搜档网
当前位置:搜档网 › 线性回归方程——非线性方程转化为线性方程

线性回归方程——非线性方程转化为线性方程

线性回归方程——非线性方程转化为线性方程
线性回归方程——非线性方程转化为线性方程

线性回归方程——非线性方程转化为线性方程

例1.(2015·高考全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

5631469

表中=,=.

(I)根据散点图判断,与,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);

(II)根据(I)的判断结果及表中数据,建立y关于x的回归方程;

(III)已知这种产品的年利润z与x,y的关系为,根据(II)的结果回答下列问题:

(i)年宣传费时,年销售量及年利润的预报值是多少?

(ii)年宣传费为何值时,年利润的预报值最大?

附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.

【答案】(Ⅰ)适宜作为年销售量关于年宣传费的回归方程类型;(Ⅱ);(Ⅲ)(i)答案见解析;(ii)千元.

【解析】(I)由散点图可以判断,适宜作为年销售量关于年宣传费的回归方程类型.

(II)令,先建立关于的线性回归方程,由于=68,

∴=563?68×=,∴关于的线性回归方程为,

因此关于的回归方程为.

(III)(ⅰ)由(II)知,当=49时,年销售量的预报值=,

年利润z的预报值为.

(ⅱ)根据(II)的结果知,年利润z的预报值,

所以当,即时,取得最大值. 故年宣传费为千元时,年利润的预报值最大.

例2.某地级市共有200000中小学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助

这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元。经济学家调查发现,当地人均可支配年收入较上一年每增加,一般困难的学生中有会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生中有转为一般困难,特别困难的学生中有转为很困难。现统计了该地级市2013年到2017年共5年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份取13时代表2013年,与(万元)近似满足关系式,其中为常数。(2013年至2019年该市中学生人数大致保持不变)

其中,

(Ⅰ)估计该市2018年人均可支配年收入;

(Ⅱ)求该市2018年的“专项教育基金”的财政预算大约为多少?

附:对于一组具有线性相关关系的数据,其回归直线方程的斜率和截距的最小二乘估计分别为

【答案】(Ⅰ)(万);(Ⅱ)1624万.

【详解】(Ⅰ)因为,所以. 由得,所以,,所以,所以.当时,2018年人均可支配年收入

(万)

(Ⅱ)由题意知2017年时该市享受“国家精准扶贫”政策的学生共200000×7%=14000人

一般困难、很困难、特别困难的中学生依次有7000人、4200人、2800人, 2018年人均可支配收入比2017年增长

所以2018年该市特别困难的中学生有2800×(1-10%)=2520人,

很困难的学生有4200×(1-20%)+2800×10%=3640人

一般困难的学生有7000×(1-30%)+4200×20%=5740人.

所以2018年的“专项教育基金”的财政预算大约为5740×1000+3640×1500+2520×2000=1624万.

例3.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表l所示:

表1

根据以上数据,绘制了如右图所示的散点图.

(1)根据散点图判断,在推广期内,(c,d均为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由);

(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;参考数据:

其中

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.

【答案】(1)(2)

【详解】(1)根据散点图判断,适宜作为扫码支付的人数关于活动推出天数的回归方程类型;(2),两边同时取常用对数得:;

,,

把样本中心点代入,得: ,

,,

关于的回归方程式:;

把代入上式,;活动推出第天使用扫码支付的人次为;

例4.近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.

图1 图2

(1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中,):

①根据回归方程类型及表中数据,建立关于的回归方程;

②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.

附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

;②参考数据:

【答案】(1);(2)万元

【详解】(1)由频率分布直方图得,该汽车交易市场2017年成交的二手车使用时间在的频率为,在的频率为 ,所以.

(2)①由得,即关于的线性回归方程为.

因为,

所以关于的线性回归方程为,即关于的回归方程为

②根据①中的回归方程和图1,对成交的二手车可预测:

使用时间在的平均成交价格为,对应的频率为;

使用时间在的平均成交价格为,对应的频率为;

使用时间在的平均成交价格为,对应的频率为;

使用时间在的平均成交价格为,对应的频率为;

使用时间在的平均成交价格为,对应的频率为

所以该汽车交易市场对于成交的每辆车可获得的平均佣金为

万元

例5.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的数据作了初步处理,得到下面的散点图及一些统计量的值.

y(微克)

x(千克)

3381110374-121-751

其中

(I)根据散点图判断,与,哪一个适宜作为蔬菜农药残量与用水量的回归方程类型(给出判断即可,不必说明理由);

(Ⅱ)若用解析式作为蔬菜农药残量与用水量的回归方程,求出与的回归方程.(c,d精确到

(Ⅲ)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到,参考数据)

附:参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:

【答案】(1)见解析;(2);(3)需要用4.5千克的清水清洗一千克蔬菜.

【详解】

(I)根据散点图判断适宜作为蔬菜农药残量与用水量的回归方程类型;

(Ⅱ)令,先建立y关于w的线性回归方程,

由于,∴.

∴y关于w的线性回归方程为,

∴y关于x的回归方程为.

(Ⅲ)当时,,

∴为了放心食用该蔬菜,估计需要用4.5千克的清水清洗一千克蔬菜。

线性回归方程的求法(需要给每个人发)

耿老师总结的高考统计部分的两个重要公式的具体如何应用 第一公式:线性回归方程为???y bx a =+的求法: (1) 先求变量x 的平均值,既1231()n x x x x x n = +++???+ (2) 求变量y 的平均值,既1231()n y y y y y n =+++???+ (3) 求变量x 的系数?b ,有两个方法 法112 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=??-+-++-?? (需理解并会代入数据) 法21 2 1()()?()n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆) []1122222212...,...n n n x y x y x y nx y x x x nx ++-?=??+++-??(这个公式需要自己记忆,稍微简单些) (4) 求常数?a ,既??a y bx =- 最后写出写出回归方程???y bx a =+。可以改写为:??y bx a =-(?y y 与不做区分) 例.已知,x y 之间的一组数据: 求y 与x 的回归方程: 解:(1)先求变量x 的平均值,既1(0123) 1.54x = +++= (2)求变量y 的平均值,既1(1357)44 y =+++= (3)求变量x 的系数?b ,有两个方法

法1?b = []11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=??-+-+-+-??--+--+--+--==??-+-+-+-?? 法2?b =[][]11222222222212...011325374 1.5457 ...0123n n n x y x y x y nx y x x x nx ++-??+?+?+?-??==????+++-+++???? (4)求常数?a ,既525??4 1.577a y bx =-=-?= 最后写出写出回归方程525???77 y bx a x =+=+ 第二公式:独立性检验 两个分类变量的独立性检验: 注意:数据a 具有两个属性1x ,1y 。数 据b 具有两个属性1x ,2y 。数据c 具有两个属性2x ,2y 数据d 具有两个属性2x ,2y 而且列出表格是最重要。解题步骤如下 第一步:提出假设检验问题 (一般假设两个变量不相关) 第二步:列出上述表格 第三步:计算检验的指标 2 2 ()()()()()n ad bc K a b c d a c b d -=++++ 第四步:查表得出结论 例如你计算出2K =9大于表格中7.879,则查表可得结论:两个变量之间不相关概率为0.005,或者可以肯定的说两个变量相关的概率为0.995.或095.50 例如你计算出2K =6大于表格中5.024,则查表可得结论:两个变量之间不相关概率为0.025,或者可以肯定的说两个变量相关的概率为0.995.或097.50 上述结论都是概率性总结。切记事实结论。只是大概行描述。具体发生情况要和实际联系!! !!

多项式回归、非线性回归模型

多项式回归、非线性回归模型 关键词:回归方程的统计检验、拟合优度检验、回归方程的显著性检验、F 检验、回归系数的显著性检验、残差分析、一元多项式回归模型、一元非线性回归模型 一、回归方程的统计检验 1. 拟合优度检验 1. 概念介绍 SST 总离差平方和total SSR 回归平方和regression SSE 剩余平方和error ∑∑∑∑====--= --- =n i i i n i i i n i i i n i i i y y y y y y y y R 1 2 1 2 12 12 2)()?()()?(1 2. 例题1 存在四点(-2,-3)、(-1,-1)、(1,2)、(4,3)求拟合直线与决定系数。 2. 回归方程的显著性检验 ) 2/()2/()?()?(1 212 -= ---= ∑∑==n SSE SSA n y y y y F n i i i n i i i 例6(F 检验) 在合金钢强度的例1中,我们已求出了回归方程,这里考虑关于回归方程的显著性检验,经计算有: 表5 X 射线照射次数与残留细菌数的方差分析表 这里值很小,因此,在显著性水平0.01下回归方程是显著的。 3. 回归系数的显著性检验 4. 残差分析 二、一元多项式回归模型

模型如以下形式的称为一元多项式回归模型: 0111a x a x a x a y n n n n ++++=-- 例1(多项式回归模型) 为了分析X 射线的杀菌作用,用200千伏的X 射线来照射细菌,每次照射6分钟,用平板计数法估计尚存活的细菌数。照射次数记为t ,照射后的细菌数为y 见表1。试求: (1)给出y 与t 的二次回归模型。 (2)在同一坐标系内作出原始数据与拟合结果的散点图。 (3)预测16=t 时残留的细菌数。 (4)根据问题的实际意义,你认为选择多项式函数是否合适? 表1 X 射线照射次数与残留细菌数 程序1 t=1:15; y=[352 211 197 160 142 106 104 60 56 38 36 32 21 19 15]; p=polyfit(t,y,2)%作二次多项式回归 y1=polyval(p,t);%模型估计与作图 plot(t,y,'-*',t,y1,'-o');%在同一坐标系中做出两个图形 legend('原始数据','二次函数') xlabel('t(照射次数)')%横坐标名 ylabel('y(残留细菌数)')%纵坐标名 t0=16; yc1=polyconf(p,t0)%预测t0=16时残留的细菌数,方法1 yc2=polyval(p,t0)%预测t0=16时残留的细菌数,方法2 即二次回归模型为: 8967.3471394.519897.121+-=t t y

线性回归推导及实例

数据点基本落在一条直线附近。这告诉我们,变量X与Y的关系大致可看作是线性关系,即它们之间的相互关系可以用线性关系来描述。但是由于并非所有的数据点完全落在一条直线上,因此X与Y的关系并没有确切到可以唯一地由一个X值确定一个Y值的程度。其它因素,诸如其它微量元素的含量以及测试误差等都会影响Y的测试结果。如果我们要研究X与Y的关系,可以作线性拟合 (2-1-1) 我们称(2-1-1)式为回归方程,a与b是待定常数,称为回归系数。从理论上讲,(2-1-1)式有无穷多组解,回归分析的任务是求出其最佳的线性拟合。 二、最小二乘法原理 如果把用回归方程计算得到的i值(i=1,2,…n)称为回归值,那么实际测量值y i与回归值i之间存在着偏差,我们把这种偏差称为残差,记为e i(i=1,2,3,…,n)。这样,我们就可以用残差平方和来度量测量值与回归直线的接近或偏差程度。残差平方和定义为: (2-1-2) 所谓最小二乘法,就是选择a和b使Q(a,b)最小,即用最小二乘法得到的回归直线是在所 有直线中与测量值残差平方和Q最小的一条。由(2-1-2)式可知Q是关于a,b的二次函数,所以它的最小值总是存在的。下面讨论的a和b的求法。 三、正规方程组 根据微分中求极值的方法可知,Q(a,b)取得最小值应满足 (2-1-3) 由(2-1-2)式,并考虑上述条件,则 (2-1-4) (2-1-4)式称为正规方程组。解这一方程组可得 (2-1-5) 其中 (2-1-6)

(2-1-7) 式中,L xy称为xy的协方差之和,L xx称为x的平方差之和。 如果改写(2-1-1)式,可得 (2-1-8) 或 (2-1-9) 由此可见,回归直线是通过点的,即通过由所有实验测量值的平均值组成的点。从力学观点看, 即是N个散点的重心位置。 现在我们来建立关于例1的回归关系式。将表2-1-1的结果代入(2-1-5)式至(2-1-7)式,得出 a=1231.65 b=-2236.63 因此,在例1中灰铸铁初生奥氏体析出温度(y)与氮含量(x)的回归关系式为 y=1231.65-2236.63x 四、一元线性回归的统计学原理 如果X和Y都是相关的随机变量,在确定x的条件下,对应的y值并不确定,而是形成一个分布。当X 取确定的值时,Y的数学期望值也就确定了,因此Y的数学期望是x的函数,即 E(Y|X=x)=f(x) (2-1-10) 这里方程f(x)称为Y对X的回归方程。如果回归方程是线性的,则 E(Y|X=x)=α+βx (2-1-11) 或 Y=α+βx+ε(2-1-12) 其中 ε―随机误差 从样本中我们只能得到关于特征数的估计,并不能精确地求出特征数。因此只能用f(x)的估计 式来取代(2-1-11)式,用参数a和b分别作为α和β的估计量。那么,这两个估计量是否能够满足要求呢? 1. 无偏性 把(x,y)的n组观测值作为一个样本,由样本只能得到总体参数α和β的估计值。可以证明,当满足下列条件: (1)(x i,y i)是n个相互独立的观测值 (2)εi是服从分布的随机变量 则由最小二乘法得到的a与b分别是总体参数α和β的无偏估计,即 E(a)= α E(b)=β 由此可推知 E()=E(y)

SAS学习系列25. 非线性回归

25. 非线性回归 现实世界中严格的线性模型并不多见,它们或多或少都带有某种程度的近似;在不少情况下,非线性模型可能更加符合实际。 对变量间非线性相关问题的曲线拟合,处理的方法主要有: (1)首先确定非线性模型的函数类型,对于其中可线性化问题则通过变量变换将其线性化,从而归结为前面的多元线性回归问题来解决; (2)若实际问题的曲线类型不易确定时,由于任意曲线皆可由多项式来逼近,故常可用多项式回归来拟合曲线; (3)若变量间非线性关系式已知(多数未知),且难以用变量变换法将其线性化,则进行数值迭代的非线性回归分析。 (一)可变换为线性的非线性回归

在很多场合,可以对非线性模型进行线性化处理,尤其是可变换为线性的非线性回归,运用最小二乘法进行推断,对线性化后的线性模型,可以应用REG过程步进行计算。 例1 有实验数据如下: 试分别采用指数回归(y =ae bx)方法进行回归分析。 代码: data exam25_1; input x y; cards; 1.1 109.95 1.2 40.45 1.3 20.09 1.4 24.53 1.5 11.02 1.6 7.39 1.7 4.95 1.8 2.72 1.9 1.82 2 1.49 2.1 0.82 2.2 0.3 2.3 0.2 2.4 0.22 ; run; proc sgplot data = exam25_1; scatter x = x y = y; run; proc corr data = exam25_1; var x y; run;

data new1; set exam25_1; v = log(y); run; proc sgplot data = new1; scatter x = x y = v; title'变量代换后数据'; run; proc reg data = new1; var x v; model v = x; print cli; title'残差图'; plot residual. * predicted.; run; data new2; set exam25_1; y1 = 14530.28*exp(-4.73895*x); run; proc gplot data = new2; plot y*x=1 y1*x=2 /overlay; symbol v=dot i=none cv=red; symbol2i=sm color=blue; title'指数回归图'; 运行结果:

(完整版)线性回归方程——非线性方程转化为线性方程

线性回归方程——非线性方程转化为线性方程 例1.(2015·高考全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费x i 和年销售量y i (i =1,2,?,8)数据作了初步处理,得到下面的散点图及一些统计量的值. x? y ? w ? 46.6 563 6.8 289.8 1.6 1469 108.8 表中w i =√x i ,w ? =1 8 ∑w i 8i=1, ,I )根据散点图判断,y =a +bx 与y =c +d √x ,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由); ,II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程; (III )已知这种产品的年利润z 与x ,y 的关系为z =0.2y ?x ,根据(II )的结果回答下列问题: (i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大? 附:对于一组数据(u 1,v 1) (u 2,v 2) ,…,(u n ,v n ) 其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为:β ?=∑ (u i ?u)(v i ?v) n i=1∑(u i ?u)2 n i=1,α?=v ?β ?u . 【答案】(Ⅰ)y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型;(Ⅱ)y ?=100.6+68√x ;(Ⅲ)(i)答案见解析;(ii)46.24千元. 【解析】(I )由散点图可以判断,y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型. (II )令w =√x ,先建立y 关于w 的线性回归方程,由于d ?=∑(w i ?w)(y i ?y) 8 i=1∑(w i ?w)28 i=1= 108.81.6 =68, ∴c?=y ?d ?w =563?68×6.8=100.6, ∴y 关于w 的线性回归方程为y ?=100.6+68w , 因此y 关于x 的回归方程为y ?=100.6+68√x . (III )(ⅰ)由(II )知,当x =49时,年销售量y 的预报值y ?=100.6+68√49=576.6, 年利润z 的预报值为z?=576.6×0.2?49=66.32. ,ⅱ)根据(II )的结果知,年利润z 的预报值z?=0.2(100.6+68√x)?x =?x +13.6√x +20.12, 所以当√x =13.62 =6.8,即x =46.24时,z?取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

线性回归方程高考题

线性回归方程高考题 1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据: 3 4 5 6 2.5 3 4 4.5 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)

2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下: 使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0 若有数据知y对x呈线性相关关系.求: (1) 填出下图表并求出线性回归方程=bx+a的回归系数,; 序号x y xy x2 1 2 2.2 2 3 3.8 3 4 5.5 4 5 6.5 5 6 7.0 ∑ (2) 估计使用10年时,维修费用是多少.

3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下: 零件的个数x(个) 2 3 4 5 加工的时间y(小时) 2.5 3 4 4.5 (1)在给定的坐标系中画出表中数据的散点图; (2)求出y关于x的线性回归方程,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间? (注:

4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表: 3 4 5 6 7 8 9 66 69 73 81 89 90 91 已知:. (Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程. 5、某种产品的广告费用支出与销售额之间有如下的对应数据: 2 4 5 6 8 30 40 60 50 70 (1)画出散点图: (2)求回归直线方程; (3)据此估计广告费用为10时,销售收入的值.

常见非线性回归模型

常见非线性回归模型 1.简非线性模型简介 非线性回归模型在经济学研究中有着广泛的应用。有一些非线性回归模型可以通 过直接代换或间接代换转化为线性回归模型,但也有一些非线性回归模型却无 法通过代换转化为线性回归模型。 柯布—道格拉斯生产函数模型 y AKL 其中L和K分别是劳力投入和资金投入, y是产出。由于误差项是可加的, 从而也不能通过代换转化为线性回归模型。 对于联立方程模型,只要其中有一个方程是不能通过代换转化为线性,那么这个联立方程模型就是非线性的。 单方程非线性回归模型的一般形式为 y f(x1,x2, ,xk; 1, 2, , p) 2.可化为线性回归的曲线回归 在实际问题当中,有许多回归模型的被解释变量y与解释变量x之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为

线性关系,利用线性回归求解未知参数,并作回归诊断。如下列模型。 (1)y 0 1e x (2)y 0 1x2x2p x p (3)y ae bx (4)y=alnx+b 对于(1)式,只需令x e x即可化为y对x是线性的形式y01x,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。 对于(2)式,可以令x1=x,x2=x2,?,x p=x p,于是得到y关于x1,x2,?, x p 的线性表达式y 0 1x12x2 pxp 对与(3)式,对等式两边同时去自然数对数,得lnylnabx ,令 y lny, 0 lna, 1 b,于是得到y关于x的一元线性回归模型: y 0 1x。 乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为yt本身是异方差的,而lnyt是等方差的。加性误差项模型认为yt是等 方差的。从统计性质看两者的差异,前者淡化了y t值大的项(近期数据)的作用, 强化了y t值小的项(早期数据)的作用,对早起数据拟合得效果较好,而后者则 对近期数据拟合得效果较好。 影响模型拟合效果的统计性质主要是异方差、自相关和共线性这三个方面。 异方差可以同构选择乘性误差项模型和加性误差项模型解决,必要时还可以使用 加权最小二乘。

线性回归方程公式证明

112233^ ^^^2 211(,),(,),(,)(,)1,2,3),()()n n i i i i i i n i i i i i i n x y x y x y x y y bx a x i n y bx a y y y a b Q y y bx a y ===+==+-=-=+-∑L L 设有对观察值,两变量符合线生回归设其回归方程为:,把自变量的某一观测值代(入入回归方程得:,此值与实际观测值存在一个差值,此差值称为剩余或误差。现要决定取何值时,才能够使剩余的平方和有最小值,即求11 2 21122 221 1111 22111:,()[()()()]()()()2()()2()()2()() ()2n n n i i i i n n i i i i i i n n n i i i i i i n n i i i i i n i i x x y y n n Q bx a y a bx y y y b x x n a bx y y y b x x a bx y y y a bx y x x b x x y y b x x =============+-=+---+-=+-+-+--+---+-----=--∑∑∑∑∑∑∑∑∑∑∑的最小值知又22 111 122211()()()()()()()()n n i i i i i n n i i i i i i n n i i i i b x x y y n a bx y y y b x x y y x y nx y b x x x n x a y bx ======--++-+----==--=-∑∑∑∑∑∑此式为关于的一元二次方程,当

非线性回归分析(教案)

1.3非线性回归问题, 知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。 能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。 情感目标:体会数学知识变化无穷的魅力。 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的 过程中寻找更好的模型的方法. 教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程: 一、复习准备: 对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课: 1. 探究非线性回归方程的确定: 1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的/y 个 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量. ③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为 0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究 例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数 x 与增大的容积y 之间的关系.

多元线性回归模型案例

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。?农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。

资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews 软件进行最小二乘估计,估计结果如下表所示: DependentVariable:Y Method:LeastSquares Sample: Includedobservations:19 Variable Coefficient t-Statistic Prob. C X1 X3 X4 X5 X6 X7 X8 R-squared Meandependentvar AdjustedR-squared 表1最小二乘估计结果 回归分析报告为: () ()()()()()()()()()()()()()()() 2345678 2? -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66 R Df DW F ====二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6

多元线性回归的计算方法

多元线性回归的计算方法 摘要 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭 消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。 多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由 于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。 但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下: Zy=β1Zx1+β2Zx2+…+βkZxk 注意,由于都化成了标准分,所以就不再有常数项a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端的变量都取0时,常数项也就为0了。 多元线性回归模型的建立 多元线性回归模型的一般形式为 Yi=β0+β1X1i+β2X2i+…+i i i i h x υβ+ =1,2,…,n 其中 k 为解释变量的数目,j β=(j=1,2,…,k)称为回归系数 (regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为 E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXki βj 也被称为偏回归系数(partial regression coefficient) 多元线性回归的计算模型

非线性回归分析

非线性回归问题, 知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。 能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。 情感目标:体会数学知识变化无穷的魅力。 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的 过程中寻找更好的模型的方法. 教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程: 一、复习准备: 对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课: 1. 探究非线性回归方程的确定: 1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量. ③ 在上式两边取对数,得21ln ln y c x c =+ ,再令ln z y =,则21ln z c x c =+, 可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-$,因此红铃虫的产卵数对温度的非线性回归方程为$0.272 3.843x y e -=. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究 例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数x 与增大的容积y 之间的关系.

计量第3章(7节)非线性回归实例

非线性回归实例 例1:此模型用来评价台湾农业生产效率。用台湾1958-1972年农业生产总值(Y t ),劳动力(X 1t ),资本投入(X 2t )数据为样本得到估计模型: = -3.4 + 1.50 LnX 1t + 0.49 LnX 2t (2.78) (4.80) R 2 = 0.89, F = 48.45 还原后得, = 0.713X 1t 1.50 X 2t 0.49 因为1.50 + 0.49 = 1.99,所以,此生产函数属规模报酬递增函数。当劳动力和资本投入都增加1%时,产出增加近2%。 例2:用天津市工业生产总值(Y t ),职工人数(L t ),固定资产净值与流动资产平均余额(K t )数据 (1949-1997年) 为样本得估计模型如下: Ln Y t = 0.7272 + 0.2587 Ln L t + 0.6986 LnK t (3.12) (3.08) (18.75) R 2 = 0.98, s.e. = 0.17, DW = 0.42, F = 1381.4 因为0.2587 + 0.6986 = 0.9573,所以此生产函数基本属于规模报酬不变函数。 例3: 中国铅笔需求预测模型 中国从上个世纪30年代开始生产铅笔。1985年全国有22个厂家生产铅笔。产量居世界首位(33.9亿支),占世界总产量的1/3。改革开放以后,铅笔生产增长极为迅速。1979-1983年平均年增长率为8.5%。铅笔销售量时间序列见图1。1961-1964年的销售量平稳状态是受到了经济收缩的影响。文革期间销售量出现两次下降,是受到了当时政治因素的影响。1969-1972年的增长是由于一度中断了的中小学教育逐步恢复的结果。1977-1978年的增长是由于高考正式恢复的结果。1981年中国开始生产自动铅笔,对传统铅笔市场冲击很大。1979-1985年的缓慢增长是受到了自动铅笔上市的影响。 初始确定的影响铅笔销量的因素有全国人口、各类在校人数、设计

非线性回归分析

非线性回归分析(转载) (2009-10-23 08:40:20) 转载 分类:Web分析 标签: 杂谈 在回归分析中,当自变量和因变量间的关系不能简单地表示为线性方程,或者不能表示为可化为线性方程的时侯,可采用非线性估计来建立回归模型。 SPSS提供了非线性回归“Nonlinear”过程,下面就以实例来介绍非线性拟合“Nonlinear”过程的基本步骤和使用方法。 应用实例 研究了南美斑潜蝇幼虫在不同温度条件下的发育速率,得到试验数据如下: 表5-1 南美斑潜蝇幼虫在不同温度条件下的发育速率 温度℃17.5 20 22.5 25 27.5 30 35 发育速率0.0638 0.0826 0.1100 0.1327 0.1667 0.1859 0.1572 根据以上数据拟合逻辑斯蒂模型: 本例子数据保存在DATA6-4.SAV。 1)准备分析数据 在SPSS数据编辑窗口建立变量“t”和“v”两个变量,把表6-14中的数据分别输入“温度”和“发育速率”对应的变量中。 或者打开已经存在的数据文件(DATA6-4.SAV)。 2)启动线性回归过程 单击SPSS主菜单的“Analyze”下的“Regression”中“Nonlinear”项,将打开如图5-1

所示的线回归对话窗口。 图5-1 Nonlinear非线性回归对话窗口 3) 设置分析变量 设置因变量:从左侧的变量列表框中选择一个因变量进入“Dependent(s)”框。本例子选“发育速率[v]”变量为因变量。 4) 设置参数变量和初始值 单击“Parameters”按钮,将打开如图6-14所示的对话框。该对话框用于设置参数的初始值。 图5-2 设置参数初始值

多元线性回归模型公式

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量 y 受k 个自变量x 1,x 2,...,x k 的影响,其n 组观测值为(y a ,x 1a ,x 2a ,...,x ka ), a 1,.2..,n 。那么,多元线性回归模型的结构形式为: y a 1x 1a 2x 2a ... k x ka a (3.2.11) 式中: 0,1 ,..., k 为待定参数; a 为随机变量。 如果b 0,b 1,...,b k 分别为 0,1, 2 ... , k 的拟合值,则回归方程为 ?=b 0 b 1x 1 b 2x 2 ... b k x k (3.2.12) 式中: b 0为常数; b 1,b 2,...,b k 称为偏回归系数。 偏回归系数b i (i1,2,...,k )的意义是,当其他自变量 x j (j i )都固定时,自变量 x i 每 变化一个单位而使因变 量 y 平均改变的数值。 根据最小二乘法原理, i (i 0,1,2,...,k )的估计值b i (i 0,1,2,...,k )应该使 n 2 n 2 Q y a y a y a b 0 b1x1a b2x2a ... bkxk a min (3.2.13) a 1 a1 有求极值的必要条件得 Q n 2 y a y a 0 b 0 a 1 (3.2.14) Q n 2 y a yaxja 0(j 1,2,...,k) b j a1 将方程组(3.2.14)式展开整理后得:

非线性回归分析(常见曲线及方程)

非线性回归分析 回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理 两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S型曲线(Logistic) 对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析 常见非线性规划曲线 1.双曲线1b a y x =+ 2.二次曲线 3.三次曲线 4.幂函数曲线 5.指数函数曲线(Gompertz) 6.倒指数曲线y=a / e b x其中a>0, 7.S型曲线(Logistic) 1 e x y a b-= + 8.对数曲线y=a+b log x,x>0 9.指数曲线y=a e bx其中参数a>0 1.回归: (1)确定回归系数的命令 [beta,r,J]=nlinfit(x,y,’model’,beta0) (2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha) 2.预测和预测误差估计: [Y,DELTA]=nlpredci(’model’, x,beta,r,J) 求nlinfit 或lintool所得的回归函数在x处的预测值Y及预测值的显著性水平为1-alpha的置信区间Y,DELTA. 例2 观测物体降落的距离s与时间t的关系,得到数据如下表,求s 2 解: 1. 对将要拟合的非线性模型y=a/ e b x,建立M文件如下:

实验六 用SPSS进行非线性回归分析

实验六用SPSS进行非线性回归分析 例:通过对比12个同类企业的月产量(万台)与单位成本(元)的资料(如图1),试配合适当的回归模型分析月产量与单位成本之间的关系 图1原始数据和散点图分析 一、散点图分析和初始模型选择 在SPSS数据窗口中输入数据,然后插入散点图(选择Graphs→Scatter命令),由散点图可以看出,该数据配合线性模型、指数模型、对数模型和幂函数模型都比较合适。进一步进行曲线估计:从Statistic下选Regression菜单中的Curve Estimation命令;选因变量单位成本到Dependent框中,自变量月产量到Independent框中,在Models框中选择Linear、Logarithmic、Power和Exponential四个复选框,确定后输出分析结果,见表1。 分析各模型的R平方,选择指数模型较好,其初始模型为 但考虑到在线性变换过程可能会使原模型失去残差平方和最小的意义,因此进一步对原模型 模型汇总和参数估计值 因变量: 单位成本 方程模型汇总参数估计值 R 方 F df1 df2 Sig. 常数b1 线性.912 1 10 .000 对数.943 1 10 .000 幂.931 1 10 .000 指数.955 1 10 .000 自变量为月产量。 表1曲线估计输出结果 二、非线性模型的优化 SPSS提供了非线性回归分析工具,可以对非线性模型进行优化,使其残差平方和达到最小。从Statistic下选Regression菜单中的Nonlinear命令;按Paramaters按钮,输入参数A:和B:;选单位成本到Dependent框中,在模型表达式框中输入“A*EXP(B*月产量)”,确定。SPSS输出结果见表2。 由输出结果可以看出,经过6次模型迭代过程,残差平方和已有了较大改善,缩小为,误差率小于, 优化后的模型为: 迭代历史记录b 迭代数a残差平方和参数 A B +133 .087

高考数学复习点拨 非线性回归问题

非线性回归问题 两个变量不呈线性关系,不能直接利用线性回归方程建立两个变量的关系,可以通过变换的方法转化为线性回归模型。分析非线性回归问题的具体做法是: (1)若问题中已给出经验公式,这时可以将变量x 进行置换(换元),将变量的非线性关系转化为线性关系,将问题化为线性回归分析问题来解决. (2)若问题中没有给出经验公式,需要我们画出已知数据的散点图,通过与各种已知函数(如指数函数、对数函数、幂函数等)的图象作比较,选择一种与这些散点拟合得最好的函数,然后采用适当的变量置换,将问题化为线性回归分析问题来解决. 下面举例说明非线性回归分析问题的解法. 例1 在彩色显影中,由经验可知:形成染料光学密度y 与析出银的光学密度x 由公式 e b x y A =(b <0)表示,现测得实验数据如下: 试求对的回归方程. 分析:该例是一个非线性回归分析问题,由于题目中已给定了要求的曲线为e b x y A =(b <0)类型,我们只要通过所给的11对样本数据求出A 和b ,即可确定x 与y 的相关关系的曲线方程. 解:由题意可知,对于给定的公式e b x y A =(b <0)两边取自然对数,得ln ln b y A x =+. 与线性回归方程对照可以看出,只要取1 u x = ,ln v y =,ln a A =,就有v a bu =+,这是v 对u 的线性回归直线方程,对此我们再套用相关性检验,求回归系数b 和a . 题目中所给数据由变量置换1 u = ,ln v y =变为如表所示的数据: 由于|r |=0.998>0.602,可知u 与v 具有很强的线性相关关系. 再求得0.146b =-,0.548a =, ∴v =0.5480.146u -,把u 和v 置换回来可得0.146 ln 0.548y x =- , ∴0.1460.1460.1460.5480.548 e 1.73x x x y e e e - - - ===, ∴回归曲线方程为0.1461.73e x y - =. 点评:解决本题的思路是通过适当的变量置换把非线性回归方程转化为线性回归方程,然后再套用线性回归分析的解题步骤. 例2 为了研究某种细菌随时间x 变化的繁殖个数,收集数据如下:

相关主题