搜档网
当前位置:搜档网 › 代谢组学研究技术及其应用概述

代谢组学研究技术及其应用概述

代谢组学研究技术及其应用概述
代谢组学研究技术及其应用概述

代谢组学的数据分析技术

代谢组学的数据分析技术 摘要:代谢组学是效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式,是系统生物学的组成部分。其研究对象大都是相对分子质量1000以内的小分子物质。先进分析检测技术结合模式识别和专家系统等计算分析方法是代谢组学研究的基本方法。文章主要综述了将代谢组学中的图谱、数据信息转换为相应的参数所采用的分析方法。 关键词:代谢组学;数据分析方法 代谢组学是以代谢物分析的整体方法来研究功能蛋白如何产生能量和处理体内物质,评价细胞和体液内源性和外源性代谢物浓度及功能关系的新兴学科,是系统生物学的重要组成部分,其相应的研究能反映基因组、转录组和蛋白组受内外环境影响后相互协调作用的最终结果,更接近反映细胞或生物的表型,因此被越来越广泛地应用。而代谢组学的数据分析包括预处理和统计分析方法,多元统计分析方法主要分为两大类:非监督和监督方法,非监督方法包括主成分分析PCA;聚类分析CA等;监督方法包括显著性分析、偏最小二乘法等,本文就是主要综述代谢组学图谱信息转化为参数信息所采用的数据分析方法。 1预处理 数据的预处理过程包括以下:谱图的处理;生成原始的数据矩阵;数据的归一化以及标准化处理过程。针对实验性质、条件以及样品等因素采用不同的预处理方法。在实际应用过程中,预处理可以通过实验系统自带的软件如XCMS软件。进行,因此一般较容易获得所需的数据形式。 2数据分析方法 2.1 主成分分析PCA是多元统计中最常用的一种方法,它是在最大程度上提取原始信息的同时对数据进行降维处理的过程,其目的是将分散的信息集中到几个综合指标即主成分上,有助于简化分析和多维数据的可视化,进而通过主成分来描述机体代谢变化的情况。PCA 的具体过程是通过一种空间转换,形成新的样本集,按照贡献率的大小进行排序,贡献率最大的称为第一主成分,依次类推。经验指出,当累计贡献率大于85%时所提取的主成分就能代表原始数据的绝大多数信息,可停止提取主成分。在代谢组数据处理中,PCA是最早且广泛使用的多变量模式识别方法之一。,具有不损失样品基本信息、对原始数据进行降维处理的同时避免原始数据的共线性问题等优点,但在实际应用过程中,PCA存在着自身的缺点[1]:离群样本点的存在严重影响其生物标志物的寻找;非保守性的代谢组分扰乱正确的分类以及尺度的差异影响小浓度组分的表现等,其他的问题之前也有讨论[2]。针对PCA 的缺陷采用了不同的改进措施,与此同时,为了简化计算,侯咏佳等[3]。提出了一种主成分分析算法的FPGA实现方案,通过Givens算法和CORD IC算法的矢量旋转,用简单的移位和加法操作来实现协方差矩阵的特征分析,只需计算上三角元素,因此计算复杂度小、迭代收敛速度快。 2.2 聚类分析CA是用多元统计技术进行分类的一种方法。其主要原理是:利用同类样本应彼此相似,相类似的样本在多维空间里的彼此距离应较小,而不同类的样本在多维空间里的

代谢组学的研究现状及其在方剂量效关系中的应用

代谢组学的研究现状及其在方剂量效关系中的应用 邓海山,段金廒*,尚尔鑫,唐于平 (南京中医药大学江苏省方剂研究重点实验室,江苏南京210046) 摘要:代谢组学能够准确、灵敏地反映生物体系的整体功能状态,同时克服了传统中医依赖医生个人经验进行诊疗的不确定性。方剂剂量的变化对其疗效乃至功用的改变都将在代谢组图谱的不同变化趋势中得到体现,从而能够对方剂的量效关系及其物质基础给出全新的解释,获得深入系统的认识。本文综述了代谢组学在中医药现代研究中的应用进展,并针对目前方剂量效关系研究中,方剂的疗效评价只能定性不能定量,导致量效关系不明的困境,提出以代谢组学技术作为方剂的整体疗效评价方法,通过追踪代谢组在病理发展过程中以及药物干预下的变化,开展方剂量效关系研究的新思路。 关键词:代谢组学;量效关系;整体疗效评价;代谢网络;中药 中图分类号:R285文献标识码:A文章编号:167420440(2009)0320198206 R esearch advances of m etabono m ics and app lica ti on i n the study of dose2effect r el a ti onsh ip of prescr i p tion s DENG H ai2shan,D UAN Jin2ao,S HANG Er2xi n,TANG Yu2ping (J i a ngs u K e y La bora tory for TCM F ormula e Research,Na nji ng Universit y o f Chinese M e d ici ne,Na nji ng210046,Ch i na) Abstr act:M etabono m es reflects t h e syste matic status of the organis m accurate l y,sensiti v ely and i m per2 sona ll y.To eva l u ate the therapeu tic eff ects bymeans ofmetabono m icsw ill overco m e the deficiency of un2 certa i n ty w ith the trad iti o na ld iagnostic methods i n cluding inspection,auscultation and olfaction,i n qu iry, and palpati o n.The i m pact of the variation of prescripti o ns dosage on effic i e ncy w ill be shown clearly through the change tendencies of metabono me spectra.Consequently,a ne w i n si g ht is obta i n ed f or the dose2eff ect re lati o nship and its materia l basis.The a mbiguous dose2eff ect relati o nship of trand itional Chi2 nese med icine(TC M)prescr i p tions has l o ng been controversia.l It is one of the most i m portant reasons that the therapeutic eff ect of th is kind ofm edic i n es cannot be evaluated quantitative ly.Based on the re2 vie w of t h e applicati o n of metabono m ics i n moder n st u dy of TC M,we suggest to carry out the st u dy on dose2eff ect re lationsh i p of prescri p ti o ns,in wh ich the techn i q ues ofmetabono m ics are e mp l o yed to co m2 prehensi v e l y evaluate the t h erapeutic eff ect of prescriptions,and the variation of metabono m es in the course of disease devecop m ent and treat m ent is traced. K ey words:metabono m ics;dose2eff ect relationsh i p;co mprehensive eval u ation of therapeuti c e f fec;t metabolic net w or k;trad ition Chinese med icine 收稿日期:2009202225 基金项目:江苏省自然科学重大基础研究资助项目(No.06KJ A36022,07K J A36024);江苏省方剂研究重点实验室/青年学者培养计划0资助项目(No.LTC MF20071203) 作者简介:邓海山,男,博士,讲师,研究方向:中药现代仪器分析与中药信息学,Te:l025*********,E2m a i:l hs_deng@n j u tc https://www.sodocs.net/doc/a9500401.html, *通讯作者:段金廒,男,教授,博士生导师,Te:l025*********,E2m ai:l d ja@n j utc https://www.sodocs.net/doc/a9500401.html,

代谢组学——广泛靶向代谢组

一、研究概述 20世纪80年代,英国帝国理工大学Nicholson教授首次提出了代谢组学的概念,被誉为“国际代谢组学之父”。2005年,加拿大基因委员会投资750万美元创建了“人类代谢组计划”(HMP),最终构建了HMDB代谢组数据库。在这十年来,代谢组学检测技术也经历了由核磁(NMR)转向气质联用(GCMS)再到液质联用(LCMS)的发展历程,检测结果的有效信息量也有了10倍的提升。代谢组学相较于其他组学的优势在于:(1)据估计,人类含有约6500种小分子代谢物,尽管新的和更灵敏的测量技术正逐步揭示更多的化学物种,然后代谢物的数量仍然可能比在人类中发现估计的25000个基因、100000个转录组和1000000个蛋白质少;(2)代谢组检测的是基因组、转录组和蛋白组的可变性下游表型,从而可以提供高度整合的生物学状态概况;(3)代谢组学是一种精确和无创的工具,用于识别药物治疗作用和可能的毒理学效应,并分离遗传学、微生物活性和营养对整体代谢表型的作用 二、广泛靶向代谢组 目前,代谢组学的研究主要包括靶向代谢组和非靶向代谢组。靶向代谢组(Targeted metabolomics):少数已知代谢物定性和定量检测,具有灵敏度高、定性定量准确的特点;非靶向代谢组(Untargeted metabolomics):同时检测数百乃至数千种代谢物(包括已知和未知代谢物),但其灵敏度较之靶向代谢组低1-2个数量级,定性定量准确性也相对较差。今天小编介绍的就是一种整合了非靶向和靶向代谢物检测技术优点的新型代谢组检测技术——广泛靶向代谢组(Widely Targeted Metabolome)。 广泛靶向代谢组(Widely Targeted Metabolome)作为第二代或者新一代靶向代谢组(Next Generation Metabolome)技术,区别于现有代谢物检测方法,该技术平台建立了LC-MS/MS代谢物标品数据库,整合了非靶向和靶向代谢物检测技术的优点,可以检测覆盖18大类,2500多个代谢物,实现了高通量、高灵敏、广覆盖的靶向代谢物检测。广靶技术作为一项核心专利技术,早于2013在《Molecular Plant》(IF:9)杂志上发表题为《A Novel Integrated Method for

代谢组学在医药领域的应用与进展

代谢组学在医药领域的应用与进展 一、学习指导 1.学习代谢组学的概念及内涵,掌握代谢组学的研究对象与分析方法。 2.熟悉代谢组学数据分析技术手段 3.了解代谢组学优势特点 4.了解代谢组学在医药领域的应用 5.了解代谢组学发展趋势 二、正文 基因组功能解析是后基因组时代生命科学研究的热点之一,由于基因功能的复杂性和生物系统的完整性,必然要从“整体”层面上来理解构成生物体系的各个模块功能。随着新的测量技术、高通量的分析方法、先进的信息科学和系统科学新理论的发展,加上生物学研究的深入和生物信息的大量积累,使得在系统水平上研究由分子生物学发现的组件所构成的生命体系成为可能[1]。系统生物学家们认为,将生命科学上升为“综合”科学的时机已经成熟,生命科学再次回到整合性研究的新高度,逐步由分子生物学时代进入到系统生物学时代[2]。系统生物学不同以往的实验生物学仅关注个别基因和蛋白质,它要研究所有基因、蛋白质,代谢物等组分间的所有相互关系,通过整合各组成成分的信息,以数学方法建立模型描述系统结构[3,4]。 (一)代谢组学的概念及内涵 代谢组学是继基因组学、转录组学和蛋白质组学之后,系统生物学的重要组成部分,也是目前组学领域研究的热点之一。代谢组学术语在国际上有两个英文名,即metabolomics 和metabonomics。Metabolomics是由德国的植物学家Fiehn等通过对植物代谢物研究提出来的,认为代谢组学(metabolomics)是定性和定量分析单个细胞或单一类型细胞的代谢调控和代谢流中所有低分子量代谢产物,从而监测机体或活细胞中化学变化的一门科学[5]。英国Nicholson研究小组从毒理学角度分析大鼠尿液成份时提出了代谢组学(Metabonomics)的概念,认为代谢组学是通过考察生物体系受扰动或刺激后(如某个特定基因变异或环境变化后),其代谢产物的变化或代谢产物随时间的变化来研究生物体系的代谢途径的一种技术[6]。国内的代谢组学研究小组基本用metabonomics一词来表示“代谢组学”。严格地说,代谢组学所研究的对象应该包括生物系统中所有的代谢产物。但由于实际分析手段的局限性,只对各种代谢路径底物和产物的小分子物质(MW<1Kd)进行测定和分析。 (二)代谢组学优势特点 代谢组学作为系统生物学的一个重要组成部分,代谢组可以更好地反映体系表型生物机体是一个动态的、多因素综合调控的复杂体系,在从基因到性状的生物信息传递链中,机体需通过不断调节自身复杂的代谢网络来维持系统内部以及与外界环境的正常动态平衡[7]。

代谢组学研究进展综述

代谢组学技术及其在中医研究中的探讨 姓名:郭欣欣学号:22009283 导师:刘慧荣 代谢组学(metabonomics) 是20世纪90年代中期发展起来的一门新兴学科,是关于生物体系受刺激或扰动后(如将某个特定的基因变异或环境变化后) 其代谢产物(内源代谢物质) 种类、数量及其变化规律的科学。它研究的是生物整体、系统或器官的内源性代谢物质的代谢途径及其所受内在或外在因素的影响。常用的方法是检测和量化一个生物整体代谢随时间变化的规律;建立内在和外在因素影响下,代谢整体的变化轨迹,反映某种病理(生理) 过程中所发生的一系列生物事件。 1 代谢组学研究技术平台 代谢组学研究的技术平台包括以下几个部分:前期的样品制备,中期的代谢产物检测、分析与鉴定以及后期的数据分析与模型建立。 前期代谢组学研究常用的检测技术,一般不需要对标本行特别的分离、纯化等。但离体条件下,细胞或组织内的代谢状态可迅速改变,代谢物的质与量亦随之变化,为正确反映在体的真实信息,须立即阻断内在酶的活性。最为常用的是冰冻/液氮降温法及冷冻、干燥的保存技术,尽管如此,细胞间仍始终有一低水平的代谢活动,需尽量避免氧化等活化因素。 中期代谢产物的检测、分析与鉴定是代谢组学技术的核心部分,最常用的是NMR及质谱(MS)两种。 核磁共振技术是利用高磁场中原子核对射频辐射的吸收光谱鉴定化合物结构的分析技术,生命科学领域中常用的是氢谱( 1H NMR ) 、碳谱(13C NMR)及磷谱(31P NMR)三种。可用于体液或组织提取液和活体分析两大类。 NMR技术在代谢组学中的应用越来越广泛,它具有如下优点: ①无损伤性,不破坏样品的结构和性质; ②可在一定的温度和缓冲范围内进行生理条件或接近生理条件的实验; ③与外界特定干预相结合,研究动态系统中机体化学交换、运动等代谢产物的变化规律; ④实验方法灵活多样。但仪器价格及维护费用昂贵限制了该技术的进一步普及。 质谱技术是将离子化的原子、分子或是分子碎片按质量或是质荷比(m/e)大小顺序排列成图谱,并在此基础上,进行各种无机物、有机物的定性或定量分析。新的离子化技术则使质谱技术的灵敏度和准确度均有很大程度的提高。NMR技术与MS技术相比,各有其优缺点,需要在研究中灵活选用。总体而言,NMR技术应用的更为广泛。此外,根据代谢组学的研究需要,还常用于其他的一些分析技术,如气相色谱(GC) ,高效液相色谱仪(HPLC) ,高效毛细管电泳(HPCE)等。它们往往与NMR或MS技术联用,进一步增加其灵敏性。但不容忽视的是,随着分析手段更新,敏感性及分辨率提高,“假阳性”的概率也就越大,可能是仪器技术方法固有的,亦或是数据分析过程中产生的。 后期代谢组学研究的后期需借助于生物信息学平台。它往往借助于一定的软件,联合多种数据分析技术,将多维、分散的数据进行总结、分类及判别分析,发现数据间的定性、定量关系,解读数据中蕴藏的生物学意义,阐述其与机体代谢的关系。如果说分析技术在我们面前打开了“一扇门”,正确的数据分析方法和模型建立便是“找到宝藏”的钥匙。 主成分分析法( PCA) 是最常用的分析方法。其将分散于一组变量上的信息集中于几个综合指标(PC)上,如糖代谢、脂质代谢、氨基酸代谢等,利用主成分描述机体代谢的变化情况,发挥了降维分析的作用,避免淹没于大量数据中。其他的模式识别技术,如聚类分析、辨别式功能分析、最小二乘法投影法等在代谢组学研究中亦有其重要的地位。 现实情况下,代谢组学的数据更为复杂,特别是NMR对病理生理过程的研究,将代谢物的表达谱与时间相联系,分析时更加困难,需要借助复杂的模型或是专家系统进行分析(在应用

代谢组学分析技术的新进展

系统生物学的飞速发展促使科学研究体系发生了巨大 变化,研究理念从以往的“个体论”过渡到当今的“整体论”。而各种“组学”的研究也应运而生,代谢组学即是其中一个重要分支。代谢物是细胞生理活动的最终产物。当细胞所处环境发生变化,如遗传信息改变、毒物药物作用、细菌病毒侵入等时,均会使细胞产生的内源性生物小分子发生相应变化,而代谢组学就是通过研究这些小分子物质来推断生物系统对基因或环境变化而产生的最终应答[1-4]。代谢组学作为一门新兴学科,已广泛应用于毒理学研究、药物研发、疾病的诊断和治疗等方面。与此同时,代谢组学的分析技术也随着研究的深入而不断发展。 代谢组学的概念 早在1983年,Nicholson等[5]首先应用核磁共振氢谱(1H NMR)来检测血浆、血清中的小分子代谢物。而直到1999年,Nicholson等[6]才正式将代谢组学定义为,以动物的体液和组织为研究对象,研究生物体对病理生理刺激或基因修饰产生的代谢物质其质和量的动态变化,关注的对象为相对分子质量在1000以下的小分子化合物。2000年,Fiehn等[7]正式提出“代谢组学(metabolomics)”这个名词。 Fiehn[3]将生物体系的代谢产物分析分为4个层次。 ①代谢物靶标分析:可对代谢物组中某一个特定的组分进行分析,主要用于筛选和要求高灵敏度物质的分析。②代谢物谱分析:可对一种特定的代谢物进行分析,如碳水化合物、氨基酸等,主要在药物研究中描述特定化学药品分解代谢途径[8]。代谢物谱这个概念目前应用已十分广泛,甚至已代替原有的“代谢组学”概念[9]。③代谢物组分析:可在限定条件下对特定生物样品中所有代谢物组分进行定性和定量分析。代谢物组包括细胞内代谢物及细胞外液代谢物,必须要有严格的样品制备和分析技术。④代谢物指纹分析:细胞产生的代谢物通过核磁共振(NMR)或质谱(MS)分析,得到的光谱就是这个代谢物的“指纹”。这种分析方法不分离鉴定具体单一组分,只是对样品进行快速分类。 代谢组学相关技术及进展 代谢组学研究过程包括3个步骤,即样品的制备、代谢物的分离和检测、数据分析及模型的建立[10]。 一、代谢组学的研究样品 因尿液、血清或血浆包含上百种待测物质,获取途径也较方便,已成为目前代谢组学研究中最常用的样本[11],其他如脑脊液、胆汁、消化液、唾液、精液、羊水等,亦可作为代谢组学研究的样本。 血液样本反映机体对病理或生理刺激的瞬时信息,评价机体的动态平衡。尿液标本常包含一段时间内产生的代谢信息,反映机体当前的生理或病理状态、生物学年龄,也可预测各种先天不足或外环境影响的致病率。组织包含的代谢物可帮助判断该组织所属器官发生生物学进程改变后所产生的分子信息,因此可用来解释机体如何对刺激作出生化应答[11]。 当然,因为样本的制备过程及获取途径不同,选取不同样本,得到的数据会有相应差异。如在血制品中,血浆和血清都可作为代谢组学的研究样本。Liu等[12]通过气相色谱-飞行时间质谱(GC-TOF-MS)方法分别检测血清和血浆中的代谢物谱,发现在血清或血浆的准备过程中,血液的待检时间会影响代谢物的峰面积。这对血浆的影响更大,等待时间越长,血清中某些代谢物含量会显著增高,而血浆中则大大减少,故认为血清更适合作为代谢组学的研究样本。 样品存储也是代谢组学研究中一个重要的环节,主要目的就是尽可能保留最原始的代谢信息,避免实验误差。最佳保存方式是液氮或-80℃的低温冰箱。 二、代谢产物分析技术 NMR光谱技术和MS技术是目前最常用的2种代谢组学分析方法。 1.NMR光谱:NMR技术是最早被用于代谢组学研究的技术之一[5],其利用原子核在磁场中的能量变化来获得相关核信息。目前常用的有1H-NMR、碳谱(13C-NMR)和磷谱(31P-NMR),其中以1H-NMR应用最为广泛[13]。 NMR技术几乎不需要进行样品前处理,可快速对样本进行分析,即使样本量极少,也可获得大量信息[14]。NMR为非侵入性操作,不破坏样本,是现有代谢组学分析技术中唯一能用于活体和原位研究的技术。同时利用NMR弛豫特性 ·综述· 代谢组学分析技术的新进展 邱青青,燕敏,李琛 (上海交通大学医学院附属瑞金医院外科,上海200025)关键词:代谢组学;分析技术;核磁共振氢谱 中图分类号:R364.2文献标识码:C文章编号:1671-2870(2011)01-0082-04 基金项目:上海市自然科学基金(10411967000) 通讯作者:李琛E-mail:leechendoc@https://www.sodocs.net/doc/a9500401.html,

药用植物代谢组学的研究进展

药用植物代谢组学的研究进展 【摘要】从技术步骤、分析方法以及实际应用三个方面对当前药用植物代谢组学研究领域的一些理论问题和实践中面临的挑战进行综述。 【关键词】药用植物;代谢组学;功能基因组学 代谢组学是对生物体内代谢物进行大规模分析的一项技术[1],它是系统生物学的重要组成部分(如图1所示),药用植物代谢组学主要研究外界因素变化对植物所造成的影响,如气候变化、营养胁迫、生物胁迫,以及基因的突变和重组等引起的微小变化,是物种表型分析最强有力的工具之一。在现代中药研究中,代谢组学在药物有效性和安全性、中药资源和质量控制研究等方面具有重要理论意义和应用价值。另外,在对模式植物突变体文库或转基因文库进行分析之前,代谢组学往往是首先考虑采用的研究方法之一。目前,国外已有成功利用代谢组学技术对拟南芥突变株进行大规模基因筛选的例子,这为与重要性状相关基因功能的阐明和选育可供商业化利用的转基因作物奠定了基础 目前,还有许多经济作物的全基因组测序计划尚未完成,由于代谢组学研究并不要求对基因组信息的了解,所以在与这些作物有关的研究领域具有更大的利用价值,这也是其与转录组学和蛋白组学研究相比的优势之一。代谢组学研究涉及与生物技术、分析化学、有机化学、化学计量学和信息学相关的大量知识,Fiehn[2]对代谢组学有关的研究方向进行了分类(见表1)。 1代谢组学研究的技术步骤 代谢组学研究涉及的技术步骤主要包括植物栽培、样本制备、衍生化、分离纯化和数据分析5个方面(见图2)。 1.1植物栽培 对研究对象进行培育的目的是为了对样本的稳定性进行控制,相对于微生物和动物而言,植物的人工栽培需要考 表1代谢组学的分类及定义略 虑更多的问题,如中药材在不同年龄、不同发育阶段、不同部位以及光照、水肥、耕作等环境因素的微小差异都可引起生理状态的变化,而这些非可控及可控双重因素的影响很难进行精确的控制,从而影响药用植物代谢组研究的重复性。为了解决以上问题,推荐使用大容量的培养箱[3],定时更换培养箱中栽培对象的位置,以及使用无土栽培技术等,Fukusaki E[4]利用无土栽培系统将水和养分直接引入植物根部,并且对供给量进行精确地控制,大大提高了实验的重复性。 1.2样本制备 为了获得稳定的实验结果,样本制备需要考虑样本的生长、取样的时间和地点、取样量以及样本的处理方法等问题,并根据分析对象的分子结构、溶解性、极性等理化性质及其相对含量大小对提取和分离的方法进行选择,逐一优化试验方案。Maharjan RP等[5]用6种方法分别对大肠杆菌中代谢产物进行提取,发现用-40℃甲醇进行提取的效果最好。现阶段代谢组学的分析对象主要集中在亲水性小分子,尤其是初级代谢产物,气相色谱 质谱联用(GC MS)和毛细管电泳 质谱(CE MS)联用都是分析亲水小分子的重要技术。Fiehn O等[6]使用GC MS 对拟南芥叶片中的亲水小分子进行了分析,发现酒石酸半缩醛、柠苹酸、别苏氨酸、羟基乙酸等15种植物代谢物。 1.3衍生化处理 对目标代谢产物的衍生化处理取决于所使用的分析设备,GC MS系统只适

代谢组学综述

代谢组学综述 摘要:代谢组学是20世纪90年代中期发展起来的对某一生物或细胞所有低相对分子质量代谢产物进行定性和定量分析的一门新学科,由于其广泛的应用前景,目前已成为系统生物学的重要组成部分。现简要介绍了代谢组学的含义、代谢组学研究的历史沿革、当前代谢组学研究中的分析技术、数据解析方法,综述了代谢组学在药物毒理学研究、疾病诊断、植物和中药等领域的应用情况,并对当前代谢组学研究中存在的问题及发展趋势进行探讨。 关键词:代谢组学研究技术 随着人类基因组计划等重大科学项目的实施,基因组学、转录组学及蛋白质组学在研究人类生命科学的过程中发挥了重要的作用, 与此同时, 代谢组学(metabolomics)在20世纪90年代中期产生并迅速地发展起来, 与基因组学、转录组学、蛋白质组学共同组成系统生物学。基因组学、转录组学、蛋白质组学和代谢组学等各种组学0在生命科学领域中发挥了重要的作用, 它们分别从调控生命过程的不同层面进行研究, 使人们能够从分子水平研究生命现象, 探讨生命的本质, 逐步系统地认识生命发展的规律。这些组学手段加上生物信息学, 成为系统生物学的重要组成部分。 代谢组学的出现和发展是必要的, 同时也是必须的。对于基因组学和蛋白质组学在生命科学研究中的缺点和不足, 代谢组学正好可以进行弥补。代谢组学研究的是生命个体对外源性物质(药物或毒物)的刺激、环境变化或遗传修饰所做出的所有代谢应答, 并且检测这种应答的全貌及其动态变化。代谢组学方法为生命科学的发展提供了有力的现代化实验技术手段, 同时也为新药临床前安全性评价与实践提供了新的技术支持与保障。 1 代谢组学的概念及发展 代谢组学最初是由英国帝国理工大学Jeremy N icholson教授提出的, 他认为代谢组学是将人体作为一个完整的系统, 机体的生理病理过程作为一个动态的系统来研究, 并且将代谢组学定义为生物体对病理生理或基因修饰等刺激产生的代谢物质动态应答的定量测定。2000年, 德国马普所的Fiehn等提出了代谢组学的概念, 但是与N icholson提出的代谢组学不同, 他是将代谢组学定位为一个静态的过程, 也可以称为/代谢物组学, 即对限定条件下的特定生物样品中所有代

代谢组学技术及其应用的研究进展

0.前言 代谢组学是一种研究体内代谢产物的系统生物学方法,它能为疾病状态、药理毒理、基因功能的研究提供大量信息[1],1999年Nicholson[2]将其定义为能定量测定生命系统对病理生理刺激或基因改变所产生的动态多参数代谢反应的一种方法(Metabonomicsisdefinedas‘thequan-titativemeasurementofthedynamicmultiparametricmetabolicresponseoflivingsystemstopathophysiologicalstimuliorgeneticmodification’)。它是继基因组学、蛋白质组学、转录组学后新近发展起来的一门新的组学,并与基因组学、蛋白质组学、转录组学等共同构成系统生物学。代谢组学考查的是生物机体内所有的代谢产物[3],但主要关注的是分子量在1000以内的小分子物质,基因组学和蛋白质组学分别从基因和蛋白质层面探寻生命活动,代谢组学则从代谢物层面上探寻生命活动,基因组学和蛋白质组学告诉你什么可能会发生,而代谢组学则告诉你什么确实发生了[4]。代谢产物能在一个生物体的细胞、细胞器、组织、器官、体液等各个层面上产生[5],从某种意义上说机体内每一项生命活动都要受到代谢产物的调节和影响,因此,代谢组学研究可以了解和探索各项生命活动的整体代谢状况从而帮助人们更好地理解生命活动。目前代谢组学在药学、毒理学、疾病诊断、基因功能等生命科学的各个领域都有广泛应用,并已显示出其强大的优势,它在向各个学科渗透的同时,其自身技术和方法也在不断进步,随着系统生物学的发展,代谢组学正向真正的系统、综合、全面的目标迈进。 1.代谢组学的研究方法 代谢组学研究的基本方法是应用气相色谱质谱联用(GC-MS),液相色谱质谱联用(LC-MS),核磁共振波谱(NMR)等先进的仪器分析技术来检测各种生物样品(包括血液、尿液、脑脊液、肝脏、病变组织等)中代谢物组的信息并结合模式识别和专家系统等分析计算方法对所得代谢组学数据进行处理,最后综合解析这些数据以探讨各种生命活动在代谢物层面上的规律和特征并用于评价药物疗效、检测药物毒性、诊断疾病、分析疾病状态等。代谢组学的技术平台主要包括样品制备、代谢产物检测和分析鉴定以及数据分析与模型建立。 2.代谢组学的应用 2.1代谢组学为药学和毒理学研究中的应用 目前,代谢组学在药物安全性评价、新药开发、毒性标志物的筛选等方面应用广泛。Nicholls[6]运用代谢组学技术对药物引起磷脂质病的机理进行了研究,结果发现大鼠给药后不同时段尿液代谢组图谱发生变化。研究认为代谢组学技术能为药物引起磷脂质病微小生化改变的检测提供强有力的工具。Slim[7]利用代谢组学方法研究了地塞米松对磷酸二酯酶抑制剂诱导的大鼠脉管炎的治疗作用,发现大鼠尿液代谢组图谱与组织病理变化基本一致,研究认为尿液代谢组图谱的变化可反映主要的病理变化,代谢组学技术可非侵害地检测血管变化。 在动物实验和临床试验中利用高通量的技术手段筛选和检测潜在的毒性物质是新药安全性评价的重要环节[8],因为大多数药物通过广泛的生物转化作用可成为毒性明显不同的代谢物[9],当毒物与细胞或组织相互作用时会引起机体关键代谢过程中内源性物质的比例和浓度发生变化,所以只有对这些代谢物的变化信息进行全面的分析研究才能更好地评价药物的安全性,大量研究表明代谢组学技术能快速获得这些信息[10],它可检测生物体在给药后整体的代谢反应过程,能综合考察药物的药效和毒性,能全面分析代谢产物的变化特点和规律,从而系统地评价药物的价值和开发前景。在毒理学研究中,代谢组学技术在研究毒物作用机制、预测药物毒性、鉴定对临床有用的生物标志物等方面发挥着重要作用[11]。Warne[12]利用代谢组学技术研究3-三氟甲基-苯胺的毒 理反应,成功鉴定出了与毒性反应有关的潜在生物标志物。Azmi等[13]利用代谢组学技术研究了1-萘异硫氰酸酯(1-Naphthylisothiocyanate,ANIT)的肝毒性作用,研究认为代谢组学技术能够在器官、亚器官等不同水平上认识不同的毒理学机制。 鉴于代谢组学技术在药学和毒理学研究中的巨大贡献,英国帝国理工学院已与六家医药公司联合成立了名为毒理代谢组学(theConsor-tiumforMetabonomicToxicology,COMET)的研究组织,该组织旨在从方法学上建立一套毒理代谢组学研究体系和通用的标准评价方法,采用1HNMR技术分析尿液和血液代谢组信息以用于候选药物临床前的毒性检测[14]。近来,Clayton[15]又提出了药物代谢组学的概念(pharmaco-metabonomics,whichwedefineas‘thepredictionoftheoutcome(forex-ample,efficacyortoxicity)ofadrugorxenobioticinterventioninanindividualbasedonamathematicalmodelofpre-interventionmetabolitesignatures’)。 2.2代谢组学在疾病研究和诊断中的应用 近年来,代谢组学技术已广泛应用于心血管疾病、糖尿病、癌症等疾病的诊断和研究。在心血管疾病方面,Brindle[16]利用基于1HNMR的代谢组学技术对冠心病人的血清代谢组进行了分析,结果显示疾病组与正常组代谢组图谱存在明显差异,研究认为代谢组学技术不仅能快速、准确的诊断冠心病还能区分疾病的严重程度。Martin[17]运用代谢组学技术研究了不同饮食对动脉粥样硬化形成的影响,结果发现极低密度脂蛋白(VLDL)、胆固醇(cholesterol)、N-乙酰基糖蛋白(N-acetylgly-coproteins)与动脉粥样硬化的形成呈正相关,白蛋白赖氨酰残基(albu-minlysylresidues)、氧化三甲胺(trimethylamine-N-oxide)与之呈负相关,此外,在预测动脉粥样硬化变性方面代谢组学数据可达89%,而常规方法只有60%,研究认为代谢组学技术不仅能区分不同饮食诱导的动脉粥样硬化的生物反应(尤其是多参数代谢反应),还能发现新的与疾病进程呈正相关或负相关的潜在标志物,从而帮助人们更好地认识疾病发病的危险因素。 在糖尿病方面,Hodavance[18]认为代谢组学技术是研究2型糖尿病和胰岛素抵抗的有力工具,它能够识别那些常规方法无法识别的代谢产物。Yang[19]对比分析2型糖尿病人和正常人血清代谢组图谱发现2型糖尿病人的血清脂肪酸代谢谱与正常人存在差异,研究认为利用代谢组学方法检测血清脂肪酸代谢状况可快速诊断2型糖尿病。Yuan等[20]对2型糖尿病人尿液进行代谢组学分析并发现了马来酸(Maleicacid)、氧基乙酸(Oxylaceticacid)、4-氨基苯甲酸(4-Aminobenzoicacid)等与2型糖尿病有关的潜在生物标志物。 在癌症方面,Whitehead[21]认为代谢组学技术不仅能分析水溶性和脂溶性的癌组织提取物还能发现和鉴定在疾病不同阶段的特征性代谢产物,它是研究和诊断癌症的有力工具。Yang等[22]利用代谢组学技术对比分析了肝癌、肝炎、肝硬化患者及正常对照者的尿液代谢组信息,结果显示各组患者尿液代谢组信息存在明显差异,研究认为代谢组学技术不仅能清楚地区分患者和正常人还能诊断出患者是患肝炎、肝硬化还是肝癌,这对降低误诊率意义重大,研究还指出通过代谢组学技术鉴定出的尿液核苷在癌症诊断方面优于传统的肿瘤标志物甲胎蛋白(alpha-fetoprotein,AFP)。 代谢组学不仅在上述影响人类健康的重大疾病中有广泛的应用,目前还应用于泌尿系统疾病[23]、神经系统疾病[24]、高血压[25]、先天性代谢缺陷[26]等疾病的研究和诊断。这些研究均表明代谢组学是疾病研究和诊断的有力工具,它的应用为疾病研究和诊断开辟了新的领域。 2.3代谢组学在其它领域的应用 代谢组学凭借其独特的优势和应用潜力不仅在药学、毒理学、疾病 代谢组学技术及其应用的研究进展 苏州大学体育学院岳秀飞史晓伟 [摘要]代谢组学是一种研究生物体内所有小分子代谢物的系统生物学方法,它利用气相色谱质谱联用(GC-MS),液相色谱质谱 联用(LC-MS),核磁共振波谱(NMR)等先进的仪器分析技术来检测各种生物样品中代谢物组的信息并结合模式识别等分析计算方 法对所得代谢组学数据进行处理,最后综合解析这些数据以用于评价药物疗效、检测药物毒性、诊断疾病、分析疾病状态。代谢组学 自提出以来发展十分迅速,目前已在药学、毒理学、疾病研究和诊断等领域得到广泛应用。本文主要对代谢组学的概念,研究方法及 其应用进行综述,最后就代谢组学的发展趋势作一讨论。 [关键词]代谢组代谢组学核磁共振气相色谱质谱联用液相色谱质谱联用 95 ——

代谢组学研究技术进展

·综述· 代谢组学研究技术进展 胡正青a,林夏珍a,郭明b*(浙江林学院,a. 园林学院;b. 理学院化学系,浙江临安 311300) 摘要:目的介绍代谢组学研究技术的最新进展。方法综合国内外文献报道,介绍当前代谢组学研究中样品制备、仪器分析技术、数据处理方法和结果分析的最新研究概况。结果代谢组学研究技术取得了一定进步,拓宽了代谢组学的应用范围。结论自动化、标准化、整合化和完整化将是代谢组学研究技术的发展方向。 关键词:代谢组学;研究进展;系统生物学;分析技术;综述 中图分类号:Q591 文献标志码:A 文章编号:1007-7693(2010)06-0485-06 Advances in Research Techniques of Metabonomics HU Zhengqing a, LIN Xiazhen a, GUO Ming b*(Zhejiang Forestry University, a.School of Landscape Architecture, b. Department of Chemistry, Lin’an 311300, China) ABSTRACT: OBJECTIVE To introduce the new advances in research techniques of metabonomics. METHODS Make a summary of both national and overseas papers about matabonomics, and introduce the latest development in sample preparation, instrument analytical techniques, data processing and results analysis. RESULTS Research techniques of metabonomics have made certain progress and extend applied fields of metabonomics. CONCLUSION Automation, standardization, integration of multi-disciplinary and completeness will be the orientation for the future development of metabonomic techniques. KEY WORDS: metabonomics; research evolution; systems biology; analytical technique; review 代谢组学是继基因组学、转录组学和蛋白质组学之后迅速发展起来的一门新兴学科,它以生物系统中的代谢产物(由于实际分析手段的局限性,目前主要针对相对分子质量1 000以下的小分子)为分析对象,以高通量、高灵敏度、高分辨率的现代仪器分析方法为手段,结合模式识别等化学计量学方法,分析生物体系受刺激或扰动后(如将某个特定的基因变异或环境变化后)其代谢产物的变化或其随时间的变化规律。英文文献中,早期的代谢组学研究使用了两个不同的术语:metabolomics和metabonomics。前者侧重以单个细胞作为研究对象,Fiehn等[1]将其定义为定性和定量分析单个细胞或单一类型细胞的代谢调控和代谢流中所有低分子量的代谢产物。后者一般以动物的体液和组织为研究对象,Nicholson等[2]将其定义为生物体对病理生理或基因修饰等刺激产生代谢物质动态应答的定量测定。随着代谢组学的研究发展,不管是在植物和微生物研究领域,还是在病理生理研究领域,这两个名词已经基本等同使用。目前国内的代谢组学研究小组达成共识,以metabonomics来表示“代谢组学”。 在代谢组学的研究过程中,代谢组学的一些相关概念也不断被提出来,目前已获得广泛认同的研究层次有:①代谢物靶标分析;②代谢轮廓(谱)分析;③代谢指纹分析;④代谢组学。严格地说,只有第4层次才是真正意义上的代谢组学研究,但是目前还没有发展出一种可以涵盖所有代谢物而不管分子大小和性质的代谢组学技术。 代谢组学相对于其他组学更能反映生物体的整体信息,这是因为代谢物处于生物系统生化活动调控的末端,反映的是已经发生了的生物学事件,基因表达和蛋白质的变化对系统产生的影响都可在代谢物水平上得到体现,所以从理论上来说,代谢组学分析所提供的信息更能够揭示生物体系生理和生化功能状态,对进行功能基因组的研究提供了极大便利。代谢组学与转录组学和蛋

代谢组学分析系统技术指标

代谢组学分析系统 1.工作条件: 1.1 电压:220V(±10%)单相,50Hz(±1)。 1.2 环境温度:19-22o C 1.3 相对湿度:<70% * 2.设备用途和基本组成 2.1 仪器用途:所提供仪器为高分辨率,高灵敏度、高通量的分析系统,配以 专业的数据分析处理软件构成代谢组学专用分析系统,从而快速 寻找标记物。 2.2 仪器组成 2.2.1 仪器由超效液相色谱-四极杆/二级碰撞室/飞行时间质谱组成的系统,和 专用代谢组学分析软件以及代谢物分析软件构成,具有先进的中医药代 谢组学研究分析功能。 * 2.2.2 质谱主机要求配置同一厂家生产的液相色谱仪,具有良好的兼容性。 * 2.2.3 具备准确质量测定功能 准确质量测定的内标必须有独立于实测样品的通道进入离子源,内标不得 干扰实际样品的数据结果,并且质量准度<2ppm。 2.2.4 真空系统 要求完全被保护的多级真空系统,具有自动断电保护功能,采用分子涡轮 泵。离子源和质谱间有隔断阀。便于源清洗和日常维护。 * 2.2.5 碰撞室具有两级碰撞功能。分为以下部分: 捕获富集单元:具有离子传输富集、碰撞室两种功能 传输单元:具有离子传输、碰撞室两种功能 * 2.2.6 检测器 检测器由单个微通道板离子计数检测,可检测正负离子和采集MS和 MS/MS的数据, TDC转换速率>4.0 GHz。 * 2.2.7 数据采集和处理系统 工作站用于仪器控制和采集, 1024MB RAM, 200GB硬盘,DVD-ROM,

刻录光盘驱动器,1.44MB 3.5英寸软驱。 软件基于Windows XP 操作系统的应用软件包括集成化的仪器控制、数据处理等软件,代谢组学分析软件以及代谢物分析软件等。 3 仪器的详细技术指标 3.1 液相色谱仪 * 液相色谱仪必须是能够耐超高压(1000bar)的超高效液相色谱仪(UPLC)。3.1.1 可编程二元梯度泵。 溶剂数量:4 流速范围:0.010 - 2mL/min,步进0.001mL/min, 流速精度:< 0.075% RSD,流速准确度:±1%, 泵耐压:0 - 15000psi(1000bar) 梯度设定范围:0 - 100% *系统延迟体积:< 120uL 3.1.2 二极管阵列检测器 波长范围:190-700nm. *测量范围:0.0001~4.0000AUFS *采样速率:40点/秒 流通池:500nl低扩散 3.1.3 自动进样器系统 样品数量:96孔板、384孔板、24x4ml瓶、48x2ml瓶 进样范围:0.1- 50 μL, “针内针”样品探针。 温度范围:4-40摄氏度 3.1.4 在线脱气系统 真空脱气:六通道在线脱气机 3.1.5 柱加热系统 控温范围:室温+5---65摄氏度 3.1.6 专用色谱柱; * 1.7μ, 2.1 mm x 50 mm Column

相关主题