搜档网
当前位置:搜档网 › 安徽省高考数学总复习:三角函数及解三角形

安徽省高考数学总复习:三角函数及解三角形

安徽省高考数学总复习:三角函数及解三角形
安徽省高考数学总复习:三角函数及解三角形

2021年安徽省高考数学总复习:三角函数及解三角形

1.已知a,b,c分别是△ABC内角A,B,C的对边,sin2A+sin2C?2

3sin A sin C=sin

2B.

(1)求sin B的值;

(2)若b=2,△ABC的面积为√2,求△ABC的周长.

2.在△ABC中,角A,B,C所对的边分别为a,b,c,sin2A+sin2B+sin A sin B=2c sin C,△ABC的面积S=abc.

(1)求角C;

(2)求a+b的取值范围.

3.在△ABC中,内角A,B,C的对边分别为a,b,c,若b=c,2sin B=√3sin A,(1)求sin B的值;

(2)求sin(2B?π

6

)的值.

4.设函数f(x)=cos(2x+π

6

)?cos(2x?3π2)+a的最小值是﹣1.

(1)求a的值及f(x)的对称中心;

(2)将函数f(x)图象的横坐标压缩为原来的一半(纵坐标不变),再向右平移π

12

个单

位,得到g(x)的图象.若g(x)≥?1

2,求x的取值范围.

解三角形高考大题-带答案

解三角形高考大题,带答案 1. (宁夏17)(本小题满分12分) 如图,ACD △是等边三角形,ABC △是等腰直角三角形, 90ACB =∠,BD 交AC 于E ,2AB =. (Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE . 解:(Ⅰ)因为9060150BCD =+=∠, CB AC CD ==, 所以15CBE =∠. 所以6cos cos(4530)4 CBE =-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理 2 sin(4515)sin(9015) AE =-+. 故2sin 30 cos15 AE = 12 4 ? = =. 12分 2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。 (1)按下列要求写出函数关系式: ①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式; (2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。 【解析】:本小题考查函数的概念、 解三角形、导数等基本知识,考查数学建模能力、 抽象概括能力和解决实际问题的能力。 (1)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad ),则 cos cos OA BAO θ = =∠, 故10 cos OB θ = 又1010OP tan θ=-,所以1010 1010cos cos y OA OB OP tan θθθ =++= ++-B A C D E B

高考数学压轴专题2020-2021备战高考《三角函数与解三角形》技巧及练习题附答案

【高中数学】数学《三角函数与解三角形》复习资料 一、选择题 1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++? ?=++<< ?+++-? ?的最小值为 ( ) A B C D 【答案】B 【解析】 【分析】 利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】 2 2222sin 2sin cos 2cos 2sin cos 1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222 x x x x x x x x x x x x x x x x x x x x +++-+++= ++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x x x x x x x x x x x ???? ++ ? ?????=+= +=???? ++ ? ? ???? , 则()21tan 0sin 32f x x x x π? ?= +<< ?? ?, 322222 21sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x ' ' ' --+????=+=-+= ? ????? . 令()cos 0,1t x =∈,() 32 61g t t t =--+为减函数,且102g ??= ??? , 所以当03 x π <<时, ()1 1,02 t g t <<<,从而()'0f x <; 当 3 2 x π π << 时,()1 0,02 t g t << >,从而()'0f x >. 故( )min 33f x f π??== ??? . 故选:A 【点睛】 本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题. 2.在ABC ?中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,

高中数学三角函数、解三角形知识点

三角函数、解三角形 1.弧长公式:r l α= 扇形面积公式:22 121r lr S α== 2.同角三角函数的基本关系式: 平方关系:1cos sin 2 2 =+αα 商数关系:sin tan cos α αα = 3.三角函数的诱导公式: 诱导公式(把角写成απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) 公式一()()()?????=?+=?+=?+απααπααπαtan 2tan cos 2cos sin 2sin k k k 公式二()()()?????=+=+=+ααπααπααπtan tan cos -cos -sin sin 公式三()()()?? ? ??=-=-=-ααααααtan -tan cos cos -sin sin 公式四()()()?????=-=-=-ααπααπααπtan -tan cos -cos sin sin 公式五???????=??? ??-=??? ??-ααπααπsin 2cos cos 2sin 公式六???????=??? ??+=?? ? ??+ααπααπsin -2 cos cos 2sin 4.两角和与差的正弦、余弦、正切公式: βαβαβαcos sin cos sin )sin(+=+ βαβαβαcos sin cos sin )sin(-=- βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαtan tan 1tan tan )tan(-+= + β αβαβαtan tan 1tan tan )tan(+-=- 5.二倍角公式: a a a cos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a a a a 2tan 1tan 22tan -= 6.辅助角公式: sin cos a b αα+ )α?+( 其中sin tan b a ???= = = ). 比如: x x y cos 3sin += ) cos ) 3(13sin ) 3(11( )3(12 2 2 2 22x x ++ ++= )cos 23sin 21(2x x += )3 sin cos 3cos (sin 2ππx x +=)3sin(2π+=x 7.正弦定理: 2sin sin sin a b c R C ===A B (R 为△ABC 外接圆的半径) 8.余弦定理:2 2 2 2cos a b c bc =+-A ,2 2 2 2cos b a c ac =+-B ,2 2 2 2cos c a b ab C =+- 推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=.

2020年高考数学三角函数与解三角形大题精做

2020年高考数学三角函数与解三角形大题精做 例题一:在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知(),2a c b =-m ,()cos ,cos C A =n ,且⊥m n . (1)求角A 的大小; (2)若5b c +=,ABC △a . 例题二:如图,在ABC △中,π 4A ∠=,4AB =,BC =点D 在AC 边上,且1cos 3 ADB ∠=-. (1)求BD 的长; (2)求BCD △的面积. 例题三: ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知()2cos cos 0a c B b A ++=.

(1)求B ; (2)若3b =,ABC △的周长为3+ABC △的面积. 例题四:已知函数()22 cos cos sin f x x x x x =+-. (1)求函数()y f x =的最小正周期以及单调递增区间; (2)已知ABC △的内角A 、B 、C 所对的边分别为a 、b 、c ,若()1f C =,2c =,()sin sin 2sin 2C B A A +-=,求ABC △的面积.

例题一:【答案】(1)π3 A =;(2 )a = 【解析】(1)由⊥m n ,可得0?=m n ,即2cos cos cos b A a C c A =+, 即2sin cos sin cos sin cos B A A C C A =+,即()2sin cos sin B A A C =+, ∵()()sin sin πsin A C B B +=-=,∴2sin cos sin B A B =,即()sin 2cos 10B A -=, ∵0πB <<,∴sin 0B ≠,∴1cos 2 A = , ∵0πA <<,∴π3A =. (2 )由ABC S =△ 1sin 2 ABC S bc A ==△,∴4bc =, 又5b c +=,由余弦定理得()22222cos 313a b c bc A b c bc =+-=+-=, ∴a = 例题二:【答案】(1)3;(2 ) 【解析】(1)在ABD △中,∵1cos 3 ADB ∠=-, ∴sin 3ADB ∠=, 由正弦定理sin sin BD AB BAD ADB =∠∠, ∴4sin 3sin AB BAD BD ADB ∠===∠. (2)∵πADB CDB ∠+∠=, ∴()1cos cos πcos 3 CDB ADB ADB ∠=-∠=-∠=. ∴( )sin sin πsin CDB ADB ADB ∠=-∠=∠= ,sin CDB ∠= 在BCD △中,由余弦定理2222cos BC BD CD BD CD CDB =+-??∠, 得21179233 CD CD =+-??,解得4CD =或2CD =-(舍). ∴BCD △ 的面积11sin 3422S BD CD CDB =??∠=??=. 例题三:【答案】(1)2π3 B =;(2 )ABC S =△ 【解析】(1)∵()2cos cos 0a c B b A ++=, ∴()sin 2sin cos sin cos 0A C B B A ++=,()sin cos sin cos 2sin cos 0A B B A C B ++=,

高考数学压轴专题专题备战高考《三角函数与解三角形》难题汇编及答案解析

数学《三角函数与解三角形》复习知识要点(1) 一、选择题 1.已知sin α,sin()10 αβ-=-,,αβ均为锐角,则β=( ) A . 512 π B . 3 π C . 4 π D . 6 π 【答案】C 【解析】 【分析】 由题意,可得22 π π αβ- <-< ,利用三角函数的基本关系式,分别求得 cos ,cos()ααβ-的值,利用sin[(]sin )ααββ=--,化简运算,即可求解. 【详解】 由题意,可得α,β均为锐角,∴-2π <α-β<2 π. 又sin(α-β),∴cos(α-β). 又sin α= 5,∴cos α=5 , ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =5×10 -5×10??- ? ??? =2.∴β=4π. 【点睛】 本题主要考查了三角函数的化简、求值问题,其中熟记三角函数的基本关系式和三角恒等变换的公式,合理构造sin[(]sin )ααββ=--,及化简与运算是解答的关键,着重考查了推理与运算能力,属于基础题. 2.将函数()()sin 0,π2f x x ?ω?ω? ?=+>< ?? ?的图象向右平移6π个单位长度后,所得图象关 于y 轴对称,且1π2f ω?? =- ??? ,则当ω取最小值时,函数()f x 的解析式为( ) A .()sin 26f x x π? ? =+ ?? ? B .()sin 2π6f x x ? ?=- ??? C .()sin 4π6f x x ? ?=+ ?? ? D .()sin 4π6f x x ? ?=- ?? ? 【答案】C 【解析】

三角函数与解三角形

课程标题三角函数与解三角形 求三角函数得定义域实质就就就是解三角不等式(组)、一般可用三角函数得图象或三角函数线确定三角不等式得解、列三角不等式,既要考虑分式得分母不能为零;偶次方根被开方数大于等于零;对数得真数大于零及底数大于零且不等于1,又要考虑三角函数本身得定义域; 求三角函数得值域得常用方法:1、化为求得值域; ,引入辅助角,化为求解方法同类型。 2、化为关于(或)得二次函数式; ,设,化为二次函数在上得最值求之; 周期问题一般将函数式化为(其中为三角函数,)、 ) ②y=tanx图象得对称中心(,0) (二)主要方法: 1、函数得单调增区间可由 解出,单调减区间可由解出; 周期 2、函数得单调减区间可由 解出,单调增区间呢。(自己导出)周期 3、函数得单调增区间可由 解出。(无增区间,重点掌握) 周期 课堂练习: 1.已知函数得定义域为,值域为,求常数得值 (化为求得值域)、 2、函数得单调递减区间就就是 3、函数得单调增区间为 2、函数,、 (Ⅰ)求函数得最小正周期;(Ⅱ)求函数在区间上得最小值与最大值、(化为求得值域)、 3、函数得一个单调增区间就就是 ???? 4、若函数,则就就是 最小正周期为得奇函数最小正周期为得奇函数 最小正周期为得偶函数最小正周期为得偶函数 5、函数得最大值 6、当函数得最大值为时,求得值、

7、函数得最大值就就是 8、已知函数,、 (1)求得最大值与最小值;(2)f(x)得最小正周期。 (3)若不等式在上恒成立,求实数得取值范围、 解三角形 正弦定理:, 余弦定理: 推论:正余弦定理得边角互换功能 ① ,, ②,, ③== ④ (4)面积公式:S=ab*sinC=bc*sinA=ca*sinB 课堂练习: 1、在中,角得对边分别为,已知,则( ) A、1 ?B.2 C、???D、 2、在△ABC中,AB=3,BC=,AC=4,则边AC上得高为( ) A、B、 C、D、 3、在ΔABC中,已知a=,b=,B=45°,求角A,角C得大小及边c得长度。 4、得内角A、B、C得对边分别为a、b、c,若a、b、c成等比数列,且,则() A、 B、 C、D、 【填空题】 5、在中,分别就就是、、所对得边。若,,,则__________ 6、在锐角△ABC中,边长a=1,b=2,则边长c得取值范围就就是_______、 7、已知锐角得面积为,,则角得大小为( ) ?A、75°?B、60° ?C、45°D、30° 8、在△中,若,则等于、 9、在中,已知,则得大小为 ( ) ??? 【解答题】 10、在中,分别就就是三个内角得对边、若,,求得面积、 11、如图,就就是等边三角形,就就是等腰直角三角形,∠=,交于,、 ?(1)求∠得得值; (2)求、 12、在中,角A、B、C所对得边分别为a,b,c,且满足

解三角形高考真题(一)

解三角形高考真题(一)

解三角形高考真题(一) 一.选择题(共9小题) 1.△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=() A.B.C.D. 2.在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB (1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是() A.a=2b B.b=2a C.A=2B D.B=2A 3.△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2 D.3 4.在△ABC中,若AB=,BC=3,∠C=120°,则AC=() A.1 B.2 C.3 D.4 5.△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=()A. B.C.D. 6.在△ABC中,B=,BC边上的高等于BC,则

14.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= .15.在△ABC中,∠A=,a=c,则= .16.在△ABC中,B=120°,AB=,A的角平分线AD=,则AC= . 17.在△ABC中,AB=,∠A=75°,∠B=45°,则AC= . 18.设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b= .19.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m. 20.若锐角△ABC的面积为,且AB=5,AC=8,则BC等于. 21.在△ABC中,a=3,b=,∠A=,则∠

高考数学三角函数与解三角形练习题

三角函数与解三角形 一、选择题 (2016·7)若将函数y =2sin 2x 的图像向左平移 12 π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ =-∈ B .()26k x k Z ππ =+∈ C .()212 k x k Z ππ =-∈ D .()212 k x k Z ππ =+∈ (2016·9)若3 cos( )45 π α-=,则sin 2α =( ) A . 725 B .15 C .1 5 - D .7 25 - (2014·4)钝角三角形ABC 的面积是12 ,AB =1,BC ,则AC =( ) A .5 B C .2 D .1 (2012·9)已知0>ω,函数)4sin()(π ω+ =x x f 在),2(ππ 单调递减,则ω的取值范围是() A. 15 [,]24 B. 13[,]24 C. 1(0,]2 D. (0,2] (2011·5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45 - B .35 - C .35 D .45 (2011·11)设函数()sin()cos()(0,||)2 f x x x π ω?ω?ω?=+++>< 的最小正周期为π,且()()f x f x -=, 则( ) A .()f x 在(0,)2π 单调递减 B .()f x 在3(,)44 ππ 单调递减 C .()f x 在(0,)2π 单调递增 D .()f x 在3(,)44 ππ 单调递增 二、填空题 (2017·14)函数()23sin 4f x x x =- (0,2x π?? ∈???? )的最大值是 . (2016·13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 4 5 A = ,1cos 53C =,a = 1,则b = . (2014·14)函数()sin(2)2sin cos()f x x x ???=+-+的最大值为_________. (2013·15)设θ为第二象限角,若1 tan()42 πθ+=,则sin cos θθ+=_________. (2011·16)在△ABC 中,60,B AC ==o 2AB BC +的最大值为 . 三、解答题

(新高考地区使用)专题01 三角函数与解三角形

三角函数与解三角形专项练习 1.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos 2c A b a =-. (1)求角C ; (2)若D 是边BC 的中点,11cos 14 B =,21AD =,求AB C 的面积S . 2.如图,四边形OACB 中,,,a b c 为ABC ?的内角,,A B C 的对边,且满足sin sin tan 2cos cos A B C B C =--+ (1)证明:2b c a +=;

(2)若22OA OB ==,且b c =,设()0AOB θθπ∠=<<,当θ变化时,求四边形OACB 面积的最大值. 3.一个玩具盘由一个直径为2米的半圆O 和一个矩形ABCD 构成,1AB =米,如图所示.小球从A 点出发以8v 的速度沿半圆O 轨道滚到某点E 处后,以3v 的速度沿与点E 切线垂直的方向弹射到落袋区BC 内,落点记为F .记AOE θ∠=, (1)用θ表示小球从A 到F 所用的时间()f θ; (2)当小球从A 到F 所用的时间最短时,求cos θ的值. 4.在ABC 中,,,a b c 分别为角,,A B C 所对的边.在①(2)cos cos a c B b C -=;①3=2ABC BA BC S →→?△;①sin sin 33B B π? ?++= ??? 这三个条件中任选一个,作出解答.

(1)求角B 的值; (2)若ABC 为锐角三角形,且1b =,求ABC 的面积的取值范围. 5.已知ABC 的面积为 (Ⅰ)b 和c 的值; (Ⅱ)sin()A B -的值. 条件①:6a =,1cos 3 =- C ;条件②:A C =,7cos 9B =-.注:如果选择条件①和条件②分别解答,按第一个解答计分. 6.在ABC 中,7cos 8 A =,3c =,且b c ≠,再从条件①、条件②中选择一个作为已知,求: (1)b 的值;

最新解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:α α ααααsin cos cot ,cos sin tan ==

高考解三角形大题(30道)69052

专题精选习题----解三角形 1.在ABC ?中,内角C B A ,,的对边分别为c b a ,,,已知b a c B C A -= -2cos cos 2cos . (1)求A C sin sin 的值; (2)若2,41 cos ==b B ,求ABC ?的面积S . 2.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知 2sin 1cos sin C C C -=+. (1)求C sin 的值; (2)若8)(422-+=+b a b a ,求边c 的值. 3.在ABC ?中,角C B A ,,的对边分别是c b a ,,. (1)若A A cos 2)6sin(=+π ,求A 的值; (2)若c b A 3,31 cos ==,求C sin 的值.

4.ABC ?中,D 为边BC 上的一点,5 3cos ,135sin ,33=∠==ADC B BD ,求AD . 5.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知41 cos ,2,1===C b a . (1)求ABC ?的周长; (2)求)cos(C A -的值. 6.在ABC ?中,角C B A ,,的对边分别是c b a ,,.已知)(sin sin sin R p B p C A ∈=+,且241 b a c =. (1)当1,45 ==b p 时,求c a ,的值; (2)若角B 为锐角,求p 的取值范围.

7.在ABC ?中,角C B A ,,的对边分别是c b a ,,.且C b c B c b A a sin )2(sin )2(sin 2+++=. (1)求A 的值; (2)求C B sin sin +的最大值. 8.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知 412cos -=C . (1)求C sin 的值; (2)当C A a sin sin 2,2==时,求c b ,的长. 9.在ABC ?中,角C B A ,,的对边分别是c b a ,,,且满足 3,5522cos =?=A . (1)求ABC ?的面积; (2)若6=+c b ,求a 的值.

高考文科数学真题大全解三角形高考题学生版

高考文科数学真题大全解 三角形高考题学生版 This manuscript was revised by the office on December 10, 2020.

8.(2012上海)在ABC ?中,若C B A 222sin sin sin <+,则ABC ?的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 9.(2013天津理)在△ABC 中,∠ABC =π 4 ,AB =2,BC =3,则sin ∠BAC 等于( ) 10.(2013新标2文) △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B = π6,c =π 4 ,则△ABC 的面积为( ) A .23+2 +1 C .23-2 -1 11、(2013新标1文) 已知锐角ABC ?的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9 (C )8 (D )5 12.(2013辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =1 2b ,且a >b ,则∠B =( ) 13.(2013山东文)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =( ) A .2 3 B .2 D .1 14.(2013陕西)设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若cos cos sin b C c B a A +=, 则 △ABC 的形状为 (A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定 15、(2016年新课标Ⅰ卷文)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =, 2 cos 3 A = ,则b= (A )2 (B )3 (C )2 (D )3 16、(2016年新课标Ⅲ卷文)在ABC △中,π4B ,BC 边上的高等于1 3 BC ,则sin A (A )3 10 (B )1010 (C )55 (D )31010 17、(2016年高考山东卷文)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ,则A = (A ) 3π4(B )π3(C )π4(D )π6

高中数学专题练习-三角函数及解三角形

高中数学专题练习-三角函数及解三角形 1.【高考全国Ⅰ卷理数】函数f(x)=在的图像大致为 A.B. C.D. 【答案】D 【解析】由,得是奇函数,其图象关于原点对称,排除A.又,排除B,C,故选D. 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案. 2.【高考全国Ⅰ卷理数】关于函数有下述四个结论: ①f(x)是偶函数②f(x)在区间(,)单调递增 ③f(x)在有4个零点④f(x)的最大值为2 其中所有正确结论的编号是 A.①②④B.②④ C.①④D.①③ 【答案】C 【解析】为偶函数,故①正确.当时,,它在区间单调递减,故②错误. 当时,,它有两个零点:;当时,

,它有一个零点:,故在有个零点:,故③错误.当时,;当时, ,又为偶函数,的最大值为,故④正确.综上所述,①④正确,故选C. 【名师点睛】本题也可画出函数的图象(如下图),由图象可得①④正确. 3.【高考全国Ⅱ卷理数】下列函数中,以为周期且在区间(,)单调递增的是A.f(x)=|cos2x| B.f(x)=|sin2x| C.f(x)=cos|x| D.f(x)=sin|x| 【答案】A 【解析】作出因为的图象如下图1,知其不是周期函数,排除D; 因为,周期为,排除C; 作出图象如图2,由图象知,其周期为,在区间(,)单调递增,A正确; 作出的图象如图3,由图象知,其周期为,在区间(,)单调递减,排除B,故选A. 图1

图2 图3 【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数的周期是函数周期的一半; ②不是周期函数. 4.【高考全国Ⅱ卷理数】已知α∈(0,),2sin2α=cos2α+1,则sinα= A. B. C.D. 【答案】B 【解析】,, ,又,,又,,故选B. 【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案. 5.【高考全国Ⅲ卷理数】设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论: ①在()有且仅有3个极大值点 ②在()有且仅有2个极小值点

三角函数及解三角形知识点总结

1. 任意角的三角函数的定义: 设〉是任意一个角,p (x, y )是〉的终 边上的任意一点(异于原点),它与原点的距离是「“x 2r 2.o , 位置无关。 2. 三角函数在各象限的符号:(一全二正弦,三切四余弦) + L i + —— L + _ - + ------ ■ —— + - ■ sin : cos : tan : 3. 同角三角函数的基本关系式: 4. 三角函数的诱导公式 k 二.一 诱导公式(把角写成2 …形式,利用口诀:奇变偶不变,符 (2)商数关 系: tan-E 屮一、 cos 。(用于切化弦) (1)平方关 系: 2 2 2 sin 工 cos ■■ -1,1 tan : 1 cos 2: ※平方关系一般为隐含条件,直接运用。注意“ 1”的代换 si …y,cos 」 那么 r 三角函数值只与角的大小有关,而与终边上点

5. 特殊角的三角函数值 度 0s 30c A 45“ A 60“ 90 120c A 135“ 150s 180c 270° 360 弧 31 JI JI 2n 3兀 5兀 JI 3兀 2兀 度 6 4 3 2 3 4 6 2 si n 。 0 1 竝 迈 1 旦 1 0 1 2 2 2 2 2 2 cosa 亦 1 1 念 力 1 2 _1 1 2 2 2 2 2 号看象限) sin (2k .亠 x ) = sin x cos (2k ■亠 x ) = cosx [)tan (2k ,亠 x )二 tanx sin ( -x ) - - sin x cos (-x ) =cosx H )tan (-x ) - - tanx m ) |sin (,亠 x ) = -sin x cos (m ) = - cosx tan (二 x ) IV ) Sin (兀 _x ) =sin x cos (兀—x ) = —cosx tan (兀一 sin (— -〉)= cos ..z sin (二:)=cos : V ) -?) = sin :

解三角形(历届高考题)

解三角形(历届高考题) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

历届高考中的“解三角形”试题精选(自我测试) 1.(A 等于( ) (A )135° (B)90° (C)45° (D)30° 2.(2007重庆理)在ABC ?中,,75,45,300===C A AB 则BC =( ) A.33- B.2 C.2 D.33+ 3.(2006山东文、理)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、 c ,A =3 π ,a =3,b =1,则c =( ) (A )1 (B )2 (C )3—1 (D )3 4.(2008福建文)在中,角A,B,C 的对应边分别为a,b,c,若222a c b +-=,则角B 的值为( ) A.6π B.3π C.6π或56π D.3 π 或23π 5.(2005春招上海)在△ABC 中,若 C c B b A a cos cos cos = =,则△ABC 是( ) (A )直角三角形. (B )等边三角形. (C )钝角三角形. (D )等腰直角三角形. 6.(2006全国Ⅰ卷文、理)ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,若 a 、 b 、 c 成等比数列,且2c a =,则cos B =( ) A . 14 B .3 4 C .4 D .3 7.(2005北京春招文、理)在ABC ?中,已知C B A sin cos sin 2=,那么ABC ?一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 8.(2004全国Ⅳ卷文、理)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为2 3 ,那么b =( ) A .2 31+ B .31+ C .2 32+ D .32+ 二.填空题: (每小题5分,计30分) 9.(2007重庆文)在△ABC 中,AB =1, B C =2, B =60°,则AC = 。

高中数学解题思维提升专题05三角函数与解三角形大题部分训练手册

专题05 三角函数与解三角形大题部分 【训练目标】 1、掌握三角函数的定义,角的推广及三角函数的符号判断; 2、熟记同角三角函数的基本关系,诱导公式,两角和差公式,二倍角公式,降幂公式,辅助角公式,并能熟练的进行恒等变形; 3、掌握正弦函数和余弦函数的图像与性质,并能正确的迁移到正弦型函数和余弦型函数; 4、掌握三角函数的图像变换的规律,并能根据图像求函数解析式; 5、熟记正弦定理,余弦定理及三角形的面积公式; 6、能熟练,灵活的使用正弦定理与余弦定理来解三角形。 【温馨小提示】 此类问题在高考中属于必考题,难度中等,要想拿下,只能有一条路,多做多总结,熟能生巧。 【名校试题荟萃】 1、(浙江省诸暨中学2019届高三期中考试题文) 已知函数. (1).求 )(x f 的最小正周期和单调递增区间; (2).当 时,求函数)(x f 的最小值和最大值 【答案】(1)π, (2) 【解析】 (1) ,π=T , 单调递增区间为; (2) ∴当 时, ,∴ . 当时, ,∴ . 2、(河北省衡水中学2019届高三上学期三调考试数学文)试卷)已知 中,角 所对的边分别是 ,

且,其中是的面积,. (1)求的值; (2)若,求的值. 【答案】 (1);(2). (2),所以,得①, 由(1)得,所以. 在中,由正弦定理,得,即②, 联立①②,解得,,则,所以. 3、(湖北省武汉市部分市级示范高中2019届高三十月联考文科数学试题)已知函数f(x)=sin(ωx+)- b(ω>0,0<<π的图象的两相邻对称轴之间的距离,若将f(x)的图象先向右平移个单位,再向上平移个单位,所得图象对应的函数为奇函数. (1)求f(x)的解析式并写出单增区间; (2)当x∈,f(x)+m-2<0恒成立,求m取值范围. 【答案】 (1),单调递增区间为; (2).

三角函数与解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离是 0r =>,那么 sin ,cos y x r r αα= =, () tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系: 22221sin cos 1,1tan cos αααα+=+= (2)商数关系: sin tan cos α αα= (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成α π±2k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?????=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)???????-=+=+ααπααπsin )2cos(cos )2sin(

解三角形专题练习【附答案】

解三角形专题(高考题)练习【附答案】 1、在ABC ?中,已知内角3 A π = ,边BC =设内角B x =,面积为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当 13,4==c a ,求△ABC 的面积。 2、已知ABC ?中,1||=AC ,0120=∠ABC , θ=∠BAC , 记→ → ?=BC AB f )(θ, (1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域; 3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.2 1 222ac b c a =-+ (1)求B C A 2cos 2 sin 2 ++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ?中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量(2sin ,m B =, 2cos 2,2cos 12B n B ? ?=- ?? ?,且//m n 。 (I )求锐角B 的大小; (II )如果2b =,求ABC ?的面积ABC S ?的最大值。 5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=?,且22=b ,求c a 和b 的值. 6、在ABC ?中,cos 5A = ,cos 10 B =. (Ⅰ)求角 C ; (Ⅱ)设AB =,求ABC ?的面积. 7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =u r ,(sin ,1cos ),//,.n A A m n b c =++=r u r r 满足 (I )求A 的大小;(II )求)sin(6π+B 的值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当 A B C 120° θ

专题四 三角函数与解三角形第十二讲 解三角形答案

专题四 三角函数与解三角形 第十二讲 解三角形 答案部分 1.A 【解析】因为2 13 cos 2cos 121255 =-=?-=-C C ,所以由余弦定理, 得222 32cos 251251()325 =+-?=+-???-=AB AC BC AC BC C , 所以=AB A . 2.C 【解析】根据题意及三角形的面积公式知222 1sin 24 a b c ab C +-=, 所以222sin cos 2a b c C C ab +-= =,所以在ABC ?中,4 C π =.故选C . 3.A 【解析】由sin (12cos )2sin cos cos sin B C A C A C +=+, 得sin 2sin cos sin cos sin B B C A C B +=+, 即2sin cos sin cos B C A C =,所以2sin sin B A =,即2b a =,选A . 4.A 【解析】由余弦定理得213931AC AC AC =++?=,选A. 5.C 【解析】设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得 1sin 342a c π== ,则2 a c =.在△ABC 中,由余弦定理可得 222222295 322 b a c c c c c =+-= +-= ,则b =. 由余弦定理,可得22 22 2 2 59cos 2c c c b c a A bc +-+-===C . 6.B 【解析】 11 sin 22 AB BC B ??= ,∴sin 2B =,所以45B =或135B =. 当45B = 时,1AC = =, 此时1,AB AC BC ===90A =与“钝角三角形”矛盾; 当135B = 时,AC = =.

相关主题