搜档网
当前位置:搜档网 › 高速铁路减振降噪技术.

高速铁路减振降噪技术.

城市轨道交通减震降噪技术发展现状

城市轨道交通减震降噪技术发展现状 与未来 摘要:对城市轨道交通振动与噪声控制设计的相关规范进行了梳理,介绍并分析了目前主要的轨道减振措施的特点与优缺点,对目前减振效果最好的浮置板道床进行了经济性对比分析。 关键词:轨道交通;轨道结构;减振; 截至2012年12月,北京、天津、上海、广州、深圳、长春、大连、沈阳、重庆、成都、南京、武汉、杭州、苏州、西安和昆明16个城市的70条轨道交通线路投入运营,运营里程2081.13km,车站1378座;北京、上海、广州、深圳和南京等城市逐步进入网络化运营。 随着一些大城市轨道交通网络的逐渐形成,越来越多的城市轨道交通线路不可避免地近距离下穿城市功能建筑物,城市轨道交通运营产生的振动污染引起公众和有关部门的关注。国外从20世纪60年代开始重视城市轨道交通减振降噪问题。1966年,英国的阿尔贝民事法院6层建筑物即采用叠层橡胶减振技术,解决城市轨道交通对建筑物的影响;80—90年代德国、英国进行了无砟轨道减振降噪的大量试验研究。我国轨道减振研究起步较晚,早期修建北京和天津地铁时未考虑环境振动问题,投入运营后减振改造工程干扰运营,浪费人力和物力。为避免环境振动超标,上海地铁1号线于1994年首次采用轨道减振设施——轨道减振器扣件。随着我国各地城市轨道交通建设陆续开展,各种类型的轨道减振产品在城市轨道交通建设工程中相继得到应用。随着城市轨道交通的迅速发展,在人口密集、科研院所、医院、学校等城市公共区域,车辆噪音越来越多的引起人们的关注。城市轨道车辆噪音根据生源的不同大致分为以下几种:轮轨噪声:由轮轨相互作用引起的噪音; 设备噪声:由空调、电机等车辆设备工作产生的噪音; 空气动力噪声:车体与空气摩擦而产生的噪声; 集电系统噪声:由受电弓和电线相互摩擦引起的噪音; 构造物二次噪声:列车振动引起桥梁、隧道或周围建筑物的二次振动而产生的噪声。 1我国城市区域环境振动标准 城市轨道交通环境振动防治作为环境保护产业的一部分,在城市轨道交通环境建设,以及经济与环境协调可持续发展方面具有重要而独特的意义。为贯彻《中华人民共和国环境保护法》,控制环境振动污染,我国制定了相应的环境振动标准。现行《地铁设计规范》[2]规定,地铁振动污染防治设计应符合国家现行《城市区域环境振动标准》,环境评价预测超标地段应采取减振措施,以满足国家环境保护及相关规范要求。近年来,我国许多城市进行了大规模的城市轨道交通和基础设施建设,出现了一些新的城市轨道交通振动源和振动问题,而人们对城市环境要求更为严格,尤其是在夜间,对于地铁运行产生的振动响应更为敏感。研究发现,即使振动水平处于65dB“特殊住宅区”振动限值之下,人们仍能感到振动并产生厌恶感;当振动水平处于62dB以下时,大部分居民感觉不到振动。现行《城市区域环境振动标准》中的一些计权方式和测量方法严重滞后于相关学科研究发展。为此,国家环境保护部科技标准司组织修订《环境振动标准》(征求意见稿)。修订后其紧密结合国际现行标准,体现了以人为本的社会发展要求。 2我国城市轨道交通轨道减振现状特征 目前,我国城市轨道交通轨道减振领域现状特征是需求总量大、产品种类多、占全线比例高、减振要求复杂。 2.1产品种类多 轨道减振技术的通常做法是在组成轨道的各个刚性部件之间插入弹性层,按插入位置的不同可分为扣件减振、轨枕减振和道床减振。弹性层所处的位置越靠下,悬浮的质量就越大,越能获得较好的减振效果。根据减振效果的不同,《地铁设计规范》(征求意见稿)[5]将减振措施分为一般减振措施、中等减振措施、高等减振措施和特殊减振措施4个等级。

汽车主动安全和被动安全

汽车安全对于车辆来说分为主动安全和被动安全两大方面。主动安全就是尽量自如的操纵控制汽车。无论是直线上的制动与加速还是左右打方向都应该尽量平稳,不至于偏离既定的行进路线,而且不影响司机的视野与舒适性。这样的汽车,当然就有着比较高的避免事故能力,尤其在突发情况的条件下保证汽车安全。被动安全是指汽车在发生事故以后对车内乘员的保护,如今这一保护的概念已经延伸到车内外所有的人甚至物体。由于国际汽车界对于被动安全已经有着非常详细的测试细节的规定,所以在某种程度上,被动安全是可以量化的。 汽车安全之主动安全设备篇 盘式制动器 盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。它由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动,制‘动钳上的两个摩擦片分别装在制动盘的两侧,分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好像用钳子钳住旋转中的盘子,迫使它停下来一样。 盘式制动器散热快、重量轻、构造简单、调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。有些盘式制动器的制动盘上还开了许多小孔,以加速通风散热和提高制动效率。 防抱死制动系统(ABS) ABS是Anti-lockBrakingSystem缩写。世界上最早的ABS系统是首先在飞机上应用的,后来又成为高级轿车的标准配备,现在则大多数轿车都装有ABS。 众所周知,刹车时不能一脚踩死,而应分步刹车,一踩一松,直至汽车停下,但遇到急刹时,常需要汽车紧急停下来,很想一脚到

减振降噪方案

中央空调设备层减振降噪工程方案 一、单位名称:******* 二、工程描述: 1、设备层VRV及全新风空调的摆放状况: 该项目充分利用了原老楼和新楼三层的空中连廊,在其顶部进行设计和处理后使其成为了空中设备层。连廊的长度为21M,宽度为6.9M,在此范围内靠近老楼一侧的约三分之一部分拟摆放VRV空调4台及新风机1台。 空调机组的机械减震基础一般分为两种形式,一是减振基础为g=20mm厚的丁腈耐油橡胶隔振垫,通用尺寸为170X170mm。该该隔震垫的主要特点是价格低廉使用方便,但它更加适用于冲床、锻床等直接冲击型机械的高频隔振,对于空调机组的低频特点它的隔振效果不太理想。 另一种减震的形式为近年来比较普遍使用的阻尼弹簧减振器的减振形式:该减振器充分利用了钢质弹簧的柔性支撑原理,经过精确的计算可将低频振动的物体正好悬浮在预压与极限之间,让该物体产生所讲的阻尼效应。它对降低固体传声的空调机组的振动噪声更为有效,因为它真正的让空调机组合理的避开了与基础之间的直接接触,消除了振动物体本身固有的共振振幅激振现象。 3、该空调设备层降噪形式的选择:

目前对于空调机组的降噪方式主要也是有两种形式,一是隔音屏,这种形式的特点是施工方便造价低廉,对于1000Hz的中频区域降噪效果比较有效,而且对空调设备的风量吸收和交换不会产生什么影响。不足之处是对于低频区域的降噪效果不太有效。 另一种形式是全封闭的降噪室,它的主要特点是降噪效果非常明显而且效果显著,可以有效控制从63Hz---8000Hz之间所有频带的噪声。但它也有很多方面的问题,首先是施工复杂造价昂贵,其次是因为封闭自然会影响到设备的风量交换,为了在这种情况下依然能够充分保证空调设备的安全和高效运行,需要增加一些辅助的通风设备,这对日后的日常维护也会带来很多麻烦。 该空调设备层上拟选用的新风机和VRV的空调外机,产品样本上的噪声数据都是在60dB左右,但这都是它们在500---1000Hz中频区间的单台数值,它们实际的8倍噪声频谱为:8000Hz时40dB,而在63Hz的低频频带时一般都在75dB 至78dB之间(而且只是单台机组运行),28台叠加之后的噪声应该高于80分贝以上。 综合考虑之后,认为还是隔音屏的降噪形式比较可行一些,暂且按照这一形式草拟此方案。 4、该项目噪声源污染状况及主要噪声源基本特性: ①总计16台VRV室外机和11台新风室外机及1台屋顶机安装在两幢大楼的架空连廊上及屋顶上,其运行时所产生的主要噪声源为电机电磁噪声、机械噪声、排风噪声,噪声特性是以中频和低频为主,传播距离较远。 ②机组运行时的振动通过作为支承结构传递给空中连廊、原老楼和新楼的直接迎面墙体以及新老楼的建筑结构;机组运行时的振动通过楼板结构所产生的共振振幅激振力,足以引起楼板的二次微振动,形成很强的固体传声,沿建筑结构传递、扩散和蔓延,致使两幢大楼的环境受到很大的影响。 三、该项目具体的减振降噪控制措施: 根据设计目标和基本情况,本着有效、经济、合理和可靠的原则,提出如下具体的减震降噪控制措施: 1、为了有效的控制机组运行时的振动通过作为支承结构传递给楼板、墙体等建筑结构;采用两级隔振措施,把机组运行振动的传递率控制在2%以内,同时尽可能减小单位激励力,避免和减少支承结构二次微振动的发生。每台机组配

阻尼减振降噪技术

第十章.阻尼减振降噪技术 A、教学目的 1.隔振及其原理(C:理解) 2.阻尼降噪及其原理(C:理解) 3.阻尼降噪的量度(B:识记) 4.阻尼材料和结构的特性及选用(B:识记) B、教学重点隔振原理、阻尼降噪原理及其量度、阻尼材料和结构的特性及选用。 C、教学难点 阻尼降噪原理及其量度、阻尼材料和结构的特性及选用。 D、教学用具 多媒体——幻灯片 E、教学方法 讲授法 F、课时安排 2课时 G、教学过程 声波起源于物体的振动,物体的振动除了向周围空间辐射在空气中传播的声(称”空气声”)外,还通过其相连的固体结构传播声波,简称“固体声”,固体声在传播的过程中又会向周围空气辐射噪声,特别是当引起物体共振时,会辐射很强的噪声。 振动除了产生噪声干扰人的生活、学习和健康外,特别是1~100Hz的低频振动,直接对人有影响。长期暴露于强振动环境中,人的机体将受到损害,机械设备或建筑结构也会受到破坏。 对于振动的控制应从以下两方面采取措施:一是对振动源进行改进以减弱振动强度;二是在振动传播路径上采取隔振措施,或用阻尼材料消耗振动的能量并减弱振动向空间的辐射。从而,直接或间接地使噪声降低。 一. 振动对人体的危害 从物理学和生理学角度看,人体是一个复杂系统。如果把人看作一个机械系统。 振动的干扰对人、建筑物及设备都会带来直接的危害。振动对人体的影响可分为全身振动和局部振动:全身振动是指人直接位于振动体上时所受的振动;局部振动是指手持振动物体时引起的人体局部振动。可听声的频率范围为20~20000 Hz,而人能感觉到的振动频率范围为1~100 Hz。振动按频率范围分为低频振动(30Hz以下)、中频振动(30-100Hz)和高频振动(100 Hz以上)。 实验表明人对频率为2—12 Hz的振动感觉最敏感。对于人体最有害的振动频率是与人体某些器官固有频率相吻合(即共振)的频率。这些固有频率是:人体在6 Hz附近;内脏器官在8Hz附近;头部在25 Hz;神经中枢则在250Hz左右。低于2Hz的次声振动甚至有可能引起人的死亡。人对振动反应的敏感度按频率和振幅大小,大致分为6个等级,见图10-1。(P203) 振动的影响是多方面的,它损害或影响振动作业工人的身心健康和工作效率,干扰居民的正常生活,还影响或损害建筑物、精密仪群和设备等。根据人体对某种振动刺激的主观感觉和生理反应的各项物理量,国际标准化组织(ISO)和一些国家推荐提出了不少标准,主要包括局部振动标准(ISO5349-1981, P203)、整体振动标准(ISO2631-1978, P204)和环境振动标准(GB10070-88, P205)。 局部振动标准(ISO5349-1981):如人的手所感受的振动。

工程机械发动机减振方法标准版本

文件编号:RHD-QB-K7748 (操作规程范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 工程机械发动机减振方 法标准版本

工程机械发动机减振方法标准版本操作指导:该操作规程文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 振动和燥声是工程机械工作时的两大公害。发动机是工程机械主要振动源。发动机振动的传播直接影响到工程机械的整机可靠性和使用寿命,同时也使司机的乘坐舒适性变差,降低工作效率,必须采取一些有效方法来减少振动。 一、振源控制 振源控制贯穿于设计、制造乃至使用的全过程,体现在诸如改善发动机平衡性能、动力学性能、零部件的加工与装配精度等。发动机在工作中产生振动的形式是多样的,主要原因有:发动机重心周期性移动,往复运动件沿气缸上下作用的惯性力,所有旋转

运动件的离心惯性力,气体压力交替作用引起曲轴回转周期变化等。这些不平衡力和力矩通常可以通过改变发动机结果设计参数来调整系统的固有频率避免结构共振,改进系统共振特性,如通过对机体的模态分析和有限元计算来研究机体的固有频率的振型等。削弱机振源和避免共振首先应从设计阶段考虑,要在整体设计中贯穿系统工程思想,充分应用现代设计方法,如有限源设计、可靠性设计、稳健设计、优化设计、计算机辅助设计以及智能系统和专家系统设计。 二、振动的隔离 1、橡胶隔振 传统的发动机采用弹性支承降低振动,隔振装置结构简单,成本低,性能可靠。橡胶支承一般安装在车架上,根据受力情况分为压缩型、剪切型和压缩剪切复合型等。压缩型结构简单,制造容易,应用广泛

汽车主动噪声控制技术和发展趋势

车内噪声控制技术及发展趋势 摘要:分析了汽车车内噪声产生的机理,评述了车内噪声被动控制技术的三个途径,并对主动控制技术在汽车减振降噪领域的应用作了探讨和展望。 关键词:减振;噪声控制;汽车 前言 噪声、振动和舒适性是衡量现代汽车制造质量的一个综合性技术指标,也是世界汽车业各大整车制造企业和零部件企业关注的问题之一。车内噪声影响驾驶员和乘客的身心健康、行车安全以及乘车舒适性。为了提高车辆的舒适性。世界各大汽车公司都对车内噪声水平制定了严格的控制标准,将车内噪声控制作为重要的研究方向。现代汽车既是交通工具,又是人们生活空间的一部分,随着汽车制造水平的提高和消费者对舒适性要求的提高,对汽车噪声控制的研究也越来越深入。因此掌握车内噪声产生机理,采取相应的减振降噪技术加以控制是十分必要的。智能材料结构的出现以及主动控制技术的发展为振动与噪声的控制开辟了新的途径。 1 车内噪声产生机理 汽车车内噪声的来源可以从两个传播途径加以分类,即固体传播和空气传播。具体来讲,根据车内噪声产生的不同振动源和噪声源又可分为以下几种: (1)动力传动系统噪声。发动机燃烧和惯性力引起的振动,传至车身引起弯曲振动和扭转振动,向车内辐射中、低频噪声,发动机运行产生的排气噪声、进气噪声、风扇噪声等。由空气通过车身的孔、缝隙传至车内或通过车身板壁透声至车内,传动系由于质量不平衡及齿轮啮合产生的振动,传至车身引起振动进而辐射中、低频噪声至车内。 (2)路面不平度激励引起的噪声。路面激励通过悬架等引起车身振动造成车内低频噪声。 (3)车轮噪声。由于车轮不平衡引起的振动传至车身引起振动,产生车内低频噪声,轮胎与地面的摩擦声(路噪)通过车底板传到车内。 (4)空气扰动噪声。高速行驶时,汽车冲破空气幕产生的碰撞及摩擦对车身的激励造成车身高频振动.在车内产生高频噪声。 (5)其他噪声。驾驶舱内饰板等部件发生振动产生的内部噪声;空调系统产生的噪声;制动系统产生 的噪声等。 以上可知,固体传播振动通过结构件传播至车身,引起车身的振动,再由车身板壁振动辐射噪声至车内,形成车内噪声;空气传播则将各种噪声源所辐射的噪声通过空气,由车身的缝隙或孔洞传播至车内,形成车内噪声。而对于车身而言,本身结构的固有频率、振型、阻尼等模态参数,对车内噪声的形成有着重要的作用。当外界激励与车身固有频率一致时,车身发生共振,可使噪声放大;同时,车身上外界振动输入点的动刚度对振动能量的输入也有很大影响,在一定程度上影响着车内噪声水平。实践表明,中低频(3O-400Hz)车内噪声主要由固体传播这一途径造成,而高频车内噪声则以空气传播为主。如果能够削弱或消除固体传播,则可使车内噪声大大降低。 2 被动控制技术 被动控制降噪技术多从以下三方面着手:一是消除或减弱声源噪声;二是控制噪声传播途径,阻断固体传播;三是保护噪声接受者。 2.1 消除、减弱噪声源 首先,在开发过程中,必须对汽车进行减振降噪结构设计。目前国外已有用于研究汽车噪声

工程机械噪声及减振降噪

工程机械噪声及减振降噪 随着工作环境水平的不断提高,人们对噪声的关注越来越大,目前国内外对工作环境的噪声值都有要求,以压路机为例,就有比较明确的噪声值的限制。 测试状态测点位置检测结果dB(A) 国标限值YZ12 YZ13 YZ13D CC522 BW202 不行驶司机耳边81.9 81.1 88.5 86.6 81.2 ≤94dB(A) 左侧7.5m 93.3 90.5 91.8 84.4 79.6 ≤88dB(A) 右侧7.5m 92.1 90.7 90.7 82.4 79.6 低速行驶司机耳边84.2 85.1 86.5 87.4 81.6 ≤94dB(A) 左侧7.5m 93.1 91.5 89.3 85.3 81.5 ≤88dB(A) 右侧7.5m 92.5 92.8 87.4 84.2 81.5 高速行驶司机耳边81.2 84.3 89.9 88.1 85.0 ≤94dB(A) 左侧7.5m 93.4 93.4 91.9 86.4 82.7 ≤88B(A) 右侧7.5m 92.7 92.8 93.1 85.2 83.7 上表中,前3种机型为国内产品,后2种机型为国外产品。由表可知,在不同的测试状态,司机耳边的噪声都能满足国标要求,而国内产品左右两侧7.5m处的噪声普遍超标,而国外产品比国标低1.6~8.4dB(A)。因此,具有改进的空间。 本文探究的就是工程机械(压路机、铲车等)噪声领域噪声产生的机理、测试方法以及减振降噪措施。 工程机械噪声的声源以及影响因素 工程机械噪声产生的主要因素是空气动力、机械传动、液压三部分。从结构上可分为发动机噪声,传动系噪声,液压噪声,车体噪声,底盘各部件连接配合引起的噪声,制动系统噪声,工作装置动作操作冲击噪声等,其中中发动机及其相关件产生的噪声占1/2以上,因此发动机的减振’降噪成为工程机械噪声控制的关键之一。下面从结构上对主要部分产生噪声的机理进行分析。 1.发动机噪声 发动机噪声主要是由于内燃机的空气动力噪音,燃烧噪音,机械噪音。 空气动力噪音占有重要分量,是采取降噪的主要对象。主要有:进气噪声、排气噪声、风扇噪声等。 1.1进气噪声 产生机理:进气门周期性开闭引起进气管道内压力起伏变化,从而 形成空气动力性噪声,称为进气噪声,一般进气噪声比发动机本体噪声高出5dB 左右,是仅次于排气噪声的主要噪声源。 1.2排气噪声 产生机理:排气门打开时,排,废气通过气压阀时产生的涡流噪声。 气管道内压力起伏变化排气噪声是发动机最主要的噪声源,往往比发动机本体 噪声高出10‐15dB左右。与发动机功率、排量、转速、平均有效压力以及排气 口形状、尺寸等因素有直接关系。 1.3风扇噪声 产生机理:风扇转动时使周围气流产生涡流使空气发生扰动,以及 风扇本身结果与护风圈的共振,产生噪声。 1.4燃烧噪音 产生机理:气缸内气体压力的变化。影响因素:点火提前角、压缩 比、燃烧室的形状等。 1.5机械噪声:

车内噪声控制技术及发展趋势

车内噪声控制技术及发展趋势 随着人们环保意识的日益增强,降低汽车噪声已成为群众最关心的问题之一。我国在汽车工业发展规划中,已把改善汽车乘坐舒适性、降低车内噪声作为亟待解决的主要问题之一。本文重点论述了车内噪声的主要来源以及传统车内噪声控制技术,并对车内噪声控制技术的发展趋势进行阐述。 标签:车内噪声;控制技术;发展趋势 一、车内噪声的主要来源 1.发动机噪声 发动机噪声包括:发动机工作时产生的进气噪声、排气噪声、冷却风扇噪声、结构噪声等通过空气由车身的缝隙或孔、洞传播至车内而形成的车内噪声;由于发动机燃烧和惯性力矩引起的振动,通过发动机悬架和副车架传动车身,而引起车身弯曲振动、扭转振动等,同时也会引起板件及结构产生局部振动,进一步向车内辐射的中低频噪声。 2.底盘噪声 底盘噪声主要包括:由于轮胎快速滚动对其周围空气形成扰动而产生的轮胎噪声;齿轮系啮合和振动而产生的变速器、驱动桥噪声;旋转和振动传递而产生的传动轴噪声;汽车高速行驶时,空气紊流对车身的激励造成高频振动,并在车内产生的高频噪声;汽车制动时产生的鸣叫声。 3.车身噪声及车内附属设备噪声 车身噪声及车内附属设备噪声包括:由于车身的振动和空气与车身的冲击与摩擦而产生的噪声;空调机或暖风装置工作而产生的噪声。这些噪声源所辐射的噪声,在车身周围空间形成一个不均匀的声场,并向车内传播。 二、传统车内噪声控制技术 1.减弱或消除噪声源的噪声辐射 降低汽车任何声源能量都有利于控制车内噪声,具体途径有:对发声部件采用消声器,对振动部件采用减振器;改善结构设计,降低产生噪声的激振力;采用改进密封元件,通过增加密封压力的方法来消除泄漏气流的间隙;改善车身形状设计,避免空气紊流造成车身高频振动,并在车内产生高频噪声。 2.隔绝声源、振源与车身间的传播途径

汽车主动安全技术之EDB

汽车主动安全技术之EBD EBD的英文全称是Electric Brakeforce Dis-tribution 。EBD能够根据由于汽车制动时产生轴荷转移的不同,而自动调节前、后轴的制动力分配比例,提高制动效能,并配合ABS提高制动稳定性。 汽车制动稳定性直接影响到汽车安全,而制动稳定性与制动时车轮是否抱死以及前后车轮的抱死顺序密切相关。前轮抱死车辆将失去转向能力,后轮抱死则会发生侧滑甚至甩尾,后果更严重。理想的前后桥制动力分配曲线(简称I线) 如图2-1所示,它只与汽车的总重及质心位置有关,因此空载和满载时的I 曲线是不同的。实际上前后桥上的制动力分配是由前后制动器的大小决定的,因此它只能是一条直线即β线。 图2-1汽车前后桥制动力分配曲线 传统的汽车制动系统通常都通过在前后轴制动管路间增加一个比例阀来限制后轴的制动力,以避免制动时后轮先发生抱死侧滑,从而获得如下图所示的制动力分配曲线,但后桥的附着利用率仍然不是最好,其附着损失见图2-2中阴影部分 图2-2带比例阀的前后桥制动力分配曲线图2-3带EBD的前后桥制动力分配曲线EBD 采用电子技术替代传统的比例阀来控制汽车液压制动系统的前后桥制

动力分配,其基本思想:尽可能增大后轮制动力,由传感器监测车轮的运动情况,一旦发现后轮有抱死趋势,电子控制器控制液压制动器降低制动压力。由于 EBD 调节频率高、调节幅度小、控制精确,可使β线始终位于 I 线下方且无限接近于 I 线(图2-3所示)。因此 EBD 在保证制动稳定性的同时,使后轮获得了最大制动力,从而提高了整车的制动效能。 随着汽车工业的飞速发展和高速公路的迅速延伸, 汽车的行驶速度越来越快, 对汽车行驶安全性的要求也愈来愈高, 改善汽车的制动性能始终是汽车设计、制造部门的重要任务。汽车制动防抱死系统(ABS)和电子制动力分配系统(EBD)在汽车上的开发成功, 使汽车的制动性能得到质的飞跃。ABS解决了汽车紧急制动时附着系数的利用,并可获得较好的制动方向稳定性及较短的制动距离,然而它不能解决制动系统中的所有缺陷。在车轮滑移率还没有达到ABS的控制范围时,作用在四个车轮上的制动压力同时一致增大,然而前后车轮上的垂直载荷发生了转移,前后车轮达到最佳滑移的时间并不一致,这时ABS系统对地面附着力的利用并没有达到最大。因此ABS就进一步发展衍生出了电子制动力分配系统(EBD)。EBD是ABS的一种辅助系统,在ABS系统的基础上增加了功能。装载有EBD的汽车性能要远高于只有ABS的汽车,见图2-4。 图2-4有无EBD时车辆制动性能对比图 EBD 相对于 ABS 并没有任何硬件上的附加,而只是控制程序、功能上的优化与增强,甚至可以说 EBD 是 ABS 衍生出的辅助功能,通过改进,增强ABS 电脑软件控制逻辑,使运算功能更复杂,在一些汽车的产品说明书上就是以“ABS+EBD”来标明。汽车工程师们除了在编著电脑运算程序时需增加一定的控制程序之外,并没有过多的硬件投入。EBD 在制动时能根据车辆各个车轮的运动状态,智能分配各个车轮制动力大小,以维持车辆在制动状态下的平稳与方向。而且,即使 ABS 失效,EBD 也能保证车辆不会出现因甩尾而导致翻车等恶性事件的发生。 EBD 在汽车制动时即开始控制制动力,而 ABS 则是在车轮有抱死倾向时开始工作。ABS 与 EBD 都是对作用在车轮上的力矩进行控制,能防止车轮相对于

减振降噪的应用

减振与降噪的应用 随着我国轨道交通的不断发展,列车行驶速度得到很到提高,当前在高速铁路线上,列车运营速达到300Km/h。由此带来了严重的铁路环境噪声污染,列车运行时产生的振动和噪声,不仅影响铁路自身的设备、旅客和工作人员,而且影响周围的环境和居民。因此,采取相应的措施降低列车产生的振动和噪声,不仅有利于环境保护,而且有利于铁路交通的持续和健康发展。 高速铁路车轮的振动辐射噪声在轮轨滚动辐射噪声中占有很大的比重,而且在1500Hz 以上的频段占主导,对列车车轮进行优化设计,通过改变车轮的形状,可以达到较好的减振降噪效果。本文对高速铁路车轮优化方法进行详细的分析评论,并提出相应的问题和改进的方向。 1 车轮辐射噪声分析 铁路噪声是由各种类型的列车通过轨道这样一个复杂的的噪声源系统而产生的,主要分为牵引噪声、轮轨噪声、空气动力学噪声和其他方面的噪声[1]。我国目前大量采用无缝线路,致使轮轨滚动噪声成为铁路的主要噪声。图1 为典型的轮轨噪声频谱分析图[2],从图中可以看出,轮轨滚动噪声中,由轨枕产生的集中在500Hz 以下,由钢轨产生的集中在500~1500Hz 之间,由车轮产生的集中在1500Hz 以上。文献[3]研究也表明:在轮轨滚动噪声中,车轮的主要辐射噪声频段在1500Hz 以上。现在普遍认为,轮轨滚动噪声由车轮结构振动

和轨道结构振动产生[4,5],车轮和轨道结构辐射噪声的分量对比,欧洲的学者倾向于认为以车轮辐射为主,美日学者倾向于认为以钢轨为主[3]。因此研究车轮的声辐射特性及减振降噪是非常有意义的。 降低车轮噪声措施 根据轮轨噪声理论,降低车轮噪声的措施主要有[1]:(1)利用附加的阻尼元件、弹性元件和辅助质量块通过联结在主振系统上所产生的动力作用来减小主振系统振动。(2)在车轮轮毂与轮辐之间添加橡胶材料隔离层形成弹性车轮。(3)在不影响其他(如强度)方面要求的情况下对车轮形状进行优化,以此降低车轮结构的振动速度,从而降低车轮噪声。(4)降低车轮的声辐射效率。阻尼车轮和弹性车轮不仅构造复杂,而且增加制造成本,在车轮上穿孔影响车轮的整体

汽车主动安全控制方法

(1)随着科技的进步,汽车的安全被细化,目前汽车安全分为主动安全、被动安全两种概念[1]。交通安全问题已成为世界性的大问题。全世界每年因交通事故死亡的人数约50万,汽车的安全性对人类生命财产的影响是不言而喻的。随着高速公路的发展和汽车性能的提高,汽车行驶速度也相应加快,加之汽车数量增加以及交通运输日益繁忙,汽车事故增多所引起的人员伤亡和财产损失,已成为一个不容忽视的社会问题,汽车的行车安全更显得非常重要[2]。传统的被动安全已经远远不能避免交通的事故发生,主动安全的概念慢慢的行成并不断的完善。 (2)为预防汽车发生事故,避免人员受到伤害而采取的安全设计,称为主动安全设计,如ABS,EBD,TCS,LDWS等都是主动安全设计。它们的特点是提高汽车的行驶稳定性,尽力防止车祸发生。其它像高位刹车灯,前后雾灯,后窗除雾等也是主动安全设计。目前安全技术逐渐在完善,有更多的安全技术将被开发并得到应用[3,4]。 ①ABS(防抱死制动系统)——它通过传感器侦测到的各车轮的转速,由计算机计算出当时的车轮滑移率,由此了解车轮是否已抱死,再命令执行机构调整制动压力,使车轮处于理想的制动状态(快抱死但未完全抱死)。对ABS功能的正确认识:能在紧急刹车状况下,保持车辆不被抱死而失控,维持转向能力,避开障碍物。在一般状况下,它并不能缩短刹车距离。 ②EBD(电子制动力分配系统)——它必须配合ABS使用,在汽车制动的瞬间,分别对四个轮胎附着的不同地面进行感应、计算,得出摩擦力数值,根据各轮摩擦力数值的不同分配相应的刹车力,避免因各轮刹车力不同而导致的打滑,倾斜和侧翻等危险。 ③ESP(电子稳定程序)——它实际上也是一种牵引力控制系统,与其它牵引力控制系统比较,ESP不但控制驱动轮,而且控制从动轮。它通过主动干预危险信号来实现车辆平稳行驶。如后轮驱动汽车常出现的转向过多情况,此时后轮失控而甩尾,ESP便会放慢外侧的前轮来稳定车子;在转向过少时,为了校正循迹方向,ESP则会放慢内后轮,从而校正行驶方向。 ④EBA(紧急刹车辅助系统)——电脑根据刹车踏板上侦测到的刹车动作,来判断驾驶员对此次刹车的意图,如属于紧急刹车,则指示刹车系统产生更高的油压使ABS发挥作用,从而使刹车力更快速的产生,缩短刹车距离。 ⑤LDWS(车道偏离预警系统)——该系统提供智能的车道偏离预警,在无意识(驾驶员未打转向灯)偏离原车道时,能在偏离车道0.5秒之前发出警报,为驾驶员提供更多的反应时间,大大减少了因车道偏离引发的碰撞事故,此外,使用LDWS还能纠正驾驶员不打转向灯的习惯,该系统其主要功能是辅助过度疲劳或长时间单调驾驶引发的注意力不集中等情况。 ⑥胎压监控——美国国家公路交通安全管理局(NHTSA) 已经做出要求,截止2003产品年车重小于或达到4536公斤的所有美国乘用车辆都必须配备胎压监控系统,事后宝马公司就已经把该系统用在全系轿车中。驾驶者可以通过车内提示警告系统来判断轮胎胎压情况是否正常,首先避免了因轮胎亏气出现的行车跑偏,其次在高速行驶时也对乘坐者安全是一种保障。 ⑦倒车警告/倒车影像/车外摄像头——倒车警告这项技术用于在驾驶期间以及驻车时,针对您盲区中的轿车或物体向您发出警告。通常,该系统会在您行车时已经进行响应;它可能会使后视镜内的一个警告标示进行闪烁,同时会发出声音警告,该系统是一个短程检测系统。如:上海通用别克君越车内后视镜就配备此功能,反光镜左边会有一个车体形状的图标,前/后雷达在侦测障碍物时警告

地铁减振降噪总结精简版本

地铁噪声形成 动力系统噪声:牵引设备噪声、辅助设备噪声和其他设备噪声。 轮轨噪声包括:有节奏的滚动噪声、钢轨接缝处的撞击噪声和弯道处的啸叫噪声 滚动噪声又称为“吼声”,由钢轨和车轮表面的粗糙不平引起的, 撞击噪声由车轮和钢轨的结合处撞击所产生, 啸叫噪声是列车车轮在轨道上滑动摩擦所产生的一种窄带噪声,强度大,频率高。啸叫噪声出现在小半径弯道或列车制动时,由于车轮相对于轨道横向运动而产生, 车内振动的主要来源 高架桥梁上运行的振动来源 当地铁客车在高架桥梁上运行时,地铁列车高速行进是地铁振动的主要发生源,具体来源于列车的轮轨系统和动力系统,其表现为: (1)列车行驶时,对轨道的重力加载产生的冲击,造成车轮与轨道结构的振动; (2)地铁车辆运行时,众多车轮与钢轨同时发生作用所产生的作用力,造成车辆与钢轨结构(包括钢轨、构件、道床等)上的振动; (3)车轮滚过钢轨接缝处时,轮轨相互作用产生的车轮与钢轨结构的振动; (4)轨道的不平顺和车轮的粗糙损伤等随机性激励产生的振动; (5)车轮的偏心等周期性激励导致的振动。 地下线路运行的振动来源 地铁列车在地下线路运行时影响振动源的因素涉及到车辆、轨道、道床、隧道、地质条件等方面 减振降噪常用措施 1、轨道结构方面的减震降噪措施。 (l)采用较大半径曲线线路。(2)采用重型、无缝化的钢轨。(3)采用合理的轨道结构。(4)采用减振型扣件,如轨道减振器扣件、柔性扣件等。(5)加强轨道的养护维修,6)利用附加阻尼结构,7)约束阻尼结构减振整体道床 2、车辆上的减振降噪措施。 (l)改善车身结构(2)在机车车辆上使用新型减振器,如采用金属一橡胶复合减振器,(3)采用弹性车轮、充气橡胶车轮、阻尼车轮及弹性踏面车轮等(4)采用隔音、吸音材料。 3、传递、接收方面的减振降噪措施。 采用铺设轻质吸声桥面和路面、在高架桥上安装吸声天棚,设置声屏障也是降低高架轨道交通噪声的有效措施,在接收处,可在住宅、建筑处涂抹吸音材料,进行防振吸音处理。 2.3高架线路和桥梁的减振降噪措施 目前,国内外城市轨道交通的高架桥结构大多采用箱形梁形式。由于箱形梁的内部空腔在轨道交通噪声主要频段内存在声学模态,腔内的声场共振可能使桥梁的上下两个面的辐射声增加,而且,箱形梁桥的底面是大面积的平面,声辐射效率比较高,因此,有必要研究箱形梁的减振降噪措施。目前箱形梁的降噪处理有以下几类技术:

汽车主动安全技术论文

《汽车文化》结课论文论文题目:汽车主动安全技术 班级:11023801 专业:生物工程 姓名:万伟玮 学号:1102380117 序号:24 2013 年 5 月 11 日 成绩评定表 平时 论文 内容 总成绩摘要 参考文献 字数

汽车主动安全技术 摘要:交通安全问题已成为世界性的大问题。据报道,全世界每年因交通事故死亡的人数约50万,因此汽车的安全性对人类生命财产的影响是不言而喻的。随着高速公路的发展和汽车性能的提高,汽车行驶速度也相应加快,加之汽车数量增加以及交通运输日益繁忙,汽车事故增多所引起的人员伤亡和财产损失,已成为一个不容忽视的社会问题,汽车的行车安全更显得非常重要。 关键词:主动安全技术;智能;弊端。 正文: 一、汽车主动安全技术的背景与发展趋势 随着社会的发展,交通安全问题越来越凸显,传统的汽车安全理念也在逐渐发生变化,传统的安全理念很被动比如安全带、安全气囊、保险杠等多是些被动的方法并不能有效解决交通事故的发生,随着科技的进步,汽车的安全被细化,目前汽车安全分为主动安全、被动安全两种概念。 主动安全是指能够避免车祸发生的安全保护装置,而被动安全是指在车祸发生之后保护乘员生命安全的装置。显而易见,传统的被动安全已经远远不能避免交通的事故发生,因此主动安全的概念慢慢的行成并不断的完善。 汽车安全设计要从整体上来考虑,不仅要在事故发生时尽量减少乘员受伤的机率,而且更重要的是要在轻松和舒适的驾驶条件下帮助驾驶员避免事故的发生。而被动安全技术和主动安全技术是保证汽车乘员安全的重要保障。过去,汽车安全设计主要考虑被动安全系统,如设置安全带、安全气囊、保险杠等。现在汽车设计师们更多考虑的则是主动安全设计,使汽车能够主动采取措施,避免事故的发生。在这种汽车上装有汽车规避系统,包括装在车身各部位的防撞雷达、多普勒雷达、红外雷达等传感器、盲点探测器等设施,由计算机进行控制。在超车、倒车、换道、大雾、雨天等易发生危险的情况下随时以声、光形式向驾驶员提供汽车周围必要的信息,并可自动采取措施,有效防止事故发生。另外在计算机的存储器内还可存储大量有关驾驶员和车辆的各种信息,对驾驶员和车辆进行监测控制。例如,根据日

空调通风系统的减振降噪

船用空调通风系统减振降噪措施 20110109

一.空调通风系统的降噪措施 空调通风系统在对船舶内热湿环境、空气品质进行控制的同时,也对船舶的声环境产生不同程度的影响。当系统运行产生的噪声超过一定的允许值后,将影响船员的正常工作、学习、休息或影响一些房间的功能(如广播电视室、录音室等),甚至影响人体健康。因此,在进行船舶空调通风系统设计的同时,应该进行噪声控制设计。 噪声控制应从三方面入手,一从噪声源出进行控制,二从传播过程中进行控制,三从空调通风系统末端进行控制。 通风空调系统中的噪声源主要有压缩机、风机、水泵等机械设备产生的噪声,气流在风管中产生的噪声,入射到风管内而传入室内的噪声,气流通过房间末端装置产生的噪声。 1.压缩机、水泵等机械设备都安装在设备房内,这些设备都有最大允许噪声的规定。要使压缩机不产生异常噪声就需要对压缩机进行很好的日常维护保养、润滑油的管理、制冷剂的管理和年度维护保养;水泵除了日常维护保养润滑外,还需要防止吸入空气发生气蚀,产生异常噪声;风机也有最大允许噪声,它一般安装在空调器箱体内,我们可对空调箱体进行隔噪处理,空调箱体外层采用普通钢板或不锈钢板,中间贴40mm厚岩棉(岩棉传热系数小、耐高温、吸音效果好),内层采用消音孔板做覆板,从而从风机这一主要声源处大大降低了噪声。 2.风管系统的气流噪声,空气在流过直管段和局部构件(如弯头、三通、变径管、风门、风口等)时都会产生噪音。噪声与气流速度有着密切的关系,当气流速度增加一倍,噪声就会增加15dB。风管系统一根主干管通常服务多个房间,而其中某一个房间的噪声会通过风管传到其他房间中去。房间内的噪声源有人声、音乐声等。人群大声说话的声功率级90dB,一般会话为70dB,音乐声级为90~115dB,这些噪声通过风口入射到风管内再传到其他房间。入射到风管内的噪声与风口的开口面积、噪声源与风口距离、风口个数、声源室的总表面积和材料的吸声系数等有关。当几种噪声叠加时,根据声功率级差值在其中较高的声功率上加附加值。 降低风管系统的气流噪声的方法:减小风管系统阻力;降低送风风速;送回风管中加装消音器;风管包隔音材料。

制冷压缩机减振降噪技术专题调研

制冷压缩机减震降噪技术研究 ——专题调研 摘要:制冷压缩机是冰箱、空调,等众多家用设备的主要噪声源,它的振动与噪声也影响到它作为家用设备的舒适性。其减振除噪的重要性不言而喻。本文介绍了制冷压缩机振动与噪声的产生原因与机理。介绍了一些传统的减震降噪的措施与手段,同时着重介绍了一些最新的减震降噪技术。 关键词:制冷压缩机;减振;降噪; 随着社会经济的不断发展,人们生活水平的不断提高,环境保护意识大大增强,制冷压缩机是冰箱、空调,等众多家用设备的主要噪声源,其性能直接影响到人们的生活和工作,在噪声控制方面取得了较大的进步。本文主要根据国内外发表的文献,对这一问题进行了详细总结,分为制冷压缩机振动噪声的主要原因、振动噪声产生和传播机理研究进展和减振降噪措施。总结了制冷压缩机常用的噪声控制方法,并介绍了噪声控制方面的新技术,包括有源声控技术,包括源噪声控制技术压电智能材料的应用,形状记忆合金的应用等最新技术及其他尚未在制冷压缩机领域应用但很有前景可以拿来借鉴的技术。 1、制冷压缩机噪声原因与机理 制冷压缩机系统产生的噪声主要由机械性噪声、电磁噪声和压缩机产生的流体动力特性噪声构成,以及其他各种噪声的耦合噪声。 (1)机械性噪声: 机械性噪声主要由摩擦、磨损以及机构间的力传递不均匀产生的。转子及其装配件的不平衡:

转子啮合、转子转速波动引起的冲击噪声;开启式螺杆制冷压缩机的电机与连轴器不对中引起的振动与噪声;轴承振动与噪声。机体外部包括机壳、支承结构、底座的振动与噪声。油分离器,蒸发器、冷却系统的振动与噪声。电机轴和轴承之间的相互作用形成电机的机械噪声。 (2)流体动力特性噪声: 流体动力特性噪声包括气流噪声和油流噪声。气流噪声主要是吸、排气噪声,包括气体进、出排气腔及转子槽基元容积时形成的涡流噪声,排气过程中回流和膨胀产生的喷流噪声;气流管道脉动及弯头振动、噪声;吸、排气止回阀噪声。油流噪声包括:喷油噪声;油流管道噪声;油泵气穴、困油噪声等。 (3)电磁噪声: 电磁噪声时电动机中特有的噪声,其属于机械性噪声,在电动机中,电磁噪声是由交变磁场对定、转子作用,产生周期性的交变力引起的振动和噪声。当电源电压不稳定时,最容易产生电磁振动和噪声。 2 压缩机噪声振动传递路径 根据全封闭压缩机的结构,我们可以把传递路径分为三类:1.固体路径(弹簧、管、机 体总成);2.液体通道(冷冻油);3.气体通道即制冷气。 2.1 固体通道 我们知道,声波的传递大小与媒质的特性阻抗(密度与声速的乘积)有关。Binder 认为固体通道是压缩机最重要的传输通道。Thomton也认为压缩机噪声主要的传递路径是固体通道。他首先企图找出压缩机某阶振动模态与其噪声级的联系。因为这一模态假若存在的话,就可以通过调整电机与主机的相互运动关系使振动匹配破坏,从而噪声降低。但他们的企图没有实现。接着他用改变传输性来降低噪声。具体采用措施如下:隔振选用固有频率尽量低的弹簧;阻抗失配即弹簧与机体连接处尽量选用特性阻抗低的材料。Jenkins 利用计算机仿真技术来研究通过弹簧传递的振动。他发现若将活塞和连杆的质量减少30%,即可减少40%的传递力。他同时发现,通过仅仅优化平衡块的质量和位置对弹簧的变形影响很小,而通过优化弹簧与机体的连接点的位置,可大幅度降低水平位移。除弹簧外,吸排气管也同样是重要的传递通道,Soedel将吸排气管建立了一个数学模型来求得各管参数对振动的影响。他得出如下结论:压缩增加时,管路的刚度增加,从而固有频率有所增加,当质量流量增加时,管路自振频率将下降。随后Toio用有限元法对排气管进行修改,也可使管路刚度下降,从而避开压缩机旋转频率及其谐波。另外,Sinpson简单采用了一个汽车空调软管代替现行的铜管, 也取得了很好的效果。 2.2 液体通道 关于该类通道对噪声的影响,文献资料较少。Simpson 用铜管弯曲成螺旋状并在其表面钻上小孔(直径0.010″)称作起泡器。然后将这一起动器浸在压机油中并与排气腔相连,这一措施连同其它方法使噪声降低了5dB,这种起动器对1000Hz 以上的噪声似乎很有效,但文 献没有提及对性能有何影响。 2.3 气体通道 Thomton做过实验,证实对于刚性连接的旋转压缩机固体通道是主要的传输通道。但 改为弹簧连接后,气体通道即成为主要的传输通道。全封闭压缩机腔内充满了制冷气体,当机体振动时,制冷剂被激励,一方面将振动传输出去,另一方面有可能产生共振,将振动放大,从而使外壳产生更大噪声。在这一领域值得一提的是Johnson 和Hamilton,他们是第一次进行并发现气体在腔内共振实验的人。他们首先发现压缩机噪声谱中460Hz 处有一个高峰,这个高峰随着温度的改变来回移动,通过测量声功率,发现460Hz 有很强的方向性, 与偶极子源特性类似。通过计算可知是压缩机腔内的轴向气体共振。这些推论又用如下实验

2020年混合动力电动汽车减振降噪技术研究:2018油电混合动力汽车

摘要在介绍混合动力电动汽车结构和工作特性的基础上,分析了混合动力电动汽车由于动力源增加、驱动桥改变和工作模式不同,导致其振动和噪声相对于传统内燃机汽车发生了较大改变,并针对这些改变归纳和提出了减振降噪的技术。 关键词混合动力;电动汽车;振动;噪声;控制技术 中图分类号U467+93 文献标志码A 文章编号1005-2550(2012) 04-0067-05 Noise and Vibration Reduction Technology in Hybrid Electric Vehicle LIAO Lian-ying1,LI Xin-wen2 (Changzhou Institute of Technology,Changzhou 213002,China; Military Representative Office of the PLA in the DFM,Shiyan 442000,China) AbstractIn recent years,the hybrid electric vehicle is becoming the main trend development of automobile technology. The hybrid electric vehicle structure and work characteristics are introduced. The vibration and noise source are analyzed. Because of the changes of power sources,

drive axle and operating mode,the vibration and noise sources are different between the hybrid electric vehicle and the traditional internal combustion engine vehicle. According to the changes,the measures of reducing the vibration and noise are summarized and presented. Key wordshybrid power;electric vehicle; vibration;noise;control technology 混合动力电动汽车除了在环保和节能上有出色表现外,在噪声与振动整体控制上也体现出了一定的优势。然而,混合动力电动汽车相对于传统内燃机汽车,增加了电池组和电机等零部件,在结构上较为复杂,工作状态也发生了变化,由此引起的噪声与振动源和其特性上发生了较大改变。如噪声和振动源的增加且呈分散特点,导致噪声和振动特性分析难度加大;整车室内外声学环境噪声的减小,改变了噪声源的贡献比,从而导致了车室内外声品质和噪声等级的改变;发动机和电机等设备的频繁起停引起瞬态冲击振动和高频噪声现象突出;大质量电池的增加和布置导致整车结构模态的改变等。因此混合动力电动汽车的噪声和振动控制的侧重点和控制方法均和内燃机汽车有所不同。本文就混合动力电动汽车结构和工作特点发生变化,引起的噪声和振动特性发生改变进行了分析,并针对这些特点提出减振降噪措施。 1 混合动力电动汽车结构及工作特点

相关主题