组的测序正是基于该技术完成的。Sanger 测序这种直接测序方法具有高度的准确性和简单、快捷等特点。目前,依然对于一些临床上小样本遗传疾病基因的鉴定具有很高的实用价值。例如,临床上采用 Sanger 直接测序 FGFR 2 基因证实单基因 Apert 综合征和直接测序 TCOF1 基因可以检出多达 90% 的

几种常见的基因测序技术的优缺点及应用

几种常见的基因测序技术的优缺点及应用 发布时间:2014-07-19 来源:毕业论文网 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到2005 年,以Illumina 公司的Solexa技术和ABI 公司的SOLiD 技术为标志的新一代测序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和Walter Gibert 发明了Sanger 测序法,并在此后的10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当DNA 链加入分子ddNTP,延伸便终止。每一次DNA 测序是由4个独立的反应组成,将模板、引物和 4 种含有不同的放射性同位素标记的核苷酸的ddNTP 分别与DNA 聚合酶混合形成长短不一的片段,大量起始点相同、终止点不同的DNA 片段存在于反应体系中,具有单个碱基差别的DNA 序列可以被聚丙烯酰胺变性凝胶电泳分离出来,得到放射性同位素自显影条带。依据电泳条带读取DNA 双链的碱基序列。 人类基因组的测序正是基于该技术完成的。Sanger 测序这种直接测序方法具有高度的准确性和简单、快捷等特点。目前,依然对于一些临床上小样本遗传疾病基因的鉴定具有很高的实用价值。例如,临床上采用Sanger 直接测序FGFR 2 基因证实单基因Apert 综合征和直接测序TCOF1 基因可以检出多达90% 的与Treacher Collins 综合征相关的突变。值得注意的是,Sanger 测序是针对已知致病基因的突变位点设计引物,进行PCR 直接扩增测序。

三代测序原理技术比较

导读从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序 技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为 sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

DNA第一代,第二代,第三代测序的介绍

原理是:核酸模板在DNA聚合酶、引物、4 种单脱氧核苷三磷酸 ( d NTP,其中的一种用放射性P32标记 )存在条件下复制时,在四管反应系统中分别按比例引入4种双脱氧核苷三磷酸 ( dd NTP ),因为双脱氧核苷没有3’-O H,所以只要双脱氧核苷掺入链的末端,该链就停止延长,若链端掺入单脱氧核苷,链就可以继续延长。如此每管反应体系中便合成以各自 的双脱氧碱基为3’端的一系列长度不等的核酸片段。反应终止后,分4个泳道进行凝胶电泳,分离长短不一的核酸片段,长度相邻的片段相差一个碱基。经过放射自显影后,根据片段3’端的双脱氧核苷,便可依次阅读合成片段的碱基排列顺序。Sanger法因操作简便,得到广泛的应用。后来在此基础上发展出多种DNA 测序技术,其中最重要的是荧光自动测序技术。 荧光自动测序技术荧光自动测序技术基于Sanger 原理,用荧光标记代替同位素标记,并用成像系统自动检测,从而大大提高了D NA测序的速度和准确性。20世纪80 年代初Jorgenson 和 Lukacs提出了毛细管电泳技术( c a p il l ar y el ect r ophor es i s )。1992 年美国的Mathies实验室首先提出阵列毛细管电泳 ( c a p il l ar y ar r a y el ectr ophor es i s ) 新方法,并采用激光聚焦荧光扫描检测装置,25只毛细管并列电泳,每只毛细管在内可读出350 bp,DNA 序列,分析效率可达6 000 bp/h。1995年Woolley研究组用该技术进行测序研究,使用四色荧光标记法,每个毛细管长,在9min内可读取150个碱基,准确率约 97 % 。目前, 应用最广泛的应用生物系统公司 ( ABI ) 37 30 系列自动测序仪即是基于毛细管电泳和荧光标记技术的D NA测序仪。如ABI3730XL 测序仪拥有 96 道毛细管, 4 种双脱氧核苷酸的碱基分别用不同的荧光标记, 在通过毛细管时 不同长度的 DNA 片段上的 4 种荧光基团被激光激发, 发出不同颜色的荧光, 被 CCD 检测系统识别, 并直接翻译成 DNA 序列。 杂交测序技术杂交法测序是20世纪80年代末出现的一种测序方法, 该方法不同于化学降解法和Sanger 法, 而是利用 DNA杂交原理, 将一系列已知序列的单链寡核苷酸片段固定在基片上, 把待测的 DN A 样品片段变性后与其杂交, 根据杂交情况排列出样品的序列

三代测序原理技术比较

三代测序原理技术比较

三代测序技术和原理介绍 导读从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。 摘要:从1977年第一代DNA测序技术 (Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。

第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中

分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

三代基因组测序技术原理(简介)

三代基因组测序技术原理简介 【写在前面的话】:首先,这一篇博文中的内容并非原创,而是对多篇文献中内容的直接摘录,有些图片和资料还来自身边的同事(在此深表谢意!),再夹杂自己的零星想法,写在这里分享与大家,同时也是为了方便自己日后若有需要能够方便获得,文章比较长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1: 测序技 术的发 展历程 生命体 遗传信 息的快 速获得 对于生 命科学 的研究 有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。

三代测序原理技术比较

导从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测导序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从读长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到 长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势 位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变 革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在 这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1 :测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson )开创的链终止法或者是1976-1977年由马克西姆(Maxam和吉尔伯特(Gilbert )发明的化学法(链降解)?并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱 基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。 研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基 因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2' 和3'都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为san ger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了San ger法之外还出现了一 些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2 - 4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方 法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP 图2: Sanger法测序原理

基因测序技术概述精选文档

基因测序技术概述精选 文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

基因测序技术概述 摘要:基因测序技术是一种发展迅速和应用广泛的现代分子生物学技术之一。本文基于国内外基因测序技术的发展现状,综合评述了四代基因测序技术,归纳了它们各自的特点与优缺点,以及应用现状、范围及其在实际应用中的优势和不足,总结了当前出现的基因测序新方法,并对该项技术的发展趋势进行展望。 关键词:基因测序技术;发展;应用;前景 Abstract: Gene sequencing technology is a kind of modern molecular biology techniques with rapid development and wide application .In this paper, it is based on the current development of gene sequencing technology at home and abroad, a comprehensive review is given on the four generations of gene sequencing technology, it sums up their respective characteristics , advantages and disadvantages, as well as their application about status, scope and its advantages and disadvantages in practical application, it summarizes the new gene sequencing method, and points out the development trend of itself. Key words: Gene sequencing technology; Development; Application; Prospects

三代基因组测序技术简介及其原理整理.

三代基因组测序技术简介及其原理整理 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法以及1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解)。 1977年,桑格测定了第一个基因组序列——噬菌体X174,全长5375个碱基。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础。 Sanger法原理: 1)在模板指导下,DNA聚合酶不断将dNTP(N=A/G/T/ C)加到引物的3’- OH末端,合成出新的互补链。在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP,在互补链在DNA聚合酶作用下延伸时,一旦连接上ddNTP,由于双脱氧核糖的2’和3’都不含羟基,故不能同后续的dNTP形成磷酸二酯键而终止反应,随即形成一系列不同长度的、以同样引物为起始、以同一碱基终止的短片段混合物。 2)双脱氧核苷酸在每个DNA分子中掺入的位置不同,采用聚丙烯酰胺凝胶电泳区分长度差一个核苷酸的单链DNA,从而读取DNA核苷酸序列。 化学裂解法原理: 与Sanger法类似,将DNA模板分成4个反应。在每个反应中,先在模板5’端进行放射性标记,再加入能特异性在其中一种碱基处切开DNA的化学试剂。反应进行时,平均一个DNA分子只在随机位点产生一次裂解。接着,通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列。 第二代测序技术 第一代测序技术的主要特点是测序读长可达1000bp,准确性高达99.999%,但其测序成本高,通量低等方面的缺点,严重影响了其真正大规模的应用。因而第一代测序技术并不是最理想的测序方法。经过不

测序的基本原理:

一、测序的基本原理: 测序的基本原理是Sanger末端终止法,在酶的作用下将原本是一条长达数百碱基的片断扩增成数百条片断,彼此间相差一个碱基。用电泳分离这些片断后,再通过测序仪将这些信号转变成峰图,从而最终形成客户所看到的测序序列和测序的峰图。 目前通用的扩增方式是通过PCR的方式进行的起源;其原理简述如下:PCR类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。 采用PCR的方式扩增目标片断具有以下优点: 1. 微量的样品也可进行测序反应 2. 操作简便 3. 缩短了测序样品的准备时间。 因此目前所有提供测序服务的公司都是采用PCR扩增目标片断来进行测序的。当然由于测序反应要求较普通PCR远为严格,因此在所用的酶和反应体系方面均进行了特殊处理。 二、测序的样品要求: 测序由于是要进行特殊的PCR反应的,因此对样品的要求与其他试验的要求有所不同分别简述之: 1. 样品的纯度:PCR具有短时间内高效的扩增能力,因此样品的纯度对反应有至关重要的影响。当样品不纯的时候,那些杂质会对实验结果产生干扰。这在PCR产物测序中表现的尤为明显,在测序结果上表现为峰图杂乱,过多的不可识别的碱基。

基因测序技术简介

DNA 测序技术作为人类探索生命秘密的重要手段之一,对生物、生命科学、医学等领域的技术发展起到了巨大的推动作用。自从诞生以来,DNA测序技术的发展经历了几代技术的变革。第一代技术使用的是1977年Sanger等人发明的链终止法或Maxam和 Gilbert发明的链降解法,因为其超高精度并可以从头测序、从头组装的特点,以此为基础的毛细管电泳测序方法在特定领域仍有着不可取代的作用。Sanger 法的缺点是:1、测定步骤繁琐。一个步骤重复四次,因此需要大量相同的DNA 拷贝,样本需求量大;2、不能测定太长的DNA 序列。 第二代技术作为目前市场上主流的DNA测序技术较第一代测序技术而言,测量通量明显提高。如Roche454公司的GS FLX基因测序系统,Illumina公司的HiSeq/MiSeq/Genome Analyser系统,Life Technologies公司的5500xl SOLiD系统。此外,被称为第2.5代的Helicos公司的HeliScope系统在第二代测序技术的基础上引入了单分子测序的概念,在速度和成本方面较之前有了一定进步。 第三代技术以Pacific Biosciences公司的RS系统为代表,以单分子实时测序为主要特点,对零模波导中的单个荧光分子进行高灵敏度检测,从而快速获得 DNA序列信息。虽然第二代测序技术已经取得广泛应用,但是其必须基于PCR扩增,成本、准确性等关键问题仍然存在,科学家正在致力于新的测序解决方案。目前以单分子测序为主要特征的第三代测序技术(也称为Next-generation sequencing)已经初现端倪。目前比较看好的有:(1)生物科学公司(BioScience Corporation)的Heloscope 单分子测序技术。Heloscope 单分子测序技术也是基于“边合成边测序”的思想,但是不需要PCR 扩增,所以更能反映样本的真实情况,通量也更高。(2)太平洋生物科学公司(PacBio)的SMRT 技术。SMRT测序的核心是SMRT 芯片,为一种多ZMW 孔的厚度为100nm 的金属片,测序时将DNA 聚合酶、不同荧光标记的dNTP、待测序列加入ZMW 孔的底部,然后进行合成反应。荧光标记为磷酸基团,一个dNTP 加入到合成链上和进入ZMW 孔同步进行,被激光束激发,依据荧光的种类判断dNTP 的种类,后用氟聚物切割、释放,离开信号检测区口。 纳米孔测序技术属于第四代测序技术,其通过物理方法,无需生物化学预处理而直接对DNA序列进行读取,正向着高通量、高读长、低成本、小型化的方向发展。 纳米孔测序方法不同于其他测序方法, 不需要对 DNA 进行生物或化学处理, 而采用物理办法直接读出 DNA 序列. 其原理可以简单的描述为: 单个碱基通过纳米尺度的通道时, 会引起通道电学性质的变化. 理论上, A, C, G, T 4 种不同的碱基化学性质

三代基因组测序技术原理简介

三代基因组测序技术原理简介 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP (分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳

DNA测序仪的测序原理和操作规程

DNA测序仪的测序原理和操作规程 DNA测序仪 DNA序列测定分手工测序和自动测序,手工测序包括sanger双脱氧链终止法和maxam-gilbert化学降解法。自动化测序实际上已成为当今DNA序列分析的主流。美国pe abi 公司已生产出373型、377型、310型、3700和3100型等DNA测序仪,其中310型是临床检测实验室中使用最多的一种型号。本实验介绍的是abi prism 310型DNA测序仪的测序原理和操作规程。 原理 abi prism 310型基因分析仪(即DNA测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司专利的四色荧光染料标记的ddntp(标记终止物法),因此通过单引物pcr测序反应,生成的pcr产物则是相差1个碱基的3''''末端为4种不同荧光染料的单链DNA混合物,使得四种荧光染料的测序pcr产物可在一根毛细管内电泳,从而避免了泳道间迁移率差异的影响,大大提高了测序的精确度。由于分子大小不同,在毛细管电泳中的迁移率也不同,当其通过毛细管读数窗口段时,激光检测器窗口中的ccd(charge-coupled device)摄影机检测器就可对荧光分子逐个进行检测,激发的荧光经光栅分光,以区分代表不同碱基信息的不同颜色的荧光,并在ccd摄影机上同步成像,分析软件可自动将不同荧光转变为DNA序列,从而达到DNA测序的目的。分析结果能以凝胶电泳图谱、荧光吸收峰图或碱基排列顺序等多种形式输出。 它是一台能自动灌胶、自动进样、自动数据收集分析等全自动电脑控制的测定DNA片段的碱基顺序或大小和定量的高档精密仪器。pe公司还提供凝胶高分子聚合物,包括DNA 测序胶(pop 6)和genescan胶(pop 4)。这些凝胶颗粒孔径均一,避免了配胶条件不一致对测序精度的影响。它主要由毛细管电泳装置、macintosh电脑、彩色打印机和电泳等附件组成。电脑中则包括资料收集,分析和仪器运行等软件。它使用最新的ccd摄影机检测器,使DNA 测序缩短至2.5h,pcr片段大小分析和定量分析为10~40min。 由于该仪器具有DNA测序,pcr片段大小分析和定量分析等功能,因此可进行DNA 测序、杂合子分析、单链构象多态性分析(sscp)、微卫星序列分析、长片段pcr、rt-pcr(定量pcr)等分析,临床上可除进行常规DNA测序外,还可进行单核苷酸多态性(snp)分析、基因突变检测、hla配型、法医学上的亲子和个体鉴定、微生物与病毒的分型与鉴定等。 试剂与器材 1.bigdye测序反应试剂盒主要试剂是bigdye mix,内含pe专利四色荧光标记的ddntp 和普通dntp,amplitaq DNA polymerase fs,反应缓冲液等。 2.pgem-3zf (+) 双链DNA对照模板0.2g/l,试剂盒配套试剂。 3.m13(-21)引物tgtaaaacgacggccagt,3.2μmol/l,即3.2pmol/μl,试剂盒配套试剂。 4.DNA测序模板可以是pcr产物、单链DNA和质粒DNA等。模板浓度应调整在pcr 反应时取量1μl为宜。本实验测定的质粒DNA,浓度为0.2g/l,即200ng/μl。 5.引物需根据所要测定的DNA片段设计正向或反向引物,配制成 3.2μmol/l,即3.2pmol/μl。如重组质粒中含通用引物序列也可用通用引物,如m13(-21)引物,t7引物等。 6.灭菌去离子水或三蒸水。 7.0.2ml或和0.5ml的pcr管盖体分离,pe公司产品。 8.3mol/l 醋酸钠(ph5.2) 称取40.8g naac?3h2o溶于70ml蒸馏水中,冰醋酸调ph至5.2,定容至100ml,高压灭菌后分装。 9.70%乙醇和无水乙醇。

DNA测序原理和方法

DNA 测序原理和方法 DNA 序列测定分手工测序和自动测序,手工测序包括Sanger 双脱氧链终止法和Maxam-Gilbert 化学降解法。自动化测序实际上已成为当今DNA 序列分析的主流。美国PE ABI 公司已生产出373 型、377 型、310 型、3700 和3100 型等DNA 测序仪,其中310 型是临床检测实验室中使用最多的一种型号。本实验介绍的是ABI PRISM 310 型DNA 测序仪的测序原理和操作规程。 【原理】ABI PRISM 310 型基因分析仪(即DNA 测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司专利的四色荧光染料标记的ddNTP(标记终止物法),因此通过单引物PCR测序反应, 生成的PCR产物则是相差1个碱基的3”"末端为4种不同荧光染料的单链DNA混合物,使得四种荧光染料的测序PCR 产物可在一根毛细管内电泳,从而避免了泳道间迁移率差异的影响,大大提高了测序的精确度。由于分子大小不同,在毛细管电泳中的迁移率也不同,当其通过毛细管读数窗口段时,激光检测器窗口中的CCD(charge-coupled device)摄影机检测器就可对荧光分子逐个进行检测,激发的荧光经光栅分光,以区分代表不同碱基信息的不同颜色的荧光,并在CCD 摄影机上同步成像,分析软件可自动将不同荧光转变为DNA 序列,从而达到DNA 测序的目的。分析结果能以凝胶电泳图谱、荧光吸收峰图或碱基排列顺序等多种形式输出。 它是一台能自动灌胶、自动进样、自动数据收集分析等全自动电脑控制的测定DNA 片段的碱基顺序或大 小和定量的高档精密仪器。PE公司还提供凝胶高分子聚合物,包括DNA测序胶(POP 6)和GeneScan胶(POP 4) 。这些凝胶颗粒孔径均一,避免了配胶条件不一致对测序精度的影响。它主要由毛细管电泳装置、Macintosh 电脑、彩色打印机和电泳等附件组成。电脑中则包括资料收集,分析和仪器运行等软件。它使用最新的CCD 摄影机检测器,使DNA测序缩短至2.5h,PCR片段大小分析和定量分析为10?40min。 由于该仪器具有DNA 测序,PCR 片段大小分析和定量分析等功能,因此可进行DNA 测序、杂合子分析、单链构象多态性分析(SSCP)、微卫星序列分析、长片段PCR、RT-PCR(定量PCR)等分析,临床上可除进行常规DNA测序外,还可进行单核苷酸多态性(SNP)分析、基因突变检测、HLA配型、法医学上的亲子和个体鉴定、微生物与病毒的分型与鉴定等。 【试剂与器材】 1. BigDye测序反应试剂盒主要试剂是BigDye Mix,内含PE专利四色荧光标记的ddNTP和普通dNTP,AmpliTaq DNA polymerase FS ,反应缓冲液等。 2. pGEM-3Zf (+)双链DNA对照模板0.2g/L,试剂盒配套试剂。 3. M13(-21)引物TGTAAAACGACGGCCAGT ,3.2 卩mol/L 即3.2pmol/ 从试剂盒配套试剂。 4. DNA测序模板可以是PCR产物、单链DNA和质粒DNA等。模板浓度应调整在PCR反应时取量1 gl 为宜。本实验测定的质粒DNA,浓度为0.2g/L,即200ng/ g。 5. 弓I物需根据所要测定的DNA片段设计正向或反向引物,配制成3.2 g mol/L即3.2pmol/ g 1如重组质粒中含通用引物序列也可用通用引物,如M13(-21)引物,T7引物等。 6. 灭菌去离子水或三蒸水。 7. 0.2ml或和0.5ml的PCR管盖体分离,PE公司产品。 8 3mol/L醋酸钠(pH5.2)称取40.8g NaAc 3H2O溶于70ml蒸馏水中,冰醋酸调pH至5.2,定容至100ml,高压灭菌后分装。 9. 70%乙醇和无水乙醇。 10. NaAc/乙醇混合液取37.5ml无水乙醇和2.5ml 3mol/L NaAc混匀,室温可保存1年。 11. POP 6测序胶ABI 产品。 12. 模板抑制试剂(TSR) ABI 产品。 13. 10X电泳缓冲液ABI产品。

相关主题