搜档网
当前位置:搜档网 › 直流调速系统的调速原理

直流调速系统的调速原理

直流调速系统的调速原理
直流调速系统的调速原理

直流调速系统的调速原理

直流电动机具有良好的起、制动性能,宜于在广范围内平滑调速,所以由晶闸管—直流电动机(V —M)组成的直流调速系统是目前应用较普遍的一种电力传动自动化控制系统。它在理论上实践上都比较成熟,而且从闭环控制的角度看,它又是交流调速系统的基础[1,6]。

从生产机械要求控制的物理量来看,电力拖动自动控制系统有调速系统、位置随动系统(伺服系统)、张力控制系统、多电机同步控制系统等多种类型,各种系统往往都是通过控制转速来实现的,因此,调速系统是最基本的电力拖动控制系统。直流电动机的转速和其它参量的关系和用式(2—1)表示

Φ-=

e K IR

U n (2—1)

式中 n ——电动机转速;

U ——电枢供电电压; I ——电枢电流;

R ——电枢回路总电阻,单位为Ω e K ——由电机机构决定的电势系数。

在上式中, e K 是常数,电流I 是由负载决定的,因此,调节电动机的转速可以有三种方法:

(1)调节电枢供电电压U ; (2) 减弱励磁磁通Φ; (3) 改变电枢回路电阻R 。

对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式最好。改变电阻只能实现有级调速;减弱励磁磁通虽然能够平滑调速,但调速的范围不大,往往只是配合调压方案,在基速(额定转速)以上做小范围的弱磁升速。因此,自动控制的直流调速系统往往以改变电压调速为主。

双闭环调速的工作过程和原理

双闭环调速系统的工作过程和原理: 电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电流恒流加速启动。电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅值来改变。在电动机转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。对负载引起的转速波动,速度调节器输入端产生的偏差信号将随时通过速度调节器、电流调节器来修正触发器的移相电压,使整流桥输出的直流电压相应变化,从而校正和补偿电动机的转速偏差。另外电流调节器的小时间常数, 还能够对因电网波动引起的电动机电枢电流的变化进行快速调节,可以在电动机转速还未来得及发生改变时,迅速

使电流恢复到原来值,从而使速度更好地稳定于某一转速下运行。

双闭环直流调速系统的组成及其静特性

一、双闭环直流调速系统的组成

为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。两者之间实行嵌套连接,如图2—4所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。

转速、电流双闭环直流调速系统

其中:ASR-转速调节器 ACR-电流调节器 TG-测速发电机 TA-电流互感器

UPE-电力电子变换器 *Un -转速给定电压 Un-转速反馈电压 *

Ui -电流给定电压

Ui -电流反馈电压

二、 双闭环直流调速系统的静特性分析

双闭环直流调速系统的稳态结构框图

分析静特性的关键是掌握PI 调节器的稳态特征,一般使存在两种状况:饱和—输出达到限幅值,不饱和—输出未达到限幅值。当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和,换

句话说,饱和的 调节器暂时隔断了输入和输出的联系,相当于使该调节环开环。当调节器不饱和时,PI 的作用使输入偏差电压ΔU 在稳态时总为零。

实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。

双闭环直流调速系统的数学模型的建立

双闭环直流调速系统数学模型的建立涉及到可控硅触发器和整流器的相关内容,这里仅作简单介绍,具体的内容将在第三章内加以说明。全控式整流在稳态下,触发器控制电压Uct 与整流输出电压Ua0的关系为:

)cos(cos 220ct a KU AU AU U ==α

其中:A---整流器系数;2U ---整流器输入交流电压;α ---整流器触发角;

ct U ---触发器移项控制电压;K---触发器移项控制斜率;

整流与触发关系为余弦,工程中近似用线性环节代替触发与放大环节,放大系数为:K=ct a U U /0。

绘制双闭环直流调速系统的动态结构框图如下:

PI 调节器

PI 调节器的结构如下图所式

由图可得:

dt U U K dt U C R U R R U in in pi in in ex ??+=+=

τ111001

pi

K :PI 调节器比例部分的放大系数

τ:PI 调节器积分时间常数

PI 调节器的传递函数为:

s K w pi τ1

+

=

Ⅰ型系统与Ⅱ型系统的性能比较

许多控制系统的开环传递函数可表示为

()()

()

∏∏==++=

n

i j

r

m

j j s T s

s K s W 1

111τ

根据W(s)中积分环节个数的不同,将该控制系统称为0型、Ⅰ型、Ⅱ型……系统。自动控制理论证明,0型系统在稳态时是有差的,而Ⅲ型及Ⅲ型以上的系统很难稳定。因此,通常为了保证稳定性和一定的稳态精度,多用Ⅰ型、Ⅱ型系统,典型的Ⅰ型、Ⅱ型系统其开环传递函数为

)

1()(+=

Ts s K

s W (2)

)

1()

1()(2

++=

Ts s s K s W τ (3) 典型Ⅰ型系统在动态跟随性能上可做到超调小,但抗扰性能差;而典型Ⅱ型系统的超调量相对要大一些,抗扰性能却比较好。接下来可用一个实例来说明这个问题。设被控对象的传递函数如式(4):

)

12(1

)(+=

s s s W obj (4)

若欲将系统校正成Ⅰ型系统,则调节器仅仅是一个比例环节,若欲将系统校正成Ⅱ型系统,则调节器必须含有一个积分环节,并带有一个比例微分环节,以便消除被控对象的一个惯性环节,故调节器采用如式(5)的PI 调节器。仿真结果如图3所示。从图中可以清楚地看到Ⅰ型系统、Ⅱ型系统的差别。这种差别可以作为调节器选择的原则。

三相桥式整流

单相桥式整流

主控电路

键盘电路

滤波与量程转换电路

直流调速器的工作原理

直流调速器的工作原理 The manuscript was revised on the evening of 2021

直流调速器的工作原理 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给 直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 直流电机的调速方案一般有下列3种方式: 1、改变电枢电压;(最长用的一种方案) 2、改变激磁绕组电压; 3、改变电枢回路电阻。 其实就是可控硅调压电路,电机拖动课本上非常清楚了 直流调速分为三种:转子串电阻调速,调压调速,弱磁调速。 转子串电阻一般用于低精度调速场合,串入电阻后由于机械特性曲线变软,一般在倒拉反转型负载中使用 调压调速,机械特性曲线很硬,能够在保证了输出转矩不变的情况下,调整转速,很容易实现高精度调速 弱磁调速,由于弱磁后,电机转速升高,因此一般情况下配合调压调速,与之共同应用。缺点调速范围小且只能增速不能减速,控制不当易发生飞车问题。 直流调速器 直流调速器是一种电机调速装置,包括电机直流调速器,脉宽直流调速器,可控硅直流调速器等.一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。 直流调速器使用条件 ? 1.海拔高度不超过00米。(超过0米,额定输出值有所降低) 2.周围环境温度不高于℃不低于-10℃。

PWM直流调速系统设计解析

目录 前言 (1) 一、设计目的 (2) 二、设计要求 (2) 三、直流调速系统整体设计 (2) 四、系统参数选取 (7) 五、各部分设计 (8) 六、双闭环系统设计 (14) 七、系统仿真 (17) 八、设计总结 (18) 参考文献 (19)

前言 由于直流电机具有良好的起动、制动和调速性能,已广泛应用于工业、航天领域等各个方面。随着电力电子技术的发展,脉宽调制(PWM)调速技术已成为直流电机常用的调速方法,具有调速精度高、响应速度快、调速范围宽和功耗低等特点。而以H桥电路作为驱动器的功率驱动电路,可方便地实现直流电机的四象限运行,包括正转、正转制动、反转、反转制动,已广泛应用于现代直流电机伺服系统中。本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用SIMULINK对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,本文设计了一套实验用双闭环直流调速系统,详细介绍了系统主电路、反馈电路、触发电路及控制电路的具体实现。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。

一、设计目的 通过对一个实用控制系统的设计,综合运用科学理论知识,提高工程意识和实践技能,使学生获得控制技术工程的基本训练,培养学生理论联系实际、分析解决实际问题的初步应用能力。 二、设计要求 完成所选题目的分析与设计,进行系统总体方案的设计、论证和选择;系统单元主电路和控制电路的设计、元器件的选择和参数计算 三、直流调速系统整体设计 1、直流电机PWM调速控制原理 直流电动机转速公式为: n=(U-IR)/Kφ 其中U为电枢端电压,I为电枢电流,R为电枢电路总电阻,φ为每极磁通量,K为电动机结构参数。 直流电机转速控制可分为励磁控制法与电枢电压控制法。励磁控制法用得很少,大多数应用场合都使用电枢电压控制法。随着电力电子技术的进步,改变电枢电压可通过多种途径实现,其中脉冲宽度调制(PWM)便是常用的改变电枢电压的一种调速方法。其方法是通过改变电机电枢电压接通时间与通电周期的比值(即占空比)来调整直流电机的电枢电压U,从而控制电机速度。 PWM的核心部件是电压-脉宽变换器,其作用是根据控制指令信号对脉冲宽度进行调制,以便用宽度随指令变化的脉冲信号去控制大功率晶体管的导通时间,实现对电枢绕组两端电压的控制。在本次课程设计采用双闭环直流调速系统进行调速控制。 2、双闭环直流调速系统 A.双闭环调速系统的工作过程和原理:电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电

直流电机调速器的工作原理

一、什么是直流调速器? 直流调速器就是调节直流电动机速度的设备, 由于直流电动机具有低转速大力矩的特点,是交流电动机无法取代的, 因此调节直流电动机速度的设备—直流调速器,具有广阔的应用天地。 二、什么场合下要选择使用直流调速器? 下列场合需要使用直流调速器: 1.需要较宽的调速范围。 2. 需要较快的动态响应过程。 3. 加、减速时需要自动平滑的过渡过程。 4. 需要低速运转时力矩大。 5. 需要较好的挖土机特性,能将过载电流自动限止在设定电流上。 以上五点也是直流调速器的应用特点。 三、直流调速器应用: 直流调速器在数控机床、造纸印刷、纺织印染、光缆线缆设备、包装机械、电工机械、食品加工机械、橡胶机械、生物设备、印制电路板设备、实验设备、焊接切割、轻工机械、物流输送设备、机车车辆、医设备、通讯设备、雷达设备、卫星地面接受系统等行业广泛应用。 四、直流调速器工作原理简单介绍: 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 五、直流电机的调速方案一般有下列3种方式:1、改变电枢电压;2、改变激磁绕组电压;3、改变电枢回路电阻。 最常用的是调压调速系统,即1(改变电枢电压). 六、一种模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。

双闭环直流调速系统

题目:双闭环直流调速系统的设计与仿真 已知:直流电动机:P N=60KW,U N=220V,I N=305A,n N=1000r/min,λ=2,R a=0.08, R rec=0.1, T m=0.097s, T l=0.012s, T s=0.0017s, 电枢回路总电阻R=0.2Ω。设计要求:稳态无静差,σ ≤5%,带额定负载起动到额定转速的转速超调σn≤10%。(要求完 i 成系统各环节的原理图设计和参数计算)。 系统各环节的原理图设计和参数计算,包括主电路、调节器、电流转速反馈电路和必要的保护等,并进行必要的计算。按课程设计的格式要求撰写课程设计说明书。 设计内容与要求:1、分析双闭环系统的工作原理 2、改变调节器参数,分析对系统动态性能的影响 3、建立仿真模型

1.双闭环直流调速系统的原理及组成 对于正反转运行的调速系统,缩短起,制动过程的时间是提高生产率的重要因素。为此,在起动(或制动)过渡过程中,希望始终保持电流(电磁转矩)为允许的最大值,是调速系统以最大的加(减)速度运行。当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。实际上,由于主电路电感的作用,电流不可能突变,为了实现在允许条件下的最快起动,关键是要获得一段使 电流保持为最大值dmI的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,采用电流负反馈应该能够得到近似的恒流过程。 为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器。从闭环结构上看,电流环在里面,称做内环;转速环在外面,称做外环。这就形成了转速电流负反馈直流调速系统。为了获得良好的静动态性能,转速和电流两个调节器一般采用PI调节器。 2.双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压*nU由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三

#直流电机调速系统分析与设计

第一部分并励直流电动机的工作原理 并励直流电机的励磁绕组和电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组和电枢共用同一电源,从性能上讲和他励直流电动机相同。 导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 当电枢转了180°后,导体 cd转到 N极下,导体ab转到S极下时,由于直流电源供给的电流方向不变,仍从电刷 A流入,经导体cd 、ab 后,从电刷B流出。这时导体cd 受力方向变为从右向左,导体ab 受力方向是从左向右,产生的电磁转矩的方向仍为逆时针方向。 因此,电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由导体 ab和cd 流入,使线圈边只要处于N 极下,其中通过电流的方向总是由电刷A 流入的方向,而在S 极下时,总是从电刷 B流出的方向。这就保证了每个极下线圈边中的电流始终是一个方向,从而形成一种方向不变的转矩,使电动机能连续地旋转。这就是直流电动机的工作原理。 转速电流双闭环原理 转速、电流双闭环直流调速系统的组成,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。 从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。 这就形成了转速、电流双闭环调速系统。 限幅的作用: 转速调节器ASR的输出限幅电压U*im --电流给定电压的最大值,即限制了最大电流; τ电流调节器ACR的输出限幅电压Ucm --Uc的最大值,即限制了电力电子变换器的最大输出电压Udm。 第二部分 PID算法的基本原理 PID调节器各校正环节的作用 1、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节 器立即产生控制作用以减小偏差。 2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分 时间常数TI,TI越大,积分作用越弱,反之则越强。 3、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太 大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减 小调节时间。 下面对控制点所采用的PID控制算法进行说明。

推荐-直流vm双闭环直流不可逆调速系统设计 精品

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题 目: 直流V-M 双闭环不可逆调速系统设计 初始条件: 采用双闭环V —M 不可逆调速系统。电动机参数为:V U N 750=,kW P N 550=,A I a 780=,m in /375r n N =,r V Ce min/.92.1=,允许电流过载倍数为1.5,Ω=1.0R , 75=s K ,V U U U ctm im nm 12**===。采用三相桥式整流电路,电磁时间常数s T L 03.0=, s T m 084.0=,s T oi 002.0=,s T on 02.0=。 稳态无静差,电流超调量%5≤i σ,空载起动到额定转速时的转速超调量%10≤n σ。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1. 原理说明,原理图、系统动态结构图; 2. 说明系统起动过程,调节器设计; 3. 设计ACR 和ASR 的电路并计算参数。 4. 系统仿真 5. 按规范格式撰写设计报告(不少于5篇)打印 时间安排: 12 月 18日-21日 查阅资料 12月 22 日- 24日 方案设计 12月25 日- 26 日 馔写程设计报告 12月27日 提交报告,答辩 指导教师签名: 20XX 年 12月16日 系主任(或责任教师)签名: 年 月 日

摘要 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。直流V-M双闭环不可逆调速系统是性能很好、应用广的直流调速系统。根据晶闸管的特性,通过调节触发延迟角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图,然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速电流双闭环调速系统。先确定其结构形式和设计各部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算,然后采用Simulink对整个调速系统进行了仿真分析,最后画出了调速控制电路电气原理图。 关键词:双闭环,晶闸管,转速调节器,电流调节器,Simulink

德国西门子直流调速装置的工作原理

德国西门子直流调速装置的工作原理 直流调速器的工作原理 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 调速方案一般有下列3种方式 1、改变电枢电压;(最长用的一种方案) 2、改变激磁绕组电压; 3、改变电枢回路电阻。 直流调速分为三种:转子串电阻调速,调压调速,弱磁调速。 转子串电阻一般用于低精度调速场合,串入电阻后由于机械特性曲线变软,一般在倒拉反转型负载中使用 调压调速,机械特性曲线很硬,能够在保证了输出转矩不变的情况下,调整转速,很容易实现高精度调速 弱磁调速,由于弱磁后,电机转速升高,因此一般情况下配合调压调速,与之共同应用。缺点调速范围小且只能增速不能减速,控制不当易发生飞车问题。 直流调速器是一种电机调速装置,包括电机直流调速器,脉宽直流调速器,可控硅直流调速器等.一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。 直流电动机的工作原理图。 (1)构成: 磁场:图中 N和 S是一对静止的磁极,用以产生磁场,其磁感应强度沿圆周为正弦分布。 励磁绕组;--; 容量较小的发电机是用磁铁做磁极的。容量较大的发电机的磁场是

VM双闭环直流调速系统课程设计报告

V M双闭环直流调速系统 课程设计报告 This model paper was revised by LINDA on December 15, 2012.

实训报告课程名称:专业实训 专业:班级: 学号:姓名: 指导教师:成绩: 完成日期: 2015 年 1月15 日

任务书

1 单闭环直流调速系统 主电路设计 单闭环直流调速系统是指只有一个转速负反馈构成的闭环控制系统。在电动机轴上装一台测速发电机SF ,引出与转速成正比的电压U f 与给定电压U d 比较后,得偏差电压ΔU ,经放大器FD ,产生触发装置CF 的控制电压U k ,用以控制电动机的转速,如图所示。 图 单闭环直流调速系统原理框图 直流电机,额定电压20V ,额定电流7A ,励磁电压20V ,最大允许电流40A 。 整流变压器额定参数的计算 为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压 U 2 只能在一个较小的范围内变化,为此必须精确计算整流变压器次级电压U 2。 (1)二次侧相电流和一次侧相电流 在精度要求不高的情况下,变压器的二次侧相电压U 2的计算公式: 几种整流线路变压器电压计算系统参数,如表所示。 表 几种整流线路变压器电压计算系统

电路模式 单相全波 单相桥式 三相半波 三相桥式 A C 所以变压器二次侧相电压为:2 1.35200.930U V =?÷= 变压器的二次侧电流I 2的计算公式: 几种整流线路变压器电流I d /I 2系数,如表。 表 几种整流线路变压器电流Id/I2 电路模式 电阻性负载 电感性负载 单相全控桥 1 三相全控桥 查表得, 1A =。 变压器的二次侧电流:2 7d I I A == 变压器的一次侧电流I 1的计算公式: 一次侧电流:2112/7302200.95I I U U A =*=?÷= (2)变压器容量

直流调速器工作原理

直流调速器工作原理 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接, 下端和直流 电动机连接, 直流调速器 将交流电转 化成两路输 出直流电源, 一路输入给 直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 调速方案一般有下列3种方式 1、改变电枢电压;(最长用的一种方案) 2、改变激磁绕组电压; 3、改变电枢回路电阻。 直流调速分为三种:转子串电阻调速,调压调速,弱磁

调速。 转子串电阻一般用于低精度调速场合,串入电阻后由于机械特性曲线变软,一般在倒拉反转型负载中使用调压调速,机械特性曲线很硬,能够在保证了输出转矩不变的情况下,调整转速,很容易实现高精度调速弱磁调速,由于弱磁后,电机转速升高,因此一般情况下配合调压调速,与之共同应用。缺点调速范围小且只能增速不能减速,控制不当易发生飞车问题。 直流调速器是一种电机调速装置,包括电机直流调速器,脉宽直流调速器,可控硅直流调速器等.一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。 直流调速器使用条件 1.海拔高度不超过1000米。(超过1000米,额定输出电流值有所降低) 2.周围环境温度不高于40℃不低于-10℃。 3.周围环境相对湿度不大于85[%],无水凝滴。 4.没有显着震动和颠簸的场合。

直流调速系统知识点

142.斩波器调速系统 143.生产机械对调速装置的要求 144.调速范围 145.静差率 146有转速负反馈闭环直流调速系统的组成147.转速反馈 148.转速微分负反馈 149.转速反馈系数 150.电流反馈系数 151.直流电动机静态模型 152.无静差系统 153.有静差系统 154.静特性 155.静特性方程 156.静特性曲线 157.转速降落 158.最大转速 159.额定转速 160.理想空载转速 161.开环放大倍数 162.闭环放大倍数 163.数字调节器 164.可控直流电源静态放大倍数和静态模型164.直流电动机调速原理 166.G-M调速系统 167.有转速反馈直流调速系统静特性 168.有转速反馈直流调速系统静态结构图 169.开环调速系统与闭环调速系统的不同 170.转速负反馈闭环系统静态参试计算 171.晶闸管装置供电转速负反馈单闭环系统的调试

172.电流截止负反馈 173.电流截止负反馈环节 174.电流截止负反馈系统的静态结构图175.带电流截止负反馈闭环系统的静特性176.电流截止环节参数的计算 177.电压负反馈 178.电压负反馈环节 179.电压负反馈闭环系统的静态结构图180.电压负反馈系统的静特性 181.电压负反馈系统静参数计算 182.电流补偿控制 183.电流补偿控制的作用 184.电流补偿控制与转速反馈控制的不同185.前向通道 186.前向通道放大倍数 187.检测反馈元件 188.滤波元件 189.反馈通道 190.反馈通道放大倍数 191.开环前馈补偿 192.给定信号 193.给定元件 194.转速给定信号 195.电流给定信号 196.数字斜波给定 197.扰动信号 198.负载扰动 199.电源电压扰动 200.不可预见扰动 201.跟随性能

VM双闭环不可逆直流调速系统设计

VM双闭环不可逆直流调速系统设计

运动控制系统 课程设计 题目:某V-M双闭环不可逆直流调速系统设计 专业班级: 姓名: 学号: 指导教师: 评阅意见: 指导老师签名:

目录 1 绪论 (1) 1.1 研究背景 (1) 1.2 研究目的与意义 (1) 2 课程设计概述与要求 (2) 2.1 课程设计概述 (2) 2.2课程设计要求............................................... 错误!未定义书签。 3 转速、电流双闭环直流调速系统的组成 (3) 4 调速系统主电路元部件的确定及其参数计算4 4.1变压器参数选取 (4) 4.1.1变压器二次侧电压U2的计算 (4) 4.1.2一次、二次侧相电流I1、I2的计算 (4) 4.1.3 变压器容量S的计算5 4.2 平波电抗器参数计算5 4.2.1电流连续的临界电感量L1的计算5 4.2.2限制输出电流脉动的临界电感量L2的计算5 4.2.3电动机电感量L D的计算6 4.2.4实际串入平波电抗器的电感量L的计算6 4.3可控晶闸管参数计算6 4.3.1晶闸管的额定电压计算6 4.3.2晶闸管的额定电流计算7 4.3.3三相桥式全控整流电路原理7

4.3.4 整流电路及晶闸管保护电路设计8 4.4 过电压保护和du/dt限制9 4.5 过电流保护和di/dt限制10 5 控制系统设计10 5.1 双闭环调速系统的动态结构10 5.2 电流调节器的设计11 5.2.1 电流环结构框图的化简11 5.2.2 电流环结构框图小惯性环节近似处理12 5.2.3 电流调节器结构的选择12 5.2.4 电流调节器的实现13 5.2.5 电流调节器的参数计算13 5.3转速调节器的设计15 5.3.1 转速环结构框图的化简15 5.3.2转速调节器结构的选择1 6 5.3.3转速调节器的实现17 5.3.4 转速调节器的参数计算17 6 触发电路的选择与原理图19 7 双闭环直流调速系统MATLAB仿真22 8 设计总结23 9参考文献24附录V-M双闭环不可逆直流调速系统电气原理图25

双闭环直流调速系统工作原理

双闭环直流调速系统设计 内容摘要 电机自动控制系统广泛应用于各行业,尤其是工业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电.直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。有效地控制电机,提高其运行性能,具有很好的现实意义。本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理以及介绍变频调速技术的发展概况,变频调速技术的发展趋势关键词:双闭环控制系统,转速控制环,系统现状,发展趋势 英文翻译:Electrical automatic control system widely used in various industries, especially in industry. Most of the production machinery used in these industries motor as a prime mover. Effectively control electricity. Dc motor has a good start, braking performance, adaptable to smooth speed regulation in large scale, in many need to speed or fast forward and reverse has been widely used in the area of electric drive. Effectively control motor, improve its operation performance, has the very good practical significance. I ntroduced in this paper, based on the engineering design to the design of dc speed regulating system, the working principle of the double closed loop control system of dc speed regulating and also I ntroduce the development general situation and the development trend Key words: double closed loop control system, speed control loop, th e status quo,the development of trend 一:引言 矿井提升机是煤矿、有色金属矿中的重要运输设备,是“四大运转设备”之一。矿井提升系统具有环节多、控制复杂、运行速度快、惯性质量大、运行特性复杂的特点,且工作状况经常交替转换。 近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、

vm双闭环直流调速系统资料

目录 1课程设计目的........................................................... - 1 - 2课程设计题目描述和要求................................................. - 1 - 2.1设计要求..................................................................................................................... - 1 - 2.2设计内容..................................................................................................................... - 1 - 2.3设计数据..................................................................................................................... - 1 -3课程设计报告内容....................................................... - 1 - 3.1转速、电流双闭环直流调速系统的组成................................................................. - 1 - 3.2主电路结构形式......................................................................................................... - 1 - 3.3变压器的选择............................................................................................................. - 1 - 3.4双闭环直流调速系统调节器的设计......................................................................... - 1 - 3.5 整流元件晶闸管的选型............................................................................................ - 1 - 3.6快速熔断器的选择..................................................................................................... - 1 - 3.7平波和均衡电抗器的设计......................................................................................... - 1 - 3.8直流稳压稳压电源设计............................................................................................. - 1 - 3.9调节器的限幅............................................................................................................. - 1 - 3.10电流互感器............................................................................................................... - 1 - 3.11 保护电路的设计...................................................................................................... - 1 - 3.12 晶闸管触发电路的设计.......................................................................................... - 1 -4设计体会.............................................................. - 18 - 5参考书目.............................................................. - 18 - 6附表.................................................................. - 18 -

VM直流调速系统课设

目录 (2) ................................................ .2 内容................................................. .2 要求................................................. .2 .. (3) (3) (3) (4) (4) (4) (5)

一、课程设计要求 1.设计参数 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=Ω,主电路总电阻R =Ω,Ks=,电磁时间常数TL=,机电时间常数Tm=,滤波时间常数Ton=Toi=, 过载倍数λ=,电流给定最大值 8V U im =*,速度给定最大值 10V U n =* 2.设计内容 1)根据题目的技术要求,分析论证并确定主电路的结构形式和闭环调速系统的组成,画出系统组成的原理框图。 2) 调速系统主电路元部件的确定及其参数计算。 3)驱动控制电路的选型设计。 4)动态设计计算:根据技术要求,对系统进行动态校正,确定ASR 调节器与ACR 调节器的结构形式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。 5) 绘制V —M 双闭环直流不可逆调速系统电器原理图,并研究参数变化时对直流电动机动态性能的影响。 3.设计要求: 1)该调速系统能进行平滑地速度调节,负载电机不可逆运行,具有较宽地转速调速范围(10D ≥),系统在工作范围内能稳定工作。 2)系统静特性良好,无静差(静差率2S ≤)。

VM双闭环直流调速系统设计

目录 摘要 (2) 1?设计任务及要求..................................................... 2 理论设计........................................................... 2.1调速系统组成原理分析.......................................... 2.2稳态结构图分析................................................ 2.3调节器作用.................................................... 2.3.1转速调节器作用 .......................................... 2.3.2电流调节器作用 .......................................... 2.4 V-M系统分析.................................................. 3调节器的设计....................................................... 3.1电流调节器的设计.............................................. 3.1.1确定时间常数 ............................................ 3.1.2选择电流调节器结构 ...................................... 3.1.3计算电流调节器参数 ...................................... 3.1.4校验近似条件 ............................................ 3.1.5计算调节器电阻和电容 .................................... 3.2转速调节器的设计.............................................. 3.2.1确定时间常数 ............................................ 3.2.2选择转速调节器结构 ...................................... 3.2.3计算转速调节器参数 ...................................... 3.2.4检验近似条件 ............................................ 3.2.5校核转速超调量 .......................................... 3.2.6计算调节器电阻和电容 .................................... 4?系统主电路设计..................................................... 4.1主电路原理图及说明............................................ 4.2主电路参数计算及选型.......................................... 4.2.1 平波电抗器的参数计算.................................... 4.2.2 变压器参数的计算........................................ 4.2.3晶闸管整流元件参数的计算 ................................ 4.2.4 保护电路的选择.......................................... 5 总结与体会......................................................... 参考文献.............................................................

直流调速工作原理 2

第一部分直流电机的基本工作原理 一、直流电机的用途 直流电动机的优点: 1 调速范围广,易于平滑调节 2 过载、启动、制动转矩大 3 易于控制,可靠性高 4 调速时的能量损耗较小 缺点:换向困难,维修比较麻烦,制造成本高(与相 同功率的交流异步电机比较。 应用:机床方面的应用:龙门刨床、导轨磨床、龙门铣床等设备的工作驱动电机,导轨磨床、镗床、铣床等设备的主轴电机; 轧钢机、电车、电气铁道牵引、造纸、纺织拖动; 直流发电机:用作电解、电镀、电冶炼、充电、交流发电机励磁等的直流电源。 二、直流电机的工作原理 原理:任何电机的工作原理都是建立在电磁感应和电磁力这个基础上。 1、直流电机的工作原理 工作原理:导体在磁场中运动时,导体中会感应出电势e;e=B×l×v; B:磁密 L:导体长度; V:导体与磁场的相对速度。 正方向:用右手定则判断。电势e正方向表示电位升高的方向,与U相反。如果同一元件上e和U正方向相同时,e= -U。 理解:电磁感应原理的变形(变化的磁通产生感应电动势)

3、直流电动机的工作原理图。 (1)构成: 磁场:图中N和S是一对静止的磁极,用以产生磁场,其磁感应强度沿圆周为正弦分布。 励磁绕组——容量较小的发电机是用永久磁铁做磁极的。容量较大的发电机的磁场是由直流电流通过绕在磁极铁心上的绕组产生的。用来形成N极和S极的绕组称为励磁绕组,励磁绕组中的电流称为励磁电流If。 电枢绕组:在N极和S极之间,有一个能绕轴旋转的圆柱形铁心,其上紧绕着一个线圈称为电枢绕组(图中只画出一匝线圈),电枢绕组中的电流称为电枢电流Ia。 换向器:电枢绕组两端分别接在两个相互绝缘而和绕组同轴旋转的半圆形铜片——换向片上,组成一个换向器。换向器上压着固定不动的炭质电刷。 电枢:铁心、电枢绕组和换向器所组成的旋转部分称为电枢。 电动机向负载输出机械功率的同时,却向电动机输入电功率,电动机起着将电能转换为机械能的作用。 能量转换: 电能->电磁转矩->负载(机械能) 3、电机的结构要求: 1 电磁要求: 产生磁场,感应出电动势,通过电流,产生电磁转矩 2机械要求:传递转矩,保持坚固稳定,冷却的要求,检修,运行可靠。

VM不可逆双闭环直流调速系统课程设计报告书

广西工学院鹿山学院 电力拖动自动控制系统课程设计 设计题目:V-M不可逆双闭环直流调速系统 系别:电子信息与控制工程系 专业班级:自动化091 姓名:刘帅 学号:20092349 日期:2012年6月5日

内容摘要 电力拖动自动控制系统是把电能转换成机械能的装置,它被广泛地应用于一般生产机械需要动力的场合,也被广泛应用于精密机械等需要高性能电气传动的设备中,用以控制位置、速度、加速度、压力、张力和转矩等。直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到应用。晶闸管问世后,生产出成套的晶闸管整流装置,组成晶闸管—电动机调速系统(简称V-M系统),和旋转变流机组及离子拖动变流装置相比,晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。而转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。 双闭环直流调速系统即速度和电流双环直流调速系统,是由单闭环直流调速系统发展起来的,调速系统使用比例积分调节器,可以实现转速的无静差调速。又采用电流截止负载环节,限制了起(制)动时的最大电流。这对一般的要求不太高的调速系统,基本上已经能满足要求。但是由于电流截止负反馈限制了最大电流,加上电动机反电势随着转速的上升而增加,使电流到达最大值后迅速降下来,这样,电动机的转矩也减小了,使起动加速过程变慢,起动的时间久比较长。在这些系统中为了尽快缩短过渡时间,所以就希望能够充分利用晶闸管元件和电动机所允许的过载能力,使起动的电流保护在最大允许值上,电动机输出最大转矩,从而转速可直线迅速上升,使过渡过程的时间大大的缩短。另一方面,在一个调节器的输出端综合几个信号,各个参数互相调节比较困难。为了克服这一缺点就应用转速,电流双环直流调速系统。 关键词:双闭环直流调速系统MATLAB

相关主题