搜档网
当前位置:搜档网 › 通用传感器接口

通用传感器接口

通用传感器接口
通用传感器接口

传感器接口及接口标准

传感器接口 一简介 接口是对象之间交互作用的通道,协议是双方通信方式的约定,也属于接口定义的范畴。从功能层次上看,在传感器网络中主要存在两大类接口,这两类接口分别承担着不同的任务。 一类接口是将物理层次的传感器执行器连接到网络层,定义为传感器接口标准,主要代表是IEEE 1451协议族。 另一类接口是工作在网络层次上,甚至在全网范围内(如在Internet 上)处理传感器信息,为特定的应用所服务,定义为传感器WEB网络框架协议,主要代表如OGC SWE。 二:目前面临的问题 接口种类繁多,给传感器网络化规模应用带来不便。 三:已有的一些标准 1:IEEE制定的1451协议簇 国际电子电气工程师协会(IEEE)面对目前传感器市场上总线接口互不兼容,互操作性差难以统一的难题,专门建立专家组制定IEEE1451协议族,以此来解决传感器接口的标准化问题。IEEE1451协议族共分六个协议标准,这个标准提供了将变送器(传感器和执行器)连接到一个数字系统,尤其是到网络的方式,简化了现场变送器到微处理器以及网络的连接,提供一个适合各种网络的工业标准接口,有效的实现现场各种不同的智能变送器的网络互连、即插即用,最终实现各个传感器或执行器厂家的产品相互兼容,降低了构建网络化测控系统的总成本。 传感网底层接口标准要能够实现以下功能: 1.即插即用(Plug and play capability) 2.可寻址(Addressable ) 3.同步(Synchronization) 4.通讯接口(Communication interface) 5.传感器接口通道(Communications Channels) 6.控制接口通道(Status identification) IEEE1451协议族具体定义如下: ——通用功能、通信协议和变送器电子数据表(Transducer Electronic DataSheets , TEDS)格式。 ——网络应用处理器(NCAP)信息模型。 ——变送器-微处理器通信协议和TEDS格式。 ——分布式多点系统数字通信和TEDS格式。 ——混合模式通信协议和TEDS格式。定义采用反转极性的混合模式通信在相同的两条线路上以数字方式传送TEDS数据,发送模拟变送器信号。 ——无线传感器通信与TEDS格式。 ——用于本质安全和非本质安全应用的高速、基于CANopen协议的变送器网络接口。

压力传感器工作原理

电阻应变式压力传感器工作原理细解 2011-10-14 15:37元器件交易网 字号: 中心议题: 电阻应变式压力传感器工作原理 微压力传感器接口电路设计 微压力传感器接口系统的软件设计 微压力传感器接口电路测试与结果分析 解决方案: 电桥放大电路设计 AD7715接口电路设计 单片机接口电路设计 本文采用惠斯通电桥滤出微压力传感器输出的模拟变量,然后用INA118放大器将此信号放大,用7715A/D 进行模数转换,将转换完成的数字量经单片机处理,最后由LCD 将其显示,采用LM334 做的精密5 V 恒流源为电桥电路供电,完成了微压力传感器接口电路设计,既能保证检测的实时性,也能提高测量精度。 微压力传感器信号是控制器的前端,它在测试或控制系统中处于首位,对微压力传感器获取的信号能否进行准确地提取、处理是衡量一个系统可靠性的关键因素。后续接口电路主要指信号调节和转换电路,即能把传感元件输出的电信号转换为便于显示、记录、处理和控制的有用电信号的电路。由于用集成电路工艺制造出的压力传感器往往存在:零点输出和零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。本文的研究工作,主要集中在以下几个方面:

(1)介绍微压力传感器接口电路总体方案设计、系统的组成和工作原理。 (2)系统的硬件设计,介绍主要硬件的选型及接口电路,包括A/D 转换电路、单片机接口电路、1602显示电路。 (3)对系统采用的软件设计进行研究,并简要阐述主要流程图,包括主程序、A/D 转换程序、1602显示程序。 1 电阻应变式压力传感器工作原理 电阻应变式压力传感器是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。把4 个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。 当有压力时各桥臂的电阻状态都将改变,电桥的电压输出会有变化。 式中:Uo 为输出电压,Ui 为输入电压。 当输入电压一定且ΔRi <

三、电阻式传感器接口电路的设计

实验三 电阻式传感器的仿真与接口电路设计 首先介绍一款应变片传感器YZC-1B称重传感器。它的主要参数见下表。 额定载荷: 3,5,8,10,15,20,25,30, 35,40,45kg 绝缘电阻:≥5000MΩ 工作温度范围:-40 ~+80℃ 灵敏度:2.0±0.002mv/v 安全过载:150%F.S 综合误差:±0.02%F.S 极限过载:200%F.S 蠕变:±0.02%F.S 推荐激励电压:10~12V(DC) 零点平衡:±1%F.S 最大激励电压:15V 零点温度影响:±0.02%F.S/10℃ 密封等级:IP67 输出温度影响:±0.02%F.S/10℃ 材质:铝合金 输入电阻:405±5Ω 电缆:线长:0.3~3m;直径:¢4mm 输出电阻:350±3Ω 输入+:红;输入-:黑; 输出+:绿;输出-:白 这种传感器主要的应用领域是电子计价秤、计重秤等小台面电子秤。它的外观是这样的。这个实验里首先对这样一款传感器进行仿真,然后设计一个接口电路,使其具有测量压力(重量)的功能。

电阻应变片的工作原理基于电阻应变效应,即在导体产生机械变形时,它的 电阻值相应发生变化。应变片是由金属导体或半导体制成的电阻体,其阻值随着 压力的变化而变化。对于金属导体,导体变化率△R/R的表达式为: △ R/R ≈(1+2μ)ε 式中μ为材料的泊松系数;ε为应变量。通常把单位应变所引起电阻值相对 变化称作电阻丝的灵敏系数。对于金属导体,其表达式为: K =△R/R=(1+2μ) 所以△R/R=K ε。 在外力作用下,应变片产生变化,同时应变片电阻也发生相应变化。当测得 阻值变化为ΔR时,可得到应变值ε,根据应力与应变关系,得到应力值为: σ=Eε 式中:σ为应力;ε为应变量(为轴向应变);E为材料的弹性模量(kg/mm2)。又知,重力G与应力σ的关系为G=㎎=σs 。式中:G为重力;S为应 变片截面积。 根据以上各式可得到:ΔR/R=K mg/ES。由此便得出应变片电阻值变化与物 体质量的关系,即ΔR=RK 0mg/ ES。根据应变片的材料,取K =2,E=16300kg∕ mm2, s=100mm2,R=350Ω,g=9.8m∕s,ΔR=[(2×9.8×348)∕(16300×100)]m。 最终确定电阻变化与质量的对应关系为: ΔR =4.185×10-3m 下面用multisim10建立一个包含有传感器和放大电路在内的电路原理图,来进行输入输出的仿真。原理图如下。

通常传感器接口电路

Universal Transducer Interface(UTI) 通用传感器接口电路 特性 *为各种型号的传感器提供接口电路: 容性器件铂电阻热敏电阻 电阻电桥电位差计 *测量多种传感器件 *单电源供电2.9V-5.5V,工作电流低于2.5mA *分辨率可达14bits,线性可达13bits *能够连续自动校准偏移量和增益误差 *兼容微处理器输出信号 *三态输出 *典型测量时间是10ms或100ms *2路或3路或者4路测量方式 *所有传感器元件支持交流激励电压信号 *能够抑制50HZ~60HZ的交流干涉 *掉电模式 *DIL工作温度范围-40℃~85℃ *裸片工作温度范围是-40℃~180℃ 应用 自动化领域工业领域和医疗领域 *容性标准感测 *位置感测 *角度感测 *精确温度测量(铂电阻,负温度系数) *用于压力,力的测量的阻桥传感器 1. 概况描述 通用传感器接口电路(UTI) 通用传感器接口电路对于基于周期调制的低频测量应用是一个完整的模拟前端。传感器元件可以直接与UTI连接而不需要额外的电路,只需要一个与传感器相同型号的元件作为参考。通用传感器接口电路输出一个微控制器可兼容的周期调制信号。通用传感器接口电路可以为以下传感器提供接口: *容性传感器0 - 2 pF, 0 -12 pF,范围最大为300 pF *铂电阻Pt100, Pt1000 *热敏电阻1KΩ– 25KΩ

*电阻桥250 Ω - 10 kΩ最大不平衡为+/- 4% or +/- 0.25% *电位计1kΩ- 50kΩ *结合以上各条 通用传感器接口电路对于基于智能微控制器的系统来说是理想的应用。所有的数据都以微控制器可兼容的信号输出,这样既减少了连接线的数量也减少了绝缘系统中耦合器的需求量。如果想了解关于绝缘通用传感器接口电路的应用,请参考我们网页支持中心中的相关应用注意事项。此完整系统对于漂移误差和增益误差持续的自校准表现在采用三信号技术。低频干扰被高级截波技术消除。而通过设置四位的二进制模式码则可以选择十六种操作模式。 原理框图 2.引脚说明 UTI可以采用16脚的塑料双列直插封装(DIP),也可以采用18脚的小外形封装(SOIC)。图一给出了这两种封装形式的外形图。引脚的功能在表一中列出。 图一

压力传感器工作原理

电阻应变式压力传感器工作原理细解 2011—10-14 15:37元器件交易网 字号: 中心议题: 电阻应变式压力传感器工作原理 微压力传感器接口电路设计 微压力传感器接口系统得软件设计 微压力传感器接口电路测试与结果分析 解决方案: 电桥放大电路设计 AD7715接口电路设计 单片机接口电路设计 本文采用惠斯通电桥滤出微压力传感器输出得模拟变量,然后用INA118放大器将此信号放大,用7715A/D 进行模数转换,将转换完成得数字量经单片机处理,最后由LCD 将其显示,采用LM334 做得精密5 V 恒流源为电桥电路供电,完成了微压力传感器接口电路设计,既能保证检测得实时性,也能提高测量精度。 微压力传感器信号就是控制器得前端,它在测试或控制系统中处于首位,对微压力传感器获取得信号能否进行准确地提取、处理就是衡量一个系统可靠性得关键因素.后续接口电路主要指信号调节与转换电路,即能把传感元件输出得电信号转换为便于显示、记录、处理与控制得有用电信号得电路。由于用集成电路工艺制造出得压力传感器往往存在:零点输出与零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。本文得研究工作,主要集中在以下几个方面: (1)介绍微压力传感器接口电路总体方案设计、系统得组成与工作原理。

(2)系统得硬件设计,介绍主要硬件得选型及接口电路,包括A/D 转换电路、单片机接口电路、1602显示电路。 (3)对系统采用得软件设计进行研究,并简要阐述主要流程图,包括主程序、A/D转换程序、1602显示程序。 1 电阻应变式压力传感器工作原理 电阻应变式压力传感器就是由电阻应变片组成得测量电路与弹性敏感元件组合起来得传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面得电阻应变片也会产生应变,表现为电阻值得变化。这样弹性体得变形转化为电阻应变片阻值得变化。把4 个电阻应变片按照桥路方式连接,两输入端施加一定得电压值,两输出端输出得共模电压随着桥路上电阻阻值得变化增加或者减小。一般这种变化得对应关系具有近似线性得关系。找到压力变化与输出共模电压变化得对应关系,就可以通过测量共模电压得到压力值。 当有压力时各桥臂得电阻状态都将改变,电桥得电压输出会有变化. 式中:Uo为输出电压,Ui 为输入电压。 当输入电压一定且ΔRi 〈

MIPI联盟公开其传感器接口规范MIPI I3C

MIPI联盟公开其传感器接口规范MIPI I3C 接口规范的公开有助于智能手机、可穿戴设备、物联网设备、增强现实/虚拟现实和汽车系统实现更多设计创新 致力于为移动和受移动影响行业制定接口规格的国际组织MIPI?联盟今日宣布公开其传感器接口规范MIPI I3C。 即日起,包括目前非MIPI联盟成员在内的所有公司均可使用MIPI I3C v1.0规范,因此各公司可评估将该规范整合到其传感器集成计划和设计应用中的可行性。 MIPI联盟主席Joel Huloux表示:“MIPI I3C对在过去35年里得到广泛应用的I2C技术进行了升级并受到欢迎。接口规范的公开为激发创新创造了机会,还为移动以外的行业提供助力。MIPI I3C也为MIPI成员公司带来益处,因为它支持更广泛的应用和互操作性,有助于加强生态系统并提供更丰富的开发环境。” MIPI联盟最近还针对该规范发布了一系列常见问题解答(FAQ),为考虑在其设计中使用MIPI I3C的公司提供支持。常见问题解答由MIPI联盟传感器工作小组(Sensor Working Group)开发,提供MIPI I3C技术介绍以及实现和互操作性测试方面的指导。 2017年1月,MIPI联盟首次面向MIPI联盟成员社区发布了MIPI I3C,它简化和推进了之前广泛应用于传感器行业的I2C和SPI等接口技术。这一接口规范统一做法为在一个设备中经济有效地整合来自多个供应商的多种传感器提供更大便利,满足了使用多种传感器的智能手机、可穿戴设备、物联网(IoT)设备、增强现实/虚拟现实产品和汽车系统的需求。MIPI联盟还将利用新规范扩大MIPI I3C生态系统,该新规范用于实现将于2018年发布的MIPI I3C。这些规范包括:MIPI I3C主机控制器接口(HCI)、MIPI Touch、MIPI Debug for I3C、MIPI DisCo for I3C和MIPI CSI-2 v2.1,其中MIPI I3C HCI是一个即将发布的规范,其允许单个软件驱动程序支持来自不同供应商的MIPI I3C硬件。 MIPI联盟传感器工作小组主席Ken Foust指出:“自发布以来,MIPI I3C已成为MIPI联盟内部开发活动的跳板,扩展了用例并进一步提高了其对开发人员社区的价值。我们希望就

传感器接口电路的抗干扰设计

传感器接口电路的抗干扰设计 陈海燕 陈 荡 蚌埠日月仪器研究所 安徽省蚌埠市 233010 陈 宏 蚌埠高等专科学校 安徽省蚌埠市 233000 【摘要】提出了传感器小信号处理时存在影响精度的来自三方面的干扰问题:局部产生;子系统内部的耦合;外部产生,并讨论了设计电路时相应的解决办法。 关键词:低电平测量 干扰 抑制 1 引言 凡是传感器接口电路都存在小信号处理问题。因为传感器的输出一般都是小信号,将其精确地放大到所需要的信号(如0~5V),并能达到所需要的技术指标,就必须注意到电路图上未表示出来的某些问题,即抗干扰问题。在进一步讨论电路元件的选择、电路和系统应用之前,有必要进行讨论。 干扰可粗略地分为3个方面: (1)局部产生(即不需要的热电偶); (2)子系统内部的耦合(即地线的路径问题); (3)外部产生(即电源频率的干扰)。 2 局部产生误差的消除 在低电平测量中,对于在信号路径中所用的(或构成的)材料必须给予严格的注意,在简单的电路中遇到的焊锡、导线以及接线柱等都可能产生实际的热电势。由于它们经常是成对出现,尽量使这些成对的热电偶保持在相同的温度下是很有效的措施,为此一般用热屏蔽、散热器、沿等温线排列或者将大功率电路和小功率电路分开等办法,其目的是使热梯度减到最小,两个不同厂家生产的标准导线(如镍铬一康铜线)的接点可能产生0.2 V/℃的温漂,这相当于高精度低漂移的运放管(OP-27CP)的温漂,而为斩波放大器(7650CPA)温漂的两倍。虽然采用插座开关、接插件、继电器等形式能使更换电器元件或组件方便一些,但缺点是可能产生接触电阻、热电势或两者兼而有之,其代价是增加低电平分辨力的不稳定性,也就是说它比直接连接系统的分辨力要差,精度要低,噪声增加,可靠性降低,因此在低电平放大中尽可能地不使用开关、接插件是减少故障,提高精度的重要措施。 在微伏信号放大电路中焊锡也可能成为低电平的故障,因为在焊锡的焊点上也产生热电势,在微伏电平的输入电路中应采用特殊的低温焊锡,比如kester1544型焊锡,甚至还有这样的例子,必须在一条线路中仔细地切断一处,再用焊锡接起来用于补偿另一条线路中搭接处或焊锡点所产生的热电势。 3 接地问题及其处理办法 在低电平放大电路中合理“接地”是减少“地”噪声干扰的重要措施,必须予以特别注意。 当使用单电源供给多只传感器时,其连接方法应如图1所示那样连接,以尽量减少接地电阻引进的干扰,若供电电源的压降必须减到最小,则电源“高”端导线也可按相似的方法接线。 图1  包括有多个电源和多个传感器的系统则需要考虑得更多一些,通常不管电源是谁供给,将地线汇集到公共点,然后和系统的公共端接在一起,如图2,所有电源1的负载都回到电源1公共端,所有的电源2负载都回到电源2的公共端,最后用一条粗导线将公共端连在一起。在多电源系统中,可能需要进行判断性试验,确定地线接法,以达到最佳的解决方案。 39 第4期 使用与维护 收稿日期:1999-01-10

通用传感器接口

通用传感器接口(UTI)的 特点 2提供多种类型的传感元件接口: 电容器,铂电阻,热敏电阻, 电阻电桥和电位器 2多个传感器元件测量 2单2.9 V - 5.5 V电源供电,电流消耗低于2.5毫安 2分辨率和线性度高达14位和13位 2连续自动偏移和增益校准 2微控制器兼容的输出信号 2三态输出 2典型测量时间为10毫秒或100毫秒 22/3/4-wire测量可用于几乎所有的测量 2交流励磁所有的传感器元件的电压信号 250/60 Hz干扰的抑制 2掉电模式 2工作温度范围为双列直插式和苏-40℃至85℃ 2经营裸模:-40°C至180°C的温度范围 应用 汽车,工业和医疗应用 2电容式液位传感 2位置传感 2角度遥感 2精确的温度测量(白金,负温度系数) 2桥压力传感器,力等 1。一般说明 通用传感器接口(UTI)是一个完整的用于低频测量的模拟前端 应用程序,根据一个时期调制振荡器。传感元件,可直接连接的尿路感染而不需要额外的电子。作为同类传感器只有一个单一的参考元素,是 必需的。尿路感染微控制器兼容的内调制信号输出。尿路感染可提供 接口为: 2电容式传感器0 - 2助攻,0 -12 pF的可变范围为300 pF的 2铂电阻PT100,PT1000 2热敏电阻器1千瓦- 25千瓦 2电阻电桥250瓦- 10千瓦,最大不平衡/ - 4%或+ / - 0.25% 2电位器1千瓦- 50千瓦 上述项目组合 尿路感染是基于微控制器的智能系统的理想选择。所有的数据是目前单一微控制器兼容的输出,从而减少连接导线的数量和减少的数量 耦合器所需的绝缘系统。对于有关绝缘UTI的应用程序的信息,请参阅在我们网站的支持店相关的应用笔记。连续自动校准偏移和增益 完整的系统是通过使用三个信号的技术。低频干扰 除去先进的斩波技术。16个操作模式的选择发生 设置四个模式位。

智能传感器的CAN总线接口设计

智能传感器的CAN总线接口设计 智能传感器的CAN总线接口设计 引言 测控系统离不开传感器。由于各种传感器的工作原理不同,其最终输出的电量形式各不相同。即使同一类传感器,其灵敏度、测量范围不同,相同电信号代表的物理量也不尽相同。因此,传统的测控系统,必须对系统中的每一个传感器进行配置,传感器类型、灵敏度、测量范围等的细微改变都将导致系统(主要是软件和部分硬件)的重新设置。若要增/减传感器,以改变测控系统的规模,则需对整个系统(软件、硬件及布线)。进行重新配置。这无疑极大地限制了测控系统的灵活性,制约了测控系统的扩展性。CAN的通信硬件接口简单,通信线少,通信介质可以为双绞线、同轴电缆或者光缆。将测控系统配置为CAN总线结构,将目前广泛应用的各种模拟传感器,配以CAN总线接口,使之成为CAN总线上的一个智能节点,即易于实现传感器的即插即用,也提高了测控系统的灵活性和可扩展性。 1传感器/CAN智能接口系统构成 传感器/CAN智能接口的作用主要有两点:一是控制传感器的信号调理,将传感器的输出模拟信号转换为数字量,并进行相应的处理,形成可发送的CAN报文信息;二是控制CAN驱动器,收/发CAN总线上的报文信息,并执行相应的智能控制。智能接口系统构成。

针对大多数模拟传感器输出信号较弱的特点,接口首先对传感器信号进行一级放大和滤波的预处理,预处理后的传感器信号幅度在200mV左右,单端输出。此后对该信号的处理完全由基于SOC技术的混合信号微处理器C8051F041自动完成,如信号的程控放大、信号的零点校准、信号的A/D变换、信号的数字滤波以及CAN报文的形成和收发控制等;C8051F041是该接口的核心,它不仅完成传感器信号到CAN报文的转换;更通过对传感器信号调理的智能控制和对CAN应用层的编程,实现传感器的即插即用。 2传感器信号调理 考虑到绝大多数传感器信号较弱,且包含大量的噪声信号,因此需首先对传感器输出的模拟信号进行必要的调理,信号调理由信号预处理电路结合S0c中的模拟外设实现,。在此,信号调理主要对传感器信号进行了必要的滤波、放大和零点校准。 2.1传感器信号的滤波处理 考虑到日益恶劣的电磁干扰环境,对传感器信号的滤波分两级实现:终级为利用SoC中的高速MCU对采集的信号进行数字滤波(不在此讨论);初级则是由信号预处理电路中R1、R2、C1、C2、C3,组成抗射频干扰滤波器来实现,。当不考虑C3时,R1、C1和R2、C2就构成了传感器两输出端至仪用放大器两输入端之间的两低通滤波器,时间常数t1=R1·C1;t2=R2·C2。由于无论是传感器至AD623之间的自然连线等效形成的t1和t2,还是人为设计的低通滤波器的t1和

电感传感器的接口电路设计

电感传感器的接口电路设计 摘要:位移测量具有广泛应用,电感式传感器以其结构简单可靠、输出功率大、线性好、抗干扰和稳定性好、价格低廉等特点获得了大量的应用。针对目前电感式位移传感器的应用现状,在对电感式直线位移传感器深入分析的基础上,本文设计了一种电感式位移传感器接口电路。 该电路采用电感传感器把被测位移量转变为微弱电信号,经前置交流放大、相敏整流,直流放大,A/D转换等电路处理后,送入单片机进行综合运算处理后输出,并通过液晶显示结果,可以适应不同量程和分辨率的信号调理要求。文中介绍了整体电路的设计和单片机系统的硬件及软件流程。设计过程中用Protel99 SE对电路原理图进行了绘制,选用了单片机的开发工具Keil C51μvision2对软件设计中的程序进行编写、编译、模拟仿真,电路正常,完成了课题要求的电感传感器对位移测量并显示结果。 关键词:位移测量;电感式传感器;单片机;液晶显示

The Design of the Inductive Sensor Interface Circuit Abstract: the measurement of diaspacement is very important in engineering. Inductive transducers are widely used due to their simple structures,high output capacities,good linearity,good disturbance resistance,good stability and low prices.Based on thoroughly analysis of linear inductive displacement transducers,a inductive displacement transducer interface circuit is designed in this thesis. This metering circuit uses the inductive transceiver to transform that the displacement offset into the weak electrical signal, after the pre- AC amplification, the phase-sensitive rectifier,the DC Larger and the A / D conversion circuit processing, output after processing in the monolithic integrated circuit and display the results through the LCD. It can adapt to different range and resolution of the signal conditioning requirements. In the process of designing, Protel99SE is used to plot schematic diagram, Keil C51μvision2and the development kit of MCU is used to compile, translate and make simulation about the assemble program. The circuit is in gear and it basically can accomplish the task of measure of the displacement offset through the inductive sensor and dispiay the result. Keywords: the measurement of displacement;the inductive sensor;MCU;LCD

传感器接口电路的设计

传感器接口电路的设计 一,温度传感器 1,关于热敏电阻: 我们选用的是负温度系数热敏电阻,型号为:NTC-MF53AT,额定零功率电阻值即25度时5K,精度:5%,B值:3470。随温度上升电阻呈指数关系减小。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) ① RT :在温度T (K )时的NTC 热敏电阻阻值。 RN :在额定温度TN (K )时的NTC 热敏电阻阻值。 T :规定温度(K )。 TN:额定温度(K) B :NT C 热敏电阻的材料常数,又叫热敏指数。(*它是一个 描述热敏电阻材料物理特性的参数,也是热灵敏度指标, B值越大,表示热敏电阻器的灵敏度越高。*)exp:以自然数e 为底的指数(e = 2.71828 …) 我们可看出,式①中其他变量已基本确定(在实际工作时,B值并非一个常数,而是随温度的升高略有增加),RT和T直接存在一对一的关系,我们可以将温度的测量转换为电阻阻值的测量。 2,测量电路及分析:

Rr为电位器 RT为温敏电阻 上方两电阻均为10K V o=(0.5-RT/(Rr+RT))V f ② 3,实验过程 A,测量室温时RT=8.2K B,连接电路,如图3,输入4V电压,V o连上万用表。 C,调节Rr,使V o=0,此时Rr=RT=8.2K D,用电烙铁靠近温敏电阻,观察V o的值 E,最后拆开电路,再次测量温敏电阻的值为2.3K 4,实验结果 我们发现,当电烙铁靠近温敏电阻时,电压增大,我们可知,温度升高时,电阻减小,电压由0增大。所以,电压随温度的变化而变化。将每个电压带人②式,即可得到RT,再将RT带入①式即可测出大概的温度。 二,光敏二极管 1,关于光敏二极管 光敏二极管是将光信号变成电信号的半导体器件。和普通二极管相比,它的核心部分也是一个PN结,在结构上不同,为了便于接

plc与传感器接线方法

PLC与传感器的接线方法 一、概述 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二、输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE (source Current 灌电流)。 2、术语的解释

SINK漏型 SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。 国内对这两种方式的说法有各种表达: 2.1 根据TI的定义,sink Current 为拉电流,source Current为灌电流 2.2 由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。 2.3 SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 2.4 SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。 2.5 SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。 这种表述的笔者接触的最多,也是最容易引起混淆的说法。 接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。 以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。

传感器接口

1-wire温度传感器LTM8877接口 1-wire的原理及工作过程: 1-wire总线仅用一根数据线与外围设备进行信息的交互,工作电源完全从总线上获取,不需要单独的电源支持,允许直接插入热/有源设备;宽广的工作范围(2.8V~5.25V,-40~+85);每个器件都有通过工厂光刻的64位ROM ID,是唯一的识别,它存储在只读的ROM中。通过唯一的64位器件序列号和网络操作协议,1-wire存储器允许挂接在同一条1-wire总线上,并可独立工作,主控制器通过每个器件的唯一的ROM ID来识别与之通信的从设备。 ROM ID由8位校验码,48位序列号和8位家族码组成,家族码标示了此1-wire设备的类型,序列号标示此设备的ID,校验码用于保证通信的可靠性。 1-wire设备在工作时不能主动发送数据,只有在主控器对其进行命令指示时才会响应。通常的1-wire设备都有两套命令,一套命令操作设备内部的ROM,包括读,匹配,搜索等命令,但不包括写命令。ROM中的内容由厂家写入,用户不得更改,通信时,总线控制器先发出一个“复位”信号以使总线同步,然后选择受控制器件进行随后的通信。既可以通过选择一个特定的受控器件(利用该设备的ROM ID进行选择)或者通过半搜索法找到总线上的下一个受控件来实现,也可以选择所有的受控器件,一旦一个特定的器件被选中,那么在总线控制器发出下一次“复位”信号之前,所有的其他器件都被挂起而忽略随后的通信。如果1-wire从设备与主控制器尚未建立连接,则不能进行数据的传输;一旦成功建立,1-wire从设备将数据线置为低电平,以此通知主控制器已经建立了连接,等待接收命令,这个脉冲称为在线脉冲。主控制器也可以通过发送“复位”信号使数据线变为低电平。当从设备接收到“复位”信号时,通过检测数据线的电平状态,可在数据线变为高电平后立即发出一个在线脉冲。主设备和从设备之间的通信是半双工的双向通信。 小结一下,所有的1-wire通信器件所使用的不同的API有着共同的特性,这反映出源于协议的信息交换的原理,下面通过不同API功能进行分类:大多数的1-wire器件具有存储器,尽管存储器的输入输出功能并不适用于所有器件,但我们还是把它们分为一个通用的API集。 (1)会话功能 分时使用总线。当多项操作在同一器件上运行而不能被打断时,需要

汽车ESP传感器介绍及其接口技术分析

一、引言 ESP(Electronic Stability Program,电子稳定程序)是汽车电控的一个标志性发明。不同的研发机构对这一系统的命名不尽相同,如博世(BOSCH)公司早期称为汽车动力学控制(VDC),现在博世、梅赛德—奔驰公司称为ESP;丰田公司称为汽车稳定性控制系统(VSC)、汽车稳定性辅助系统(VSA)或者汽车电子稳定控制系统(ESC);宝马公司称为动力学稳定控制系统(DSC)。尽管名称不尽相同,但都是在传统的汽车动力学控制系统,如ABS和TCS的基础上增加一个横向稳定控制器,通过控制横向和纵向力的分布和幅度,以便控制任何路况下汽车的动力学运动模式,从而能够在各种工况下提高汽车的动力性能,如制动、滑移、驱动等。ESP在国外已经批量生产,在国内尚处于研究阶段,要达到产业化的程度,还有大量的工作要做。 图1所示为汽车ESP的构成示意图,其电子部件主要包括电子控制单元(ECU)、方向盘传感器、纵向加速度传感器、横向加速度传感器、横摆角速度传感器、轮速传感器等。ESP作为保证行车安全的一个重要电控系统,其各个传感器的正常工作是进行有效控制的基础。本文介绍了ESP常用传感器的特点,设计了传感器硬件接口和软件接口,并在实车测试中得到验证。 二、ESP常用传感器介绍

如图1、图2所示,ESP常用的传感器如下。 1.方向盘转角传感器 ESP通过计算方向盘转角的大小和转角变化速率来识别驾驶员的操作意图。方向盘转角传感器将方向盘转角转换为一个可以代表驾驶员期望的行驶方向的信号,方向盘转角一般是根据光电编码来确定的,安装在转向柱上的编码盘上包含了经过编码的转动方向、转角等信息。这一编码盘上的信息由接近式光电耦合器进行扫描。接通点火开关并且方向盘转角传感器转过一定角度后,处理器可以通过脉冲序列来确定当前的方向盘绝对转角。方向盘转角传感器与ECU的通讯一般通过CAN总线完成。 2.横摆角速度传感器 横摆角速度传感器检测汽车沿垂直轴的偏转,该偏转的大小代表汽车的稳定程度。如果偏转角速度达到一个阈值,说明汽车发生测滑或者甩尾的危险工况,则触发ESP控制。当车绕垂直方向轴线偏转时,传感器内的微音叉的振动平面发生变化,通过输出信号的变化计算横摆角速度。 3.纵向/横向加速度传感器 ESP中的加速度传感器有沿汽车前进方向的纵向加速度传感器和垂直于前进方向的横向加速度传感器,基本原理相同,只是成90°夹角安装。ESP一般使用微机械式加速度传感器,在传感器内部,一小片致密物质连接在一个可以移动的悬臂上,可以反映出汽车的纵向/横向加速度的大小,其输出在静态时为2.5V左右,正的加速度对应正的电压变化,负的加速度对应负的电压变化,每1.0~1.4V对应1g的加速度变化,具体参数因传感器不同而有所不同。 4.轮速传感器

称重传感器接线的步骤

(1)称重传感器接口是一个7孔的接头,与现场的称重传感器接线方法有六线制和四线制两种,此系统采用四线制连接,1和2、3和4依次短接,而且将现场的三个传感器并联起来使用。 (2)设定点接口通连接了一个5位码盘设定器,端子号6、5、4、3、2 分别对应千百十个和十分位,27、28、29、30是8421编码的寻址数据,用于终值设置。F701既可以通过面板按键组合设置终值也可以通过连接外部设定器设置,通过按键组合可切换,本系统即为后者,可对终值以100g为单位进行修正。 (3)控制信号输入/输出接口用以连接外部信号输入和控制信号输出,从PLC送来3个信号,分别为去皮重(端子号4)、皮重复位(端子号5)和数据保持(端子号14);每次称量前先去皮重,此时净重立即设置为零,到称量终值后数据保持,放料结束后再皮重复位,即再取消去皮操作,此时毛重和净重为同一数值,这样可保证每次称量的切片的净重量。 送到PLC有5个信号,分别为接近零(端子号6)、预置值(端子号7)、落差值(端子号9)、不足(端子号10)、过量(端子号11)、上限(端子号19)。实际参数设置如下:上限值为1200kg,下限值为0kg,接近零为10kg,预置值1和2均为30kg(F701支持三档投料,此系统只用两档,所以预置值2信号未用),落差值为1.7kg,过量和不足均为0.8kg,终值为1000kg。 在PLC程序中落差值这一信号有时也当作终值信号使用,因为重量到落差值时关闭控制门结束投料,时间上只存在阀门关闭用时的间隔,此值的大小就是关闭控制门后还没有落到料斗内的切片重量。实际使用中即为(码盘设定器设为1000.0时):重量在970kg(1000.0-30)前为快投料,在970kg 时转为慢投料,在998.3kg(1000.0-1.7)时关闭控制门,这1.7kg就是落差量,理论上此时料斗内的切片量恰为1000kg;在排料过程时重量到了10kg时再延时5s关闭排料门即能确保料已排净,可进行下一步操作。 (4)质量输出接口可以将每次称量的终值数,以4-20mA模拟信号的形式送出,此系统设置为0mA对应0kg,20mA对应1200kg。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商 城https://www.sodocs.net/doc/aa5993847.html,/

压力传感器接口电路

08新增内容 压力传感器的接口电路 利用应变式力传感器制作的智能压力测试系统结构如图1所示。该系统可测试和显示压力数值,精度达到6位有效数字。 图1 智能压力测试系统结构框图 1. 力传感器与单片机接口的硬件设计 智能压力测试系统由5个模块构成,它们是测量电路、差动输入模块、调理放大模块、A/D 转换模块、单片机和显示模块。 (1) 力的测量电路 如图2所示为应变片电桥测量原理电路图,由应变电阻R 1和另外3个电阻R 2、R 3、R 4构成桥路。当电桥平衡时(积电阻应变片未受力作用时),R 1=R 2=R 3=R 4=R ,此时电桥的输出V 0=0;当应变片受力后,R 1发生变化,使1324R R R R ?≠?,电桥输出00V ≠,并有 00144K R V V V R ε≈± ≈± (2) 差动输入模块和调理放大模块 在许多需要A/D 转换和数字采集的单片机系统中,很多情况下,传感器输出的模拟信号都很弱,必须通过一个模拟放大器对其进行一定倍数的放大,才能满足A/D 转换器对输入信号电平的要求。这种情况下,就必须选择一种符合要求的放大器。在这里选择如图3所示的电路,差动输入模块由LM324中的两个运算放大器A (V 1)和B (V 1)构成,该电路具有共模抑制比高和调节方便的特点,从差动放大器输出的信号送调理滤波电路进一步放大和整理,可以将微弱的压力信号放大到满足A/D 转换的要求。若用500g (生产厂家型号如此标注)量程的压力传感器,在空载时,可设定调理放大电路输出模拟量为0.0V ,若压力为500g ,输出模拟量为4.0V ,则平均每2.5g 对应1LSB 变化量,对应电压变化值为0.02mV . 图3 差动输入模块和调理放大模块电路 (3) A/D 转换模块 A/D 转换模块是将前级放大电路输出的模拟信号转换为数字信号,以便单片机处理。A/D 转换电路由ADC0809承担。 (4) 单片机和显示模块 单片机采用MCS-51系列的80C51,显示电路采用串行驱动,用74LS164直接驱动LED 数码管。

最新医用传感器大全

华科医用传感器选型目录7(版本号:20100624) 合肥华科电子技术研究所

快捷查找使用方法:按ctrl键,用鼠标点击你要找的传感器类型就可以快速地找到相应的介绍 压电式脉搏传感器压阻式脉搏传感器三点脉象传感器 红外脉搏传感器心音传感器数字心音传感器 心率传感器无线心率传感器蓝牙心率传感器 心电传感器USB体温传感器皮湿传感器 血压传感器皮肤接触传感器人体动作传感器 穴位传感器 .

1 脉搏传感器 1.1 压电式脉搏传感器系列 1.1.1HK-2000A脉搏传感器 采用高度集成化工艺,将力敏元件(PVDF压电膜)、灵敏度温度补偿元件、感温元件、信号调理电路集成在传感器内部。具有灵敏度高、抗干扰性能强、过载能力大、一致性好、性能稳定可靠、使用寿命长等特点。访系列脉搏传感器具有完善的信号调理功能,用户在使用时后级不需要再加滤波等电路。 HK-2000A型脉搏传感器输出同步于心脏搏动的脉冲信号,可以用于脉率数据的实时采集。 主要特点: 1、灵敏度高。 2、抗干扰性能强。 3、过载能力大。 4、一致性好,性能稳定可靠,使用寿命长。 技术指标: HK-2000A 电源电压:5-12VDC 压力量程:-50~+300mmHg 过载:100倍 输出高电平:大于VCC-1.5V 输出低电平:小于0.2V

图4 3.5标准耳机接口接口定义图 1.1.2HK-2000B脉搏传感器 采用高度集成化工艺,将力敏元件(PVDF压电膜)、灵敏度温度补偿元件、感温元件、信号调理电路集成在传感器内部。具有灵敏度高、抗干扰性能强、过载能力大、一致性好、性能稳定可靠、使用寿命长等特点。访系列脉搏传感器具有完善的信号调理功能,用户在使用时后级不需要再加滤波等电路。 HK-2000B型脉搏传感器输出完整的脉搏波电压信号,用于脉搏波分析系统,如中医脉象、心血管功能检测、妊高征检测等系统。 主要特点: 1、灵敏度高。 2、抗干扰性能强。 3、过载能力大。 4、一致性好,性能稳定可靠,使用寿命长。 技术指标: HK-2000B

传感器接口技术

传感器及其接口技术 概述 传感器技术是机电一体化的关键性技术。机电一体化系统或产品的柔性化、功能化和智能化都与传感器的品种多少、性能好环密切相关。 在机电一体化系统中有各种不同的物理量(如位移、压力、速度等)需要控制和监测,如果没有传感器对原始的各种参数进行精确而可靠的检测,那么对机电产品的各种控制部是无法实现的。因此能把各种不同的非电量转换成电量的传感器便成为机电一体化系统中不可缺少的组成部分。 传感器技术自身就是一门多学科、知识密集的应用技术。传感原理、传感材料及加上制造装配技术是传感器开发的三个重要方面。作为一个独立器件,传感器的发展正进入集成化智能化研究阶段。把传感器件与信号处理电路集成在一个芯片上,就形成了信息型传感器;若再把微处理器集成到信息型传感器的芯片上,就是所谓的智能型传感器。 传感器的定义 传感器:传感器是种以一定的精确度将被测量(如位移、力、加速度等)转换为与之有确定对应关系的、易于精确处理和测量的某种物理量(如电量)的测量部件或装置。 组成 组成:敏感元件、转换元件、电子线路等组成。 1敏感元件直接感受被测量、并以确定关系输出物理量。如弹性敏元件将力转换为位移或应变输出。 2 转换元件将敏感元件输出的非电物理量(如位移、应变、光强等)转换成电路基数(如电阻、电感、电容等)等。 3 基本转换电路将电路参数量转换成便于测量的电量,如电压、电流、频率等。 传感器的组成框图 实际的传感器,有的很简单,有的则较复杂。有些传感器(如热电偶)只有敏感元件,感受被测量时直接输出电动势。行些传感器由敏感元件和转换元件组成、无需基本转换

电路,如压电式加速度传感器。还有些传感器由敏感元件和基本转换电路组成,如电容式位移传感器。有些传感器,转换元件不只一个,要经过若干次转换才能输出电量。大多数传感器是开环系统.但也有个别的是带反馈的闭环系统。 传感器的特性 传感器比较常用的性能指标有以下几种 (1) 关于输入量的特性: 量程或测量范围 传感器预期要测量的被测量值,一般用传感器允许测量的上下极限值来表示,其中上限值也称为满量程FS。 过载能力 传感器允许承受的最大输入量(被测量) (2) 响应特性: ·静态响应特性 精度 表示测量结果与被测的“真值”的接近程度。一般用“极限误差”或极限误差与满量程的比值按百分数给出。 重复性 反映传感器在工作条件不变的情况下,重复地输入某一相同的输入值,其输出值的一致性,其意义与精度类似。 线性度 也称非线性,表示传感器输出与输入之间的关系曲线与选定的工作曲线的靠近程度,采用工作直线与实际工作曲线之间的最大偏差值与满量程输出之比来表示。 灵敏度 传感器输入增量与输出增量之比; 稳定性(温度漂移,时间零漂)

相关主题