搜档网
当前位置:搜档网 › 我眼中的伽罗华 近世代数 群论

我眼中的伽罗华 近世代数 群论

我眼中的伽罗华 近世代数  群论
我眼中的伽罗华 近世代数  群论

我对伽罗华的看法

有人认为,数学已经是一门古老的学科,笛卡尔创造解析学和牛顿发明微积分,都是十七世纪的事情。德国著名数学家、物理学家、天文学家高斯曾说过,数学是科学之王,那些被我们熟知的数学大家,也是年老资深,阅历成就无数,历史的厚重让数学给人一种只可远观的感觉。伽罗华的出现,为数学增添了悲情色彩,也为数学注入了年轻与热情。

在19世纪初,有一些数学问题一直困扰着当时的数学家们,而如何求解高次方程就是其中之一,年轻的伽罗瓦使用群论的想法去讨论方程式的可解性,系统化地阐释了为何五次以上之方程式没有公式解,而四次以下有公式解。他还漂亮地证明高斯的论断:若用尺规作图能作出正 p 边形,p 为质数(所以正十七边形可做图),解决了古代三大作图问题中的两个:“不能任意三等分角”,“倍立方不可能”。

这是伽罗华在二十岁就发现的理论,而他此时对数学的研究,仅仅五年。伽罗华无疑是数学界的奇才,然而回顾他短暂的一生,我们感受到的却是一种天才的孤独与悲哀,论文多次被丢失,遭受牢狱之苦,最终在决斗中结束了他二十一岁年轻的生命,伽罗华的那些卓越超群的思想大大地领先与他同时代人们的思考,以至于在他死后许多年,他的理论也未能为当代数学家所接受。

可以想象在19世纪初,有这样一位年轻人,一次又一次想把自己的思想传播出去却听不到回音,一次又一次送出自己的论文,却都石沉大海。怀着对数学的热爱,对事业必胜的信念,他坚持着,孤独着。查阅了许多有关伽罗华的资料,千篇一律。的确,他充满悲情的生命轨迹已经定格,而人们也对他卓越的数学才能与数学成就给予了高度评价。第一次知道伽罗华的时候,我是很震撼的,为他天才的数学头脑震撼,更多的是对他生命过早终结的惋惜;当我再次读起他的故事的时候,也是很震撼的,被他天才的数学才能所震撼,被他不羁的人格震撼,如果不那么早陨落,或许数学界将提早进步很多年。只是历史没有假设,历史也不会因为某个人而改变,就像没有人会因为知道自己会改变历史而改变自己的人生轨迹。伽罗华是有遗憾的,历史尊重了伽罗华最后的选择。

没有那么多界限,没有那么多遥不可及,伽罗华有天才的数学头脑,而我看到了他对真理的坚持、对事业的热爱和那颗坚持不懈坚定不移的心。也许正是由于年轻,他才敢于并能够以崭新的方式去思考,去描述他的数学世界。也正因如此,他才受到了冷遇。还好历史的曲折并不能埋没真理的光辉,由伽罗华开始的群论,还将继续发展下去,不仅是近代数学,现代许多学科分支中,都有群论的身影。

伽罗瓦理论的理解

要点: Galois关于代数方程根式可解等价于它的Galois群可解这一定理的证明思路。(1)存在性证明与数的计算相分离;如极限值、代数学基本定理、方程的根;

(2)三次方程根的置换群和五次方程根的置换群有什么不同?3个根共有3!=6个可能的置换,5个根共有5!=120个可能的置换。为什么说方程的可解性可以在根的置换群的某些性质中有所反映? (3)方程的对称性质与有无求根公式有关系吗? (4)GALOIS定理是通过研究根式扩张和根对称性得出来的结果.问题是怎样求一个多项式方程的GALOIS群?怎样判断GALOIS群是否可解?为什么一般的五次以上方程GALOIS群不可解,但是某些特殊的五次以上方程有根式解?x^n-1=0可用根式解,它的n个根是? (5)假设一个多项式方程有根式解,发现了有根式的情况下,各个根的对称性要满足一定关系.五次以上的方程这个关系不一定满足.那么这个关系是什么呢? (6)阿贝尔定理:如果一个代数方程能用根式求解,则出现在根的表达式中的每个根式,一定可以表成方程诸根及某些单位根的有理函数. (7)怎样构造任意次数的代数可解的方程?怎样判定已知方程是否可用根式求解?怎样全部刻画可用根式求解的方程的特性? (8)一个方程究竟有多少个根?如何预知方程的正、负、复根的个数?方程的根与系数的关系如何?方程是否一定有根式解存在? (9)方程本身蕴涵的代数结构: 方程根的置换群中某些置换组成的子群被伽罗瓦称之为方程的群(伽罗瓦群),伽罗瓦群就是由方程的根的置换群中这样一些置换构成的子群。那么某些置换是哪些置换呢? 四次方程x^4+p*x^2+q=0的四个根的系数在方程的基本域F中有两个关系成立:x1+x2=0,x3+x4=0.在方程根的所有24=4!个可能置换中,下面8个置换 E=(1),E1=(12),E2=(34),E3=(12)(34),E4=(13)(24),E5=(1423),E6=(1324),E7= (14)(23)都能使上述两个关系在F中保持成立,并且这8个置换是24个置换中,使根之间在域F中的全部代数关系都保持不变的仅有的置换。这8个置换就是方

近世代数第二章答案分解

近世代数第二章群论答案 §1.群的定义 1.全体整数的集合对于普通减法来说是不是一个群? 解:不是,因为普通减法不是适合结合律。 例如 () 321110 --=-= --=-=() 321312 ()() --≠-- 321321 2.举一个有两个元的群的例。 解:令G=,e a {},G的乘法由下表给出 首先,容易验证,这个代数运算满足结合律 (1) ()(),, = ∈ x y z x y z x y z G 因为,由于ea ae a ==,若是元素e在(1)中出现,那么(1)成立。(参考第一章,§4,习题3。)若是e不在(1)中出现,那么有 ()aa a ea a == a aa ae a ==() 而(1)仍成立。 其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。所以G是一个群。 读者可以考虑一下,以上运算表是如何作出的。 3.证明,我们也可以用条件Ⅰ,Ⅱ以及下面的条件IV',V'来做群的

定义: IV ' G 里至少存在一个右逆元1a -,能让 =ae a 对于G 的任何元a 都成立; V ' 对于G 的每一个元a ,在G 里至少存在一个右逆元1a -,能让 1=aa e - 解:这个题的证法完全平行于本节中关于可以用条件I,II,IV,V 来做群定义的证明,但读者一定要自己写一下。 §2. 单位元、逆元、消去律 1. 若群G 的每一个元都适合方程2=x e ,那么G 是交换群。 解:令a 和b 是G 的任意两个元。由题设 ()()()2 ==ab ab ab e 另一方面 ()()22====ab ba ab a aea a e 于是有()()()()=ab ab ab ba 。利用消去律,得 =ab ba 所以G 是交换群。 2. 在一个有限群里,阶大于2的元的个数一定是偶数。 解:令G 是一个有限群。设G 有元a 而a 的阶>2n 。 考察1a -。我们有 ()1=n n a a e - ()()11==n n e a a e -- 设正整数

近世代数第一章练习题

近世代数试题 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填 在题干的括号内。每小题3分,共15分) 1.设A=R(实数域),B=R+(正实数域) φ:a→10a?a∈A 则φ是从A到B的( )。 A.满射而非单射 B.单射而非满射 C.一一映射 D.既非单射也非满射 2.设A={所有实数x},A的代数运算是普通乘法,则以下映射作成A到A的一个子集A的同态满射的是( )。 A.x→10x B.x→2x C.x→|x| D.x→-x 3.设S3={(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S中与元(1 2 3)不能交换的元的个数是( )。 A.1 B.2 C.3 D.4 4.整数环Z中,可逆元的个数是( )。 A.1个 B.2个 C.4个 D.无限个 5.剩余类加群Z18的子群有( )。 A.3个 B.6个 C.9个 D.12个 二、填空题(每空3分,共27分) 1.设A是n元集,B是m元集,那么A到B的映射共有____________个. 2.n次对称群S n的阶是____________. 3.一个有限非可换群至少含有____________个元素. 4.设G是p阶群,(p是素数),则G的生成元有____________个. 5.除环的理想共有____________个. 6.剩余类环Z6的子环S={[0],[2],[4]},则S的单位元是____________. 7.设I是唯一分解环,则I[x]与唯一分解环的关系是____________. 8.在2, i+3, π2, e-3中,____________是有理数域Q上的代数元. 9.2+ 3在Q上的极小多项式是____________. 三、解答题(第1、2小题各12分,第3小题10分,共34分) 1.设G是6阶循环群,找出G的全部生成元,并找出G的所有子群. 2.求剩余类环Z6的所有子环,这些子环是不是Z6的理想? 3.设Z是整数环,则(2)∩(3)、(2,3)是Z的怎样一个理想?(2)∪(3)是Z的理想吗?为什么?

伽罗华与群论

伽罗华与群论》L.R.Lieber著樊识译 引言 大家都知道:科学知识是与时俱进的,科学是一种活的,蓬勃滋长的东西。 然而一般人总把数学看做又老又朽,似乎再也不能滋长发扬的了。的确,在学 校里所教的数学——算术,代数,几何——在几世纪前大家早都知道;就是专 门学院的教程差不多也有三百多年的历史。笛卡尔(Descartes)之创造解析学 和牛顿(Newton)之发明微积分,那都是十七世纪的事情。可是,事实是这样的: 数学的范围甚至比科学的范围还要来的广些,就从那个时候起,他已在脚踏实 地的向前迈进了。 数学中一些比较新颖的概念是什么?是不是他们太抽象了——虽然好些概念 还是由很年轻的数学天才所创的——使得这一代的青年人连听都够不上听一听呢? 是不是他们距离平常的一般思维方法太远了,以致不能使一般普通的人们从中得 到任何用处和快乐?难道连一般数学教员对于这些概念也不能有一个认识的机会 吗?不是的!其实是这样的:那些近代数学上的发展不但能使数学家发生兴趣, 而且正像微积分一样,对于科学家也能有相当伟大的帮助。哲学家公认:近代数 学与基本的宇宙说是有直接关系的。心理学家在近代数学中也会看到一种能从偏 见中把心胸解放出来的以及能在陈腐的偏见之荒墟上建立起簇新有力之结构来的 伟大工具——像是在非欧几里得几何学之创造中所可以看到的。的确,谁都要珍 重现代数学之特殊的旺盛和卓绝的本色。 这本小册子,作者有心把他当做现代数学中一支的入门,使得那些对于这门 数学愿作更进一步研究的人们在阅读时较为容易有趣些。 这本小册子里所讲的是群论(Theory of Groups),群论是近代数学的一种,伽罗华(Evaristo Galois)对于这门数学的理论和应用很多发扬。伽罗华殁于一百年以前, 死的时候还不满二十一岁,在他那短促而悲惨的生命中,于群论颇多贡献;而这门 数学在今日已成为数学中的重要部分了。自古以来的二十五位大数学家中,他就是 其中之一位。 他的一生,除了在数学上有惊人的成功,其余尽是失意的事,他渴望着进巴黎的 L'Ecole Polytechnique,但在入学考试时竟失败了;过了一年,他再去应试,然而 仍旧是失败,他拿自己研究的结果给歌西(Cauchy)和傅利(Fourier)二氏看,这两人 是当时很出色的数学家,但是他们对他都没有注意,而且两人都把他的稿本抛弃了, 他的师长们谈起他的时候,常说:“他什么也不懂”,“他没有智慧,不然就是他 把他的智慧隐藏得太好了,使我简直没法子去发现他”,他被学校开除了,又因为 是革命党徒,曾经被拘入狱,他曾与人决斗,就在这决斗中他是被杀了。(在决斗的 前夜,他自己预知必死,仓猝中将自己在数学上的心得草率写出,交给他的一个朋友)。 敬祝他的灵魂安乐! --

近世代数学习系列二十二群论与魔方

群论与魔方:群论基础知识要了解破解魔方攻略背后的数学原理,「群论」(Group Theory)是必不可少的知识,本章介绍群论的基础知识。群论是「抽象代数学」(Abstract Algebra)的重要分支,是有关「群」(Group)的理论。抽象代数学跟一般代数学或线性代数学不同,其要旨不是解方程或方程组,而是研究各种代数结构的特性,「群」就是一种非常重要的代数结构。 群的基本定义 设有一个集合G和G上的「二元运算」(Binary Operation)「?」。如果G 的元素和「?」满足以下「公理」(Axiom),我们便说(G, ?)构成一个「群」(为了行文方便,有时可以把「群(G, ?)」径直称为「群G」): 1.「封闭性」(Closure)-对G中任何两个元素a和b而言,a ? b ∈ G。 2.「结合性」(Associativity)-对G中任何三个元素a、b和c而言,(a ? b) ? c = a ? (b ? c)。 3.「单位元」(Identity)-存在G中一个元素e (称为「单位元」),使得对于G中任何元素a而言,e ? a = a ? e = a。 4.「逆元」(Inverse)-对于G中任何元素a而言,都有G中的元素a?1 (称为a的「逆元」),使得a ? a?1 = a?1? a = e。 请注意由于「?」满足结合性,在写出三个或以上元素之间的运算时,可以不用括号,即写成a ? b ? c。如果某个运算涉及同一个元素,我们可以像一般乘法那样采用「指数」记法,例如可以把a ? a ? a写成a3。我们还可以仿照一般乘法规定零指数和负指数的定义如下:a0= e,a?n= (a?1)n。另外,可以证明上述定义中的「单位元」是唯一的,而且对于G中任一元素a而言,其「逆元」a?1也是唯一的。根据「封闭性」,若a和b是G的元素,则(a ? b)也是G 的元素,因此我们也可以谈论(a ? b)的逆元,而且这个逆元满足 (a ? b)?1 = b?1? a?1(1) 如果(G, ?)还满足「交换性」(Commutativity),即对G中任何两个元素a、b 而言,a ? b = b ? a,我们便说(G, ?)是「交换群」(Commutative Group)或「阿贝尔群」(Abelian Group)。

近世代数课后习题参考答案(张禾瑞)-1(新)

近世代数课后习题参考答案 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不 只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c

b b c a a a a a c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 1 2)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? a b c a a b c b b c a c c a b

近世代数学习系列一 学习方法

近世代数学习方法 “近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。为此,下面介绍五种常用的学习方法。 一、通过例子来加深对基本理论的理解 针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。 当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。例:设R是所有偶数构成的环,Z表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。 二、通过变换角度来寻求问题的解法 通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。下面举例说明这种方法: 例:设是从G1到G2的满同态,N2是G2的不变子群,N1= -1(N2),证明G1/N1同构于G2/N2。 对于这个问题,我们不直接证明G1/N1同构于G2/N2,而是将问题进行变换,先构造从G1到G2/N2的满同态,再证明N1是的核,然后根据同态基本定理知

从方程论到群论

从方程论到群论 南京航空航天大学 二О一三年四月十四日 摘要:群论深刻而优美,却又因为过于深奥很难被全面把握。本文尽量使用通俗性语言,从新角度针对群论进行历史的、具体的剖析。为群论理论普及服务。整个故事从方程论开始。从17世纪开始,对方程论的研究就一直没有中断,这个课题在数学中是基础性课题。方程论的核心任务是,寻求一般方程的系数根式解。从得出一元一次方程、一元二次方程的解法开始,经过多年知识积累人们先后又得出了一元三次、一元四次方程解法,但是在寻求解一般五次方程时人们遇到了无法逾越的障碍。就此,人们开始对之前个方程的解法进行归纳统一,以期能找到解一般五次方程的蛛丝马迹,其中的代表人物是范德蒙、拉格朗日,但是也失败了。这就迫使人们转而研究方程的解的存在问题。1832年挪威天才数学家阿贝尔在21岁时综合欧拉、高斯等人的研究成果,用反证法证明了一般五次方程无根式解。这是方程论的一次巨大飞跃。之后伽罗瓦发展了范德蒙、拉格朗日思想,结合阿贝尔的成果,综合自己多年研究,引进了群、域、扩域等概念,创造性地将群论、方程论结合起来,终于系统地完成了方程论的研究,创立了伽罗瓦理论。 关键词:范德蒙思想、拉格朗日思想、群、域、预解式、伽罗瓦群、系数扩展。 引言 1832年5月30日,一声枪响划破巴黎郊区清晨的寂静,一位年轻人倒在了血泊中,不久即结束了不到21岁的生命,他就是伽罗瓦,数学史上唯一具有浪漫色彩的数学家,因感情纠纷死于与他人决斗。在决斗前夜,他通宵达旦写下了自己几年来在数学领域的研究成果,在离去前为人类留下了一份宝贵的珍品--伽罗瓦理论。 1

伽罗瓦理论完全而又彻底的解决了几百年来困扰无数数学家的多项式方程求解问题,宣告了方程论的结束,新的理论——群论的开始。伽罗瓦思想大大超越了时代,其及其深奥以致当时最优秀的数学家都得要花几个月时间才能彻底掌握。伽罗瓦开辟了新的时代,从群论开始,经历代数学家们的大力发展,一门崭新是学科——近世代数诞生了。现在,群论已经成为数学、物理、化学、晶体学、密码学等学科中不可或缺的重要工具。 1.一元一次、一元二次方程 人们在应用数学求解实际问题时,为简化运算,常常把所要求的量用一个符号代替,这就是代数这一概念的由来。例如问题1,我和朋友共同买10个苹果,分配我去买3个,那么应该分配给朋友去买几个呢?用小学老师教过的方法去算,当然是10-3=7个了。然而,历史的发展并不着眼于此简单的问题,从另一角度、另一方法去分析问题,往往获得质的提升。在分析更复杂,更多变问题的时候,这种方式显得尤为重要。对以上简单问题,换另一角度。假设我不知道朋友应该去买多少个,我用一个符号去代替,用X吧。X是多少我也不知道,他可能是0,可能是1,也可能是2、3、4、5、6、7、8、9、10···但是我知道,一个关系必须成立,这个关系是 X+3=10 这就是一个代数方程,最简单的代数方程,一元一次方程。这个方程有自己的运算法则,有自己的性质,是由3+7=0这类等式性质抽象分析得出的。对等式移项得 X-7=0 为一般化分析奠定良好基础,统一方程为这种形式,即:含未知量的式子放等号左边,0放等号右边。对一元一次方程,以上的方程化分析如此繁琐,但是,这里所代表的意义,所蕴含的思想,是具有划时代意义的--人类开始摆脱对感观感受的依赖,迈入理性分析的大门。对更加复杂问题的分析,这时感官感觉效能将发现自己是多么吃力。例如问题2,象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.

近世代数1

第一章 §1.1集合 §1.2映射与变换 教学内容:集合,子集,集合相等的概念 集合关系及运算的定义和性质 映射,单射,满射,双射,逆映射的定义及例子 变换,置换等的定义及例子 映射的象及逆象的定义,映射的乘法 教学重点:集合的关系及运算,映射变换的定义,映射的乘法在很多课程中都学过有关集合的知识,一些基本的概念和结论不再重复,这里,只复习一下不太熟悉的知识,并在符号上做一个统一的规定。 1、用Z表示整集合,Z*表示非零整数集,用ψ表示有理数集,ψ*表示非零有理数数集等。 Z+ ,ψ+…R,C… 2、AB表示A是B的子集,A=B或AB AB表示A是B的真子集,即B中有不存在A的元素 AB表示A不是B的子集 AB表示A不是B的真子集 A=BAB且BA 3、如果集合A含有无穷多个元素,则记为=,如果A含有n个元素,则记为=n。(A的阶),有+=+ 4、称集合A-B={aaA, aB}为集合A与B的差集。易知有A-B=A 5、集合A有很多子集,将A的所有子集放在一起(包括空集)也组成一个集合,称为A的幂集,记作P(A)。=(=n) 映射是函数的推广,函数的定义中要求有两个数集,而映射中,是一般的集合 6、定义:设A,B是两个集合,如果有一个法则,他对于A中每个元素,在B中都有一个唯一确定的元素y与它对应,则称为从A到B的映射。这种关系常表示为 :AB 或:xy 或y=(x) xy 且称y为x在之下的像,称x为y在之下的原像或逆像。 由定义可知,映射必须满足三个条件: ①A中每个元素都有像,②A中元素的像是唯一的,③A中元素的像在B里。 例:P6例1-6

例1.不是映射,不满足①例2.不是映射,不满足②例3.不是映射,不满足③ 例4.是映射,不单不满例4.是映射,不单,满例6.是映射, 单不满 7、映射是函数概念的推广,是对应法则,A是定义域,B包含值域,根据B是否与值域相等,可将映射区分为是否是满射。A中不同元 素的像可能相同,也可能不同,据此可区分映射是否为单射。 定义:设为A到B的一个映射,如果B中每个元素在A中都有逆 像,则称为A到B的一个满射。如果A 中不同的元素在B中的像也不同,则称是从A到B的一个单射。如果既是满射又是单射,则称是从A到B的一个双射,或一一映射。 例:P7,例 4-8 例7,双射,例8,满射,不单。 8、设有映射:AB,A,B.用()表示中所有元素在之下的像的全体组成的集合,称为在之下的像,()B。用()表示中所有元素在之下的逆像全体组成的集合,称为在之下的逆像,()A。 易知:是满射(A)=B. 9、设:AB是双射,(思考,为什么?),则:BA 也是一个映射,且为双射(为什么?), xy=(x) yx 称为的逆映射。 注意:双射才有逆映射。 定理:设A,B是两个有限集合,且=,是A到B的一个映射,则是单射是满射是双射 证明:略。 10、设б与都是A到B的映射,如果xA,都有б(x)=(x),则称б与相等,记作б= 11、设:AB б:C 则AC x(x) y(y), x(x)((x)) 是一个A到C的映射,记为,即:AC 并称为与的合成或乘积。 x((x)) 12、集合A 到自身的映射,叫做集合A的一个变换,类似可定义单变换,满变换,双射变换(一一变换)等。 将集合A每个元素映为自身的变换,称为A的恒等变换,:AB 它是一个一一变换。 xx,

近世代数习题第二章

第二章 群论 近世代数习题第二章 第一组 1-13题;第二组 14-26题;第三组 27-39题;第四组 40-52 题,最后提交时间为11月25日 1、设G 是整数集,则G 对运算 4++=b a b a 是否构成群? 2、设G 是正整数集,则G 对运算 b a b a = 是否构成群? 3、证明:正整数对于普通乘法构成幺半群. 4、证明:正整数对于普通加法构成半群,不含有左右单位元. 5、G 是整数集,则G 对运算 1=b a 是否构成群? 6、设b a ,是群G 中任意两元素. 证明:在G 中存在唯一元素x ,使得b axba =. 7、设u 是群G 中任意取定的元素,证明:G 对新运算aub b a = 也作成群. 8、证:在正有理数乘群中,除1外,其余元素阶数都是无限. 9、证:在非零有理数乘群中,1的阶是1,-1的是2,其余元素阶数都是无限. 10、设群G 中元素a 阶数是n ,则 m n e a m |?=. 11、设群G 中元素a 阶数是n ,则 ) ,(||n m n a m =.,其中k 为任意整数. 设(m,n )=d,m=dk,n=dl,(k,l)=1. 则(a^m)^l=a^(ml)=a^(kdl)=(a^(n))^k=e. 设(a^m )^s=e,,即a^(ms)=e,所以n|ms,则l|ks,又因为(l,k)=1,所以l|s,即a^m 的阶数为l. 12、证明:在一个有限群中,阶数大于2的元素个数一定是偶数. 13、设G 为群,且n G 2||=,则G 中阶数等于2的一定是奇数. 14、证明:如果群G 中每个元素都满足e x =2 ,则G 是交换群. 对每个x ,从x^2=e 可得x=x^(-1),对于G 中任一元x ,y ,由于(xy )^2=e ,所以xy=(xy )^(-1)=y^(-1)*x(-1)=yx. 或者 :(ab)(ba)=a(bb)a=aea=aa=e ,故(ab)的逆为ba ,又(ab)(ab)=e ,这是因为ab 看成G 中元素,元素的平方等于e. 由逆元的唯一性,知道ab=ba 15、证明:n 阶群中元素阶数都不大于n . 16、证明:p 阶群中有1-p 个p 阶元素,p 为素数. 17、设群G 中元素a 阶数是n ,则 )(|t s n a a t s -?=. 18、群G 的任意子群交仍是子群.

近世代数习题解答

近世代数习题解答 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不 只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c b b c a a a a a

c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 1 2)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? 解? d d c = , a c d = a b c a a b c b b c a c c a b

近世代数学习系列二十二 群论与魔方

群论与魔方:群论基础知识 要了解破解魔方攻略背后的数学原理,「群论」(Group Theory)是必不可少的知识,本章介绍群论的基础知识。群论是「抽象代数学」(Abstract Algebra)的重要分支,是有关「群」(Group)的理论。抽象代数学跟一般代数学或线性代数学不同,其要旨不是解方程或方程组,而是研究各种代数结构的特性,「群」就是一种非常重要的代数结构。 群的基本定义 设有一个集合G和G上的「二元运算」(Binary Operation)「?」。如果G 的元素和「?」满足以下「公理」(Axiom),我们便说(G, ?)构成一个「群」(为了行文方便,有时可以把「群(G, ?)」径直称为「群G」): 1.「封闭性」(Closure)-对G中任何两个元素a和b而言,a ? b ∈ G。 2.「结合性」(Associativity)-对G中任何三个元素a、b和c而言,(a ? b) ? c = a ? (b ? c)。 3.「单位元」(Identity)-存在G中一个元素e (称为「单位元」),使得对于G中任何元素a而言,e ? a = a ? e = a。 4.「逆元」(Inverse)-对于G中任何元素a而言,都有G中的元素a?1 (称为a的「逆元」),使得a ? a?1 = a?1? a = e。 请注意由于「?」满足结合性,在写出三个或以上元素之间的运算时,可以不用括号,即写成a ? b ? c。如果某个运算涉及同一个元素,我们可以像一般乘法那样采用「指数」记法,例如可以把a ? a ? a写成a3。我们还可以仿照一般乘法规定零指数和负指数的定义如下:a0= e,a?n= (a?1)n。另外,可以证明上述定义中的「单位元」是唯一的,而且对于G中任一元素a而言,其「逆元」a?1也是唯一的。根据「封闭性」,若a和b是G的元素,则(a ? b)也是G 的元素,因此我们也可以谈论(a ? b)的逆元,而且这个逆元满足 (a ? b)?1 = b?1? a?1(1)

近世代数学习系列十 中英对照

近世代数中英对照学习 一、字母表 atom:原子 automorphism:自同构 binary operation:二元运算 Boolean algebra:布尔代数 bounded lattice:有界格 center of a group:群的中心 closure:封闭 commutative(Abelian) group:可交换群,阿贝尔群commutative(Abelian) semigroup:可交换半群comparable:可比的 complement:补 concatenation:拼接 congruence relation:同余关系 cycle:周期 cyclic group:循环群 cyclic semigroup:循环半群 determinant:行列式 disjoint:不相交 distributive lattice:分配格 entry:元素 epimorphism:满同态

factor group:商群 free semigroup:自由半群 greatest element:最大元 greatest lower bound:最大下界,下确界group:群 homomorphism:同态 idempotent element:等幂元identity:单位元,么元 identity:单位元,么元 inverse:逆元 isomorphism:同构 join:并 kernel:同态核 lattice:格 least element:最小元 least upper bound:最小上界,上确界left coset:左陪集 lower bound:下界 lower semilattice:下半格 main diagonal:主对角线 maximal element:极大元 meet:交

阿贝尔和伽罗瓦的比较(精制甲类)

阿贝尔和伽罗瓦的比较 今天我要向大家介绍两位朋友――阿贝尔和伽罗瓦 1 阿贝尔与伽罗瓦的不同点 1.1 两人的个人基本情况比较 1.2 数学研究的成就不同 阿贝尔证明对一般的四次以上的方程没有代数解. 伽罗瓦解决了什么样的方程有代数解,即方程有根式解的充要条件. 1.3 运气不同 “阿贝尔最终毕竟还是幸运的,他回挪威后一年里,欧洲大陆的数学界渐渐了解了他.继失踪的那篇主要论文之后,阿贝尔又写过若干篇类似的论文,都在‘克雷勒杂志‘上发表了.这些论文将阿贝尔的名字传遍欧洲所有重要的数学中心,他业已成为众所瞩目的优秀数学家之一.遗憾的是,他处境闭塞,孤陋寡闻,对此情况竟无所知.” 但是伽罗瓦的重大创作在生前始终没有机会发表. 1.4 成果的广泛性不同

阿贝尔在数学上的贡献,主要表现在方程论、无穷级数和椭圆函数等方面.即除了代数方程论之外,阿贝尔还从事分析方面的研究.所以说阿贝尔是多产的. 但是伽罗瓦最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论.即伽罗瓦的成果重在代数方程论.1.5 成就的影响不同 “阿贝尔的一系列工作为后人留下丰厚的数学遗产,为群论、域论和椭圆函数论的研究开拓了道路.他的数学思想至今深刻地影响着其他数学分支.C.埃尔米特(Hermite)曾这样评价阿贝尔的功绩:阿贝尔留下的一些思想,可供数学家们工作150年.” “伽罗瓦最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,为了纪念他,人们称之为伽罗瓦理论.正是这套理论创立了抽象代数学,把代数学的研究推向了一个新的里程.正是这套理论为数学研究工作提供了新的数学工具―群论.它对数学分析、几何学的发展有很大影响,并标志着数学发展现代阶段的开始.” 1.6 心理状况不同 阿贝尔――“从满怀希望到渐生疑虑终至完全失望,阿

近世代数习题解答张禾瑞二章

近世代数习题解答 第二章群论 1群论 1. 全体整数的集合对于普通减法来说是不是一个群? 证不是一个群,因为不适合结合律. 2. 举一个有两个元的群的例子. 证G={1,-1}对于普通乘法来说是一个群. 3. 证明,我们也可以用条件1,2以及下面的条件 4,5'来作群的定义: 4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立 5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa e A_1 证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e 1 1 1 ' 所以(a a)e = (a a)(a a ) 即a a = e (2)一个右恒等元e 一定也是一个左恒等元,意即 由ae = a 得ea = a 即ea = a 这样就得到群的第二定义. (3)证ax二b可解 取x = a 这就得到群的第一定义. 反过来有群的定义得到4,5'是不困难的. 2单位元,逆元,消去律 1. 若群G的每一个元都适合方程x2二e,那么G就是交换群. 证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba . 2. 在一个有限群里阶大于2的元的个数是偶数. _1 n —1 n n —1 —1 证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e 若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶 _4 _4 2 (2) a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾 (3) a b 贝U a「b' 斗

近世代数第一章基本概念自测练习答案

自测练习参考答案 一、判断题 1.(× ) 2. (√ ) 3.(× )解释:同时还要适合结合律 4. (√ ) 5. (√ ) 6. (√ ) 7.(× ): 二、选择题 1. (D ) 2. (D ) 3. (C ) 4. (B )解释:和第9节课后习题1完全类似,但也是大家作业中出现问题最多的一道题。详细答案如下:(按解答题格式写) 解:首先,A 的一一变换有3!=6个,具体为 :,,?→→→1112233 :,,?→→→2122331 :,,?→→→3133221 :,,?→→→4122133 :,,?→→→5112332 :,,?→→→6132231 其次,如果是的自同构,则必保持运算即.A ??,,()()(),x y A x y x y ???∈= 也即(这是是自同构的必要条件) ().??=11.可见,只有和??15满足此条件. 说明和??15可能为的自同构.A 经验证,和的确是的自同构.A ??15 5. (C ) 三、简答题 1.105,84,63;42;21:1→→→→→Φ 105,84,63,42,01:2→→→→→Φ则1Φ,2Φ是X 到Y 的两个单射。

2. A a a a a a a ∈→Φ212121,},,min{),(:,就是一个A A ?到A 的一个满射。 3. 设Z 为整数集,2Z 为偶数集,x x 2:1→Φ, )1(2:2+→Φx x ,其中Z x ∈,则1Φ,2Φ就是Z 到2Z 的两个不同的映射。 4. (1) ()2,f x x x Z =?∈;(2),2(),21k x k f x k x k =?=?=+? (3) ()1,f x x x Z =+?∈ 5. 解:1R 不是等价关系,因为1),(R c c ?,即不具有反身性,尽管具有对称性、传递性; 2R 是等价关系,因为具有反身性、对称性、传递性; 3R 不是等价关系,因为3),(R c a ?,即不具有传递性,尽管具有反身性、对称性; 4R 不是等价关系,因为4),(R b c ?,即不具有对称性,尽管具有反身性、传递性.

伽罗瓦对数学的贡献

SHANGHAI UNIVERSITY 上海大学第一学年春季学期 (新生研讨课) 课程名称:数学进展中的几个案例和启示 课程号:0100Y035 授课教师:郭秀云 学号:_____13122070____ 姓名:_____曹颖_______ 所属:____理工二组____ 成绩:_______________ 评语:

论伽罗瓦对数学的贡献 曹颖(13122070) 摘要:埃瓦里斯特·伽罗瓦法国数学家,与尼尔斯·阿贝尔并称为现代群论的创始人,被公认为数学界两个最具浪漫主义色彩的人物之一。他在21年的人生中为数学领域做出了杰出的贡献,可惜他的一生只能被称为“天才的悲剧”,令人惋惜悲叹。 关键词:伽罗瓦、群论、贡献、体会 一、引言 在数学中,代数方程的求解有悠久的历史。很早就会解1次和2次方程,16世纪也成功解决了3次和4次方程,它们的根都可以表示为系数的根的四则运算,我们称它们有根式解。而5次和5次以上代数方程求解遇到了严重的障碍,经过300年的努力仍然得不出求解公式。经过多次失败之后,阿贝尔和伽罗华从反方向来看问题。在19世纪20年代,他们证明:一般的5次和5次以上代数方程没有根式解。而伽罗华走得更远,他引进群的概念来判断一个5次或5次以上方程是否有根式解。 二、正文 1.伽罗瓦理论的产生背景 用群论的方法来研究代数方程的解的理论。在19世纪末以前,解方程一直是代数学的中心问题。早在古巴比伦时代,人们就会解二次方程。在许多情况下,求解的方法就相当于给出解的公式。但是自觉地、系统地研究二次方程的一般解法并得到解的公式,是在公元9世纪的事。三次、四次方程的解法直到16世纪上半叶才得到。从此以后、数学家们转向求解五次以上的方程。经过两个多世纪,一些著名的数学家,如欧拉、旺德蒙德、拉格朗日、鲁菲尼等,都做了很多工作,但都未取得重大的进展。 伽罗瓦从1828年开始研究代数方程理论,他试图找出为了使一个方程存在根式解,其系数所应满足的充分和必要条件。到1832年他完全解决了这个问题。在他临死的前夜,他将结果写在一封信中,留给他的一位朋友。1846年他的手稿才公开发表。伽罗瓦完全解决了高次方程的求解问题,他建立于用根式构造代数方程的根的一般原理,这个原理是用方程的根的某种置换群的结构来描述的,后人称之为“伽罗瓦理论”。 2.伽罗瓦群论的实质 我们可以从伽罗瓦的工作过程中,逐步领悟伽罗瓦理论的精髓。首先分析一下他是怎样在不知道方程根的情况下,构造伽罗瓦群的。仍然是对方程(1),设它的根x1,x2,…,xn中无重根,他构造了类似于拉格朗日预解式的关于x1,x2,…,xn的一次对称多项式△1=a1x1+a2x2+…+anxn,其中ai(i=1,2,3,…,n)不必是单位根,但它必是一些整数且使得n!个形如△1的一次式△1,△2,…,△n!各不相同,接着又构造了一个方程=0 (2) 该方程的系数必定为有理数(可由对称多项式定理证明),并且能够分解为有理数域上的不可约多项式之积。设f(x)=是的任意一个给定的m次的不可约因子,则方程(1)的伽罗瓦群是指n!个△i中的这m个排列的全体。同时他又由韦达定理知伽罗瓦群也是一个对称群,它完全体现了此方程的根的对称性。但是计算一个已知方程的伽罗瓦群是有一定困难的,因此伽罗瓦的目的并不在于计算伽罗瓦群,而是证明:恒有这样的n次方程存在,其伽罗瓦群

近世代数之我见

一对课程的看法: 1作用与意义 近世代数的理论和方法不仅在数学理论本身中占有及其重要的地位,而且在其他学科中也有着广泛的应用,如理论物理、计算机科学等。其研究的方法和观点,对这些学科产生了越来越大的影响。 本课程旨在使学生对近世代数的基础理论和基本的思想、方法有一个初步的了解,为学生进一步的学习打下必要的基础。要求学生能熟练掌握群、环、域的基本理论,包括其定义和基本的性质,并对模的概念有所理解。要求学生对数学中的公理化思想有初步认识。 2.本课程的主要内容 本课程讲授四类典型的代数系统:集合与运算、群、环和域。其内容包括: 群的各种定义,循环群,n阶对称群,变换群,子群与陪集,Lagrange定理,不变子群的定义及其性质,群同态和同构基本定理,能够计算群元素的阶; 环、域、理想、唯一分解环的定义,环中的可逆元,零因子、素元的定义,判别唯一分解环的方法。 3.教学重点与难点 重点:群、正规子群、环、理想、同态基本原理。 难点:商群、商环。 二、对教法的看法: “近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。为此,下面介绍五种常用的学习方法。 一、通过例子来加深对基本理论的理解 针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。例:设R是所有偶数构成的环,Z表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。 二、通过变换角度来寻求问题的解法 通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。下面举例说明这种方法:

相关主题