搜档网
当前位置:搜档网 › 半导体专业实验补充silvaco器件仿真(精)

半导体专业实验补充silvaco器件仿真(精)

半导体专业实验补充silvaco器件仿真(精)
半导体专业实验补充silvaco器件仿真(精)

实验2 PN结二极管特性仿真

1、实验内容

(1PN结穿通二极管正向I-V特性、反向击穿特性、反向恢复特性等仿真。

(2结构和参数:PN结穿通二极管的结构如图1所示,两端高掺杂,n-为耐压层,低掺杂,具体参数:器件宽度4μm,器件长度20μm,耐压层厚度16μm,p+区厚度2μm,n+区厚度2μm。掺杂浓度:p+区浓度为1×1019cm-3,n+区浓度为1×1019cm-3,耐压层参考浓度为5×1015 cm-3。

图1 普通耐压层功率二极管结构

2、实验要求

(1掌握器件工艺仿真和电气性能仿真程序的设计

(2掌握普通耐压层击穿电压与耐压层厚度、浓度的关系。

3、实验过程

#启动Athena

go athena

#器件结构网格划分;

line x loc=0.0 spac= 0.4

line x loc=4.0 spac= 0.4

line y loc=0.0 spac=0.5

line y loc=2.0 spac=0.1

line y loc=10 spac=0.5

line y loc=18 spac=0.1

line y loc=20 spac=0.5

#初始化Si衬底;

init silicon c.phos=5e15 orientation=100 two.d #沉积铝;

deposit alum thick=1.1 div=10

#电极设置

electrode name=anode x=1

electrode name=cathode backside

#输出结构图

structure outf=cb0.str

tonyplot cb0.str

#启动Atlas

go atlas

#结构描述

doping p.type conc=1e20 x.min=0.0 x.max=4.0 y.min=0 y.max=2.0 uniform

doping n.type conc=1e20 x.min=0.0 x.max=4.0 y.min=18 y.max=20.0 uniform

#选择模型和参数

models cvt srh print

method carriers=2

impact selb

#选择求解数值方法

method newton

#求解

solve init

log outf=cb02.log

solve vanode=0.03

solve vanode=0.1 vstep=0.1 vfinal=5 name=anode

#画出IV特性曲线

tonyplot cb02.log

#退出

quit

图2为普通耐压层功率二极管的仿真结构。正向I-V特性曲线如图3所示,导通电压接近0.8V。

图2 普通耐压层功率二极管的仿真结构

图3 普通耐压层功率二极管的正向I-V特性曲线

运用雪崩击穿的碰撞电离模型,加反向偏压,刚开始步长小一点,然后逐渐加大步长。solve vanode=-0.1 vstep=-0.1 vfinal=-5 name=anode

solve vanode=-5.5 vstep=-0.5 vfinal=-20 name=anode

solve vanode=-22 vstep=-2 vfinal=-40 name=anode

solve vanode=-45 vstep=-5 vfinal=-240 name=anode

求解二极管反向IV特性,图4为该二极管的反向I-V特性曲线。击穿时的纵向电场分布如图5

所示,最大电场在结界面处,约为2.5×105V?cm-1,在耐压层中线性减小到80000 V?cm-1。

图4 普通耐压层功率二极管的反向I-V特性曲线

图5 普通耐压层功率二极管击穿时的电场分布

导通的二极管突加反向电压, 需要经过一段时间才能恢复反向阻断能力。电路图如图6所示。设t= 0 前电路已处于稳态,I d= I f0。t= 0 时,开关K 闭合,二极管从导通向截止过渡。在一段时间内,电流I d以d i0/ d t = - Ur/ L 的速率下降。在一段时间内电流I d会变成负值再逐渐恢复到零。仿真时先对器件施加一个1V的正向偏压,然后迅速改变电压给它施加一个反向电压增大到2V。

solve vanode=1

log outf=cj2_1.log

solve vcathode=2.0 ramptime=2.0e-8 tstop=5.0e-7 tstep=1.0e-10

反向恢复特性仿真时,也可以采用如图7的基本电路,其基本原理为:在初始时刻,电阻R1的值很小,电阻R2的值很大,例如可设R1为1×10-3Ω,R2为1×106Ω;电感

L1可设为3nH;电压源及电流源也分别给定一个初始定值v1,i1;那么由于R2远大于R1,则根据KCL可知,电流i1主要经过R1支路,即i1的绝大部分电流稳定的流过二极管,二极管正向导通,而R2支路几乎断路,没有电路流过。然后,在短暂的时间内,使电阻R2的阻值骤降。此时,电阻器R2作为一个阻源,其阻值在极短的时间间隔内以指数形式从1×106Ω下降到1×10-3Ω。这一过程本质上是使与其并联的连在二极管阳极的电流源i1短路,这样电流i1几乎全部从R2支路流过,而二极管支路就没有i1的分流,此刻电压源v1开始起作用,二极管两端就被施加了反偏电压,由于这些过程都在很短的时间内完成,因而能够很好的实现二极管反向恢复特性的

模拟。反向恢复特性仿真图如图8所示,PN结功率二极管的反向恢复时间约为50ns。

图6 反向恢复特性测试原理电路图

二极管

独立电压源V1

图7 二极管反向恢复特性模拟电路图

图8 器件反向恢复特性曲线

实验3 PN结终端技术仿真

1、实验内容

由于PN结在表面的曲率效应,使表面的最大电场常大于体内的最大电场,器件的表面易击穿,采用终端技术可使表面最大电场减小,提高表面击穿电压。场限环和场板是功率器件中常用的两种终端技术。

场限环技术是目前功率器件中被大量使用的一种终端技术。其基本原理是在主结表面和衬底之间加反偏电压后,主结的PN结在反向偏压下形成耗尽层,并随着反向偏置电压的增加而增加。当偏置电压增加到一定值是,主结的耗尽层达到环上,如图1所示,这样就会使得有一部分电压有场环分担,将主结的电场的值限制在临界击穿电压以内,这将显著的减小主结耗尽区的曲率,从而增加击穿电压。

图1 场限环

场板结构在功率器件中被广泛应用。场板结构与普通PN结的区别在于场板结构中PN 区引线电极横向延伸到PN区外适当的距离。而普通PN结的P区引线电极的横向宽度一般不超过P扩散区的横向尺寸。PN结反向工作时,P区相对于N型衬底加负电位。如果场板下边的二氧化硅层足够厚,则这个电场将半导体表面的载流子排斥到体内,使之表面呈现出载流子的耗尽状态,如图2所示,就使得在同样电压作用下,表面耗尽层展宽,电场减小,击穿电压得到提高。

2、实验要求

(1场限环特性仿真

场限环:击穿电压200V,设计3个环,环的宽度依次为6、5、5、5μm,间距为4、5、6μm, 外延层浓度为1×1015 cm-3,观察表面电场。

(2场板特性仿真

场板:氧化层厚度1μm,结深1μm,场板长度分别为0μm、2μm、4μm、6μm、

8μm、10μm,外延层浓度为1×1015 cm-3,观察表面电场。

图2 场板

3、场板的应用实例:场板对大功率GaN HEMT击穿电压的影响

(1内容

(aGaN HEMT的工作机理、击穿特性刻画以及对场板结构的GaN HEMT击穿特性的进行仿真分析。

(b结构和参数:场板结构的GaN HEMT的结构尺寸及掺杂浓度如图3所示。

图3 场板结构的大功率GaN HEMT

(2 要求

(a掌握定义一个完整半导体器件结构的步骤,并能对其电性能进行仿真研究。

(b理解场板技术对器件击穿电压提高的作用原理并能结合仿真结果给出初步分析。

(3实验过程

#启动internal,定义结构参数

# 场板长度从1um增大到2.25um,步长为0.25um,通过改变l 取值来改变场板长度set l= 1.0

# drain-gate distance

set Ldg=5.1

# field plate thickness

set t=1.77355

# AlGaN composition fraction

set xc=0.295

# set trap lifetime

set lt=1e-7

set light=1e-5

# mesh locations based on field plate geometry

set xl=0.9 + $l

set xd=0.9 + $Ldg

set y1= 0.3 + $t

set y2= $y1 + 0.02

set y3= $y2 + 0.04

set y4= $y2 + 0.18

# 启动二维器件仿真器

go atlas

mesh width=1000

# 网格结构

x.m l=0.0 s=0.1

x.m l=0.05 s=0.05

x.m l=0.5 s=0.05

x.m l=0.9 s=0.025

x.m l=(0.9+$xl/2 s=0.05 x.m l=$xl s=0.025

x.m l=($xl+$xd/2 s=0.25 x.m l=$xd-0.05 s=0.05 x.m l=$xd s=0.05

#

y.m l=0.0 s=0.1000

y.m l=0.3 s=0.1000

y.m l=$y1 s=0.0020

y.m l=$y2 s=0.0020

y.m l=$y3 s=0.0100

y.m l=$y4 s=0.0500

# device structure

# POLAR.SCALE is chosen to match calibrated values

# of 2DEG charge concentration

region num=1 mat=SiN y.min=0 y.max=$y1

region num=2 mat=AlGaN y.min=$y1 y.max=$y2 donors=1e16 https://www.sodocs.net/doc/ad9989317.html,p=$xc polar calc.strain polar.scale=-0.5

region num=3 mat=GaN y.min=$y2 y.max=$y4 donors=1e15 polar calc.strain polar.scale=-0.5

#

elect name=source x.max=0 y.min=$y1 y.max=$y3

elect name=drain x.min=6.0 y.min=$y1 y.max=$y3

elect name=gate x.min=0.5 x.max=0.9 y.min=0.3 y.max=$y1

elect name=gate x.min=0.5 x.max=$xl y.min=0.3 y.max=0.3

#

doping gaussian characteristic=0.01 conc=1e18 n.type x.left=0.0 \

x.right=0.05 y.top=$y1 y.bottom=$y3 https://www.sodocs.net/doc/ad9989317.html,teral=0.01 direction=y doping gaussian characteristic=0.01 conc=1e18 n.type x.left=$xd-0.05 \

x.right=$xd y.top=$y1 y.bottom=$y3 https://www.sodocs.net/doc/ad9989317.html,teral=0.01 direction=y

###################################################################

# KM parameter set

################################################################### material material=GaN eg300=3.4 align=0.8 permitt=9.5 \

mun=900 mup=10 vsatn=2e7 nc300=1.07e18 nv300=1.16e19 \

real.index=2.67 imag.index=0.001 \

taun0=$lt taup0=$lt

material material=AlGaN affinity=3.82 eg300=3.96 align=0.8 permitt=9.5 \

mun=600 mup=10 nc300=2.07e18 nv300=1.16e19 \

real.index=2.5 imag.index=0.001 \

taun0=$lt taup0=$lt

################################################################### model print fermi fldmob srh

impact material=GaN selb an1=2.9e8 an2=2.9e8 bn1=3.4e7 bn2=3.4e7 \

ap1=2.9e8 ap2=2.9e8 bp1=3.4e7 bp2=3.4e7

#

contact name=gate work=5.23

# 人为引进光照以利于实现阻断状态下仿真收敛,这是仿真研究击穿的常用手段beam number=1 x.o=0 y.o=$y4+0.1 angle=270 wavelength=0.3

#

output con.band val.band band.param charge e.mob h.mob flowlines qss

# IdVg特性求解

solve

log outf=ganfetex02_0.log

solve vdrain=0.05

solve vstep=-0.2 vfinal=-2 name=gate

solve vstep=-0.1 vfinal=-4 name=gate

log off

save outfile=ganfetex02_0.str

extract init infile="ganfetex02_0.log"

extract name="Vpinchoff" xintercept(maxslope(curve(v."gate",i."drain" # IdVd击穿曲线

method autonr gcarr.itlimit=10 clim.dd=1e3 clim.eb=1e3 nblockit=25 solve init

# turn on optical source to help initiate breakdown

# # 人为引进光照以利于实现阻断状态下仿真收敛

solve b1=$light index.check

#

solve nsteps=10 vfinal=$Vpinchoff name=gate b1=$light

log outf=ganfetex02_$'index'.log

solve vstep=0.1 vfinal=1 name=drain b1=$light

solve vstep=1 vfinal=10 name=drain b1=$light

solve vstep=2 vfinal=20 name=drain b1=$light

solve vstep=5 vfinal=1200 name=drain b1=$light cname=drain compl=0.5

# change to current contact to resolve breakdown

contact name=drain current

solve

solve imult istep=1.1 ifinal=1 name=drain

#

save outfile=ganfetex02_$'index'.str

#

extract init infile="ganfetex02_1$'index'.log"

extract name="a" slope(maxslope(curve(i."drain",v."drain"

extract name="b" xintercept(maxslope(curve(i."drain",v."drain"

extract name="Vdmax" max(curve(i."drain",v."drain"

extract name="Idmax" x.val from curve(i."drain",v."drain" where y.val=$Vdmax extract name="Vd1" $Vdmax - 20

extract name="Id1" y.val from curve(v."drain",i."drain" where x.val=$Vd1 extract name="c" grad from curve(v."drain",i."drain" where x.val=$Vdmax

extract name="d" $Idmax - $c*$Vdmax

extract name="Vbr" ($b - $d/($c - (1/$a

extract name="Is" $b + $Vbr/$a

tonyplot ganfetex02_1.str ganfetex02_2.str ganfetex02_3.str ganfetex02_4.str ganfetex02_5.str ganfetex02_6.str -set ganfetex02_1.set

tonyplot -overlay ganfetex02_1.log ganfetex02_2.log ganfetex02_3.log

ganfetex02_4.log ganfetex02_5.log ganfetex02_6.log -set ganfetex02_0.set

quit

图4-9为不同场板长度下半导体层中碰撞离化率的分布图。正向I-V特性曲线如图5所示,导通电压接近0.8V。

图4 场板长度L=1um的沟道中电子碰撞产生率模拟分布

图5 场板长度L=1.25um的沟道中电子碰撞产生率模拟分布

图6 场板长度L=1.5um的沟道中电子碰撞产生率模拟分布

图7 场板长度L=1.75um的沟道中电子碰撞产生率模拟分布

半导体专业实验补充silvaco器件仿真..

实验2 PN结二极管特性仿真 1、实验内容 (1)PN结穿通二极管正向I-V特性、反向击穿特性、反向恢复特性等仿真。 (2)结构和参数:PN结穿通二极管的结构如图1所示,两端高掺杂,n-为耐压层,低掺杂,具体参数:器件宽度4μm,器件长度20μm,耐压层厚度16μm,p+区厚度2μm,n+区厚度2μm。掺杂浓度:p+区浓度为1×1019cm-3,n+区浓度为1×1019cm-3,耐压层参考浓度为5×1015 cm-3。 图1 普通耐压层功率二极管结构 2、实验要求 (1)掌握器件工艺仿真和电气性能仿真程序的设计 (2)掌握普通耐压层击穿电压与耐压层厚度、浓度的关系。 3、实验过程 #启动Athena go athena #器件结构网格划分; line x loc=0.0 spac= 0.4 line x loc=4.0 spac= 0.4 line y loc=0.0 spac=0.5 line y loc=2.0 spac=0.1 line y loc=10 spac=0.5 line y loc=18 spac=0.1 line y loc=20 spac=0.5 #初始化Si衬底; init silicon c.phos=5e15 orientation=100 two.d #沉积铝; deposit alum thick=1.1 div=10 #电极设置 electrode name=anode x=1 electrode name=cathode backside #输出结构图 structure outf=cb0.str tonyplot cb0.str #启动Atlas go atlas #结构描述

实验六 半导体器件仿真实

实验六半导体器件仿真实验 姓名:林少明专业:微电子学学号11342047 【实验目的】 1、理解半导体器件仿真的原理,掌握Silvaco TCAD 工具器件结构描述流程及特 性仿真流程; 2、理解器件结构参数和工艺参数变化对主要电学特性的影响。 【实验原理】 1. MOSFET 基本工作原理(以增强型NMOSFET 为例): 图 1 MOSFET 结构图及其夹断特性 当外加栅压为0 时,P 区将N+源漏区隔开,相当于两个背对背PN 结,即使在源漏之间加上一定电压,也只有微小的反向电流,可忽略不计。当栅极加有正向电压时,P 型区表面将出现耗尽层,随着V GS的增加,半导体表面会由耗尽层转为反型。当V GS>V T时,表面就会形成N 型反型沟道。这时,在漏源电压V DS的作用下,沟道中将会有漏源电流通过。当V DS一定时,V GS越高,沟道越厚,沟道电流则越大。

2. MOSFET 转移特性 V DS 恒定时,栅源电压 V GS 和漏源电流 I DS 的关系曲线即是 MOSFET 的转移特性。 对于增强型 NMOSFET ,在一定的 V DS 下, V GS =0 时, I DS =0;只有 V GS >V T 时,才有 I DS >0。图 2 为增强型 NMOSFET 的转移特性曲线。 图 2 增强型 NMOSFET 的转移特性曲线 图中转折点位置处的 V GS (th ) 值为阈值电压。 3. MOSFET 的输出特性 对于 NMOS 器件,可以证明漏源电流: 令n = ox WC L μβ,称β为增益因子。 (1)()DS GS T V V V <<- 由于 V DS 很小,忽略2DS V 项,可得:

Silvaco工艺及器件仿真2

4.1.7栅氧厚度的最优化 下面介绍如何使用DECKBUILD中的最优化函数来对栅极氧化厚度进行最优化。假定所测量的栅氧厚度为100?,栅极氧化过程中的扩散温度和偏压均需要进行调整。为了对参数进行最优化,DECKBUILD最优化函数应按如下方法使用: a.依次点击Main control和Optimizer…选项;调用出如图4.15所示的最优化工具。第一个最优化视窗显示了Setup模式下控制参数的表格。我们只改变最大误差参数以便能精确地调整栅极氧化厚度为100?; b.将Maximum Error在criteria一栏中的值从5改为1; c.接下来,我们通过Mode键将Setup模式改为Parameter模式,并定义需要优化参数(图4.16)。 图4.15 DECKBUILD最优化的Setup模式 图4.16 Parameter模式 需要优化的参数是栅极氧化过程中的温度和偏压。为了在最优化工具中对其进行最优化,如图4.17所示,在DECKBUILD窗口中选中栅极氧化这一步骤;

图4.17 选择栅极氧化步骤 d.然后,在Optimizer中,依次点击Edit和Add菜单项。一个名为Deckbuild:Parameter Define的窗口将会弹出,如图4.18所示,列出了所有可能作为参数的项; 图4.18 定义需要优化的参数 e.选中temp=和press=这两项。然后,点击Apply。添加的最优化参数将如图4.19所示一样列出; 图4.19 增加的最优化参数 f.接下来,通过Mode键将Parameter模式改为Targets模式,并定义优化目标; g.Optimizer利用DECKBUILD中Extract语句的值来定义优化目标。因此,返回DECKBUILD的文本窗口并选中Extract栅极氧化厚度语句,如图4.20所示;

单片机常用元件-protues仿真

那个按键是keypad-smallcalc。若楼主还需要其他的可以发给你Proteus的这25大类元器件分别为: Analog ICs 模拟IC CMOS 4000 series CMOS 4000系列 Data Converters 数据转换器 Diodes 二极管Electromechanical 机电设备(只有电机模型) Inductors 电感 Laplace Primitives Laplace变换器 Memory ICs 存储器IC Microprocessor ICs 微处理器IC Miscellaneous 杂类(只有电灯和光敏电阻组成的设备) Modelling Primitives 模型基元 Operational Amplifiers 运算放大器 Optoelectronics 光电子器件 Resistors 电阻 Simulator Primitives 仿真基元 Switches & Relays 开关和继电器 Transistors 三极管 TTL 74、74ALS、74AS、74F、74HC、74HCT、74LS、74S series 74系列集成电路

除此之外,你还应熟悉常用器件的英文名称,ANY电子为您列举如下:AND 与门ANTENNA 天线 BATTERY 直流电源(电池)BELL 铃,钟BRIDEG 1 整流桥(二极管) BRIDEG 2 整流桥(集成块) BUFFER 缓冲器 BUZZER 蜂鸣器 CAP 电容 CAPACITOR 电容 CAPACITOR POL 有极性电容 CAPVAR 可调电容 CIRCUIT BREAKER 熔断丝 COAX 同轴电缆 CON 插口CRYSTAL 晶振 DB 并行插口 DIODE 二极管 DIODE SCHOTTKY 稳压二极管 DIODE VARACTOR 变容二极管

半导体器件物理及工艺

?平时成绩30% + 考试成绩70% ?名词解释(2x5=10)+ 简答与画图(8x10=80)+ 计算(1x10=10) 名词解释 p型和n型半导体 漂移和扩散 简并半导体 异质结 量子隧穿 耗尽区 阈值电压 CMOS 欧姆接触 肖特基势垒接触 简答与画图 1.从能带的角度分析金属、半导体和绝缘体之间的区别。 2.分析pn结电流及耗尽区宽度与偏压的关系。 3.什么是pn结的整流(单向导电)特性?画出理想pn结电流-电压曲线示意图。 4.BJT各区的结构有何特点?为什么? 5.BJT有哪几种工作模式,各模式的偏置情况怎样? 6.画出p-n-p BJT工作在放大模式下的空穴电流分布。 7.MOS二极管的金属偏压对半导体的影响有哪些? 8.MOSFET中的沟道是多子积累、弱反型还是强反型?强反型的判据是什么? 9.当VG大于VT且保持不变时,画出MOSFET的I-V曲线,并画出在线性区、非线 性区和饱和区时的沟道形状。 10.MOSFET的阈值电压与哪些因素有关? 11.半导体存储器的详细分类是怎样的?日常使用的U盘属于哪种类型的存储器,画出 其基本单元的结构示意图,并简要说明其工作原理。 12.画出不同偏压下,金属与n型半导体接触的能带图。 13.金属与半导体可以形成哪两种类型的接触?MESFET中的三个金属-半导体接触分 别是哪种类型? 14.对于一耗尽型MESFET,画出VG=0, -0.5, -1V(均大于阈值电压)时的I-V曲线示 意图。 15.画出隧道二极管的I-V曲线,并画出电流为谷值时对应的能带图。 16.两能级间的基本跃迁过程有哪些,发光二极管及激光器的主要跃迁机制分别是哪 种? 计算 Pn结的内建电势及耗尽区宽度

模电实验报告——半导体器件特性仿真

实验报告 课程名称:___模拟电子技术基础实验_____实验名称:____半导体器件特性仿真____实验类型:__EDA___ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、 实验目的和要求 1、了解PSPICE 软件常用菜单和命令的使用。 2、掌握PSPICE 电路图的输入和编辑。 3、学习PSPICE 分析设置、仿真、波形查看等方法。 4、学习半导体器件特性的仿真分析方法。 二、 实验内容和原理 1、二极管伏安特性测试电路如图3.1.1所示,输入该电路图,设置合适的分析方式及参数,用PSpice 程序仿真分析二极管的伏安特性。 2、在直流分析中设置对温度的内嵌分析,仿真分析二极管在不同温度下的伏安特性。 3、将电源Vs 用VSIN 元件代替,并设置合适的元件参数,仿真分析二极管两端的输出波形。 4、三极管特性测试电路如图3.1.2所示,用PSpice 程序仿真分析三极管的输出特性,并估算电压放大倍数。 图3.1.1 二极管特性测试电路 图3.1.2 三极管特性测试电路 三、 主要仪器设备 装有PSpice 程序的PC 机 四、 操作方法和实验步骤 1、二极管特性的仿真分析

受温度影响。用PSpice仿真时,从元件库中选出相应元件,连线,设置分析参数。二极管特性测试电路的直流扫描分析参数可设置为:扫描变量类型为电压源,扫描变量为Vs,扫描类型为线性扫描,初始值为-200V,终值为40V,增量为0.1V。为了仿真分析二极管在不同温度下的伏安特性,还需设置直流扫描的内嵌分析(Nested Sweep),内嵌分析参数可设置为:扫描变量类型为温度,扫描类型为列表扫描,扫描值为-10(℃),0(℃),30(℃)。在Probe程序中可查看到二极管的伏安特性曲线,其横坐标应为二极管两端电压V(2)。为了分析温度对二极管伏安特性的影响,可以改变X坐标轴和Y坐标轴的范围,得到二极管在不同温度下的正向伏安特性曲线。 2、三极管特性的仿真分析 三极管的共射输出特性曲线是在一定的基极电流下,三极管的集电极电流与集电极发射极电压之间的关系。用PSpice仿真时,从元件库中选出相应元件,连线,设置分析参数。直流扫描分析参数可设置为:扫描变量类型为电压源,扫描变量为VCC,扫描类型为线性扫描,初始值为0V,终值为50V,增量为0.1V。设置直流扫描的内嵌分析(Nested Sweep),内嵌分析参数可设置为:扫描变量类型为电流源,扫描类型为IB,扫描类型为线性扫描,初始值为0,终值为100μA,增量为10μA。在Probe程序中可查看到三极管集电极电流IC(Q1)的曲线,需将X轴变量设置为三极管集电极与发射极之间的电压V(Q1:c),并选择合适的坐标范围 ,可得到三极管的输出特性曲线。 五、实验数据记录和处理 1、二极管特性的仿真分析

1-2NMOS器件仿真

1.2使用ATLAS的NMOS器件仿真 1.2.1ATLAS概述 ATLAS是一个基于物理规律的二维器件仿真工具,用于模拟特定半导体结构的电学特性,并模拟器件工作时相关的内部物理机理。 ATLAS可以单独使用,也可以在SILVACO’s VIRTUAL WAFER FAB仿真平台中作为核心工具使用。通过预测工艺参数对电路特性的影响,器件仿真的结果可以与工艺仿真和SPICE 模型提取相符。 1ATLAS输入与输出 大多数ATLAS仿真使用两种输入文件:一个包含ATLAS执行指令的文本文件和一个定义了待仿真结构的结构文件。 ATLAS会产生三种输出文件:运行输出文件(run-time output)记录了仿真的实时运行过程,包括错误信息和警告信息;记录文件(log files)存储了所有通过器件分析得到的端电压和电流;结果文件(solution files)存储了器件在某单一偏置点下有关变量解的二维或三维数据。 2ATLAS命令的顺序 在ATLAS中,每个输入文件必须包含按正确顺序排列的五组语句。这些组的顺序如图1.52所示。如果不按照此顺序,往往会出现错误信息并使程序终止,造成程序非正常运行。

图1.52ATLAS命令组以及各组的主要语句 3开始运行ATLAS 要在DECKBUILD下开始运行ATLAS,需要在UNIX系统命令提示出现时输入:deckbuild-as& 命令行选项-as指示DECKBUILD将ATLAS作为默认仿真工具开始运行。 在短暂延时之后,DECKBUILD将会出现,如图1.53所示。从DECKBUILD输出窗口可以看出,命令提示已经从ATHENA变为了ATLAS。

ISIS 单片机仿真元器件

Proteus 元件名称对照1 元件名称中文名说明 7407 驱动门 1N914 二极管 74Ls00 与非门 74LS04 非门 74LS08 与门 74LS390 TTL 双十进制计数器 7SEG 4针BCD-LED 输出从0-9 对应于4根线的BCD码 7SEG 3-8译码器电路BCD-7SEG[size=+0]转换电路 ALTERNATOR 交流发电机 AMMETER-MILLI mA安培计 AND 与门 BATTERY 电池/电池组 BUS 总线 CAP 电容 CAPACITOR 电容器 CLOCK 时钟信号源 CRYSTAL 晶振 D-FLIPFLOP D触发器 FUSE 保险丝 GROUND 地 LAMP 灯 LED-RED 红色发光二极管 LM016L 2行16列液晶可显示2行16列英文字符,有8位数据总线D0-D7,RS,R/W,EN三个控制端口(共14线),工作电压为5V。没背光,和常用的1602B功能和引脚一样(除了调背光的二个线脚)LOGIC ANALYSER 逻辑分析器 LOGICPROBE 逻辑探针 LOGICPROBE[BIG] 逻辑探针用来显示连接位置的逻辑状态 LOGICSTATE 逻辑状态用鼠标点击,可改变该方框连接位置的逻辑状态 LOGICTOGGLE 逻辑触发 MASTERSWITCH 按钮手动闭合,立即自动打开 MOTOR 马达 OR 或门 POT-LIN 三引线可变电阻器 POWER 电源 RES 电阻 RESISTOR 电阻器 SWITCH 按钮手动按一下一个状态 SWITCH-SPDT 二选通一按钮 VOLTMETER 伏特计 VOLTMETER-MILLI mV伏特计 VTERM 串行口终端

Silvaco中文学习手册

§4 工艺及器件仿真工具SILVACO-TCAD 本章将向读者介绍如何使用SILV ACO公司的TCAD工具A THENA来进行工艺仿真以及A TLAS来进行器件仿真。假定读者已经熟悉了硅器件及电路的制造工艺以及MOSFET 和BJT的基本概念。 4.1 使用ATHENA的NMOS工艺仿真 4.1.1 概述 本节介绍用A THENA创建一个典型的MOSFET输入文件所需的基本操作。包括: a. 创建一个好的仿真网格 b. 演示淀积操作 c. 演示几何刻蚀操作 d. 氧化、扩散、退火以及离子注入 e. 结构操作 f. 保存和加载结构信息 4.1.2 创建一个初始结构 1定义初始直角网格 a. 输入UNIX命令:deckbuild-an&,以便在deckbuild交互模式下调用A THENA。在短暂的延迟后,deckbuild主窗口将会出现。如图 4.1所示,点击File目录下的Empty Document,清空DECKBUILD文本窗口; 图4.1 清空文本窗口 b. 在如图4.2所示的文本窗口中键入语句go Athena ; 图4.2 以“go athena”开始

接下来要明确网格。网格中的结点数对仿真的精确度和所需时间有着直接的影响。仿真结构中存在离子注入或者形成PN结的区域应该划分更加细致的网格。 c. 为了定义网格,选择Mesh Define菜单项,如图4.3所示。下面将以在0.6μm×0.8μm 的方形区域内创建非均匀网格为例介绍网格定义的方法。 图4.3 调用ATHENA网格定义菜单 2 在0.6μm×0.8μm的方形区域内创建非均匀网格 a. 在网格定义菜单中,Direction(方向)栏缺省为X;点击Location(位置)栏并输入值0;点击Spacing(间隔)栏并输入值0.1; b. 在Comment(注释)栏,键入“Non-Uniform Grid(0.6um x 0.8um)”,如图4.4所示; c. 点击insert键,参数将会出现在滚动条菜单中; 图4.4 定义网格参数图 4.5 点击Insert键后 d. 继续插入X方向的网格线,将第二和第三条X方向的网格线分别设为0.2和0.6,间距均为0.01。这样在X方向的右侧区域内就定义了一个非常精密的网格,用作为NMOS晶体管的有源区; e. 接下来,我们继续在Y轴上建立网格。在Direction栏中选择Y;点击Location栏并输入值0。然后,点击Spacing栏并输入值0.008; f. 在网格定义窗口中点击insert键,将第二、第三和第四条Y网格线设为0.2、0.5和 0.8,间距分别为0.01,0.05和0.15,如图4.6所示。

半导体器件工艺与物理期末必考题材料汇总综述

半导体期末复习补充材料 一、名词解释 1、准费米能级 费米能级和统计分布函数都是指的热平衡状态,而当半导体的平衡态遭到破坏而存在非平衡载流子时,可以认为分就导带和价带中的电子来讲,它们各自处于平衡态,而导带和价带之间处于不平衡态,因而费米能级和统计分布函数对导带和价带各自仍然是适用的,可以分别引入导带费米能级和价带费米能级,它们都是局部的能级,称为“准费米能级”,分别用E F n、E F p表示。 2、直接复合、间接复合 直接复合—电子在导带和价带之间直接跃迁而引起电子和空穴的直接复合。 间接复合—电子和空穴通过禁带中的能级(复合中心)进行复合。 3、扩散电容 PN结正向偏压时,有空穴从P区注入N区。当正向偏压增加时,由P区注入到N区的空穴增加,注入的空穴一部分扩散走了,一部分则增加了N区的空穴积累,增加了载流子的浓度梯度。在外加电压变化时,N扩散区内积累的非平衡空穴也增加,与它保持电中性的电子也相应增加。这种由于扩散区积累的电荷数量随外加电压的变化所产生的电容效应,称为P-N结的扩散电容。用CD表示。 4、雪崩击穿 随着PN外加反向电压不断增大,空间电荷区的电场不断增强,当超过某临界值时,载流子受电场加速获得很高的动能,与晶格点阵原子发生碰撞使之电离,产生新的电子—空穴对,再被电场加速,再产生更多的电子—空穴对,载流子数目在空间电荷区发生倍增,犹如雪崩一般,反向电流迅速增大,这种现象称之为雪崩击穿。 1、PN结电容可分为扩散电容和过渡区电容两种,它们之间的主要区别在于 扩散电容产生于过渡区外的一个扩散长度范围内,其机理为少子的充放 电,而过渡区电容产生于空间电荷区,其机理为多子的注入和耗尽。 2、当MOSFET器件尺寸缩小时会对其阈值电压V T产生影响,具体地,对 于短沟道器件对V T的影响为下降,对于窄沟道器件对V T的影响为上升。 3、在NPN型BJT中其集电极电流I C受V BE电压控制,其基极电流I B受V BE 电压控制。 4、硅-绝缘体SOI器件可用标准的MOS工艺制备,该类器件显著的优点是 寄生参数小,响应速度快等。 5、PN结击穿的机制主要有雪崩击穿、齐纳击穿、热击穿等等几种,其中发

半导体器件物理与工艺复习题(2012)

半导体器件物理复习题 第二章: 1) 带隙:导带的最低点和价带的最高点的能量之差,也称能隙。 物理意义:带隙越大,电子由价带被激发到导带越难,本征载流子浓度就越低,电导率也就越低 2)什么是半导体的直接带隙和间接带隙? 其价带顶部与导带最低处发生在相同动量处(p =0)。因此,当电子从价带转换到导带时,不需要动量转换。这类半导体称为直接带隙半导体。 3)能态密度:能量介于E ~E+△E 之间的量子态数目△Z 与能量差△E 之比 4)热平衡状态:即在恒温下的稳定状态.(且无任何外来干扰,如照光、压力或电场). 在恒温下,连续的热扰动造成电子从价带激发到导带,同时在价带留下等量的空穴.半导体的电子系统有统一的费米能级,电子和空穴的激发与复合达到了动态平衡,其浓度是恒定的,载流子的数量与能量都是平衡。即热平衡状态下的载流子浓度不变。 5)费米分布函数表达式? 物理意义:它描述了在热平衡状态下,在一个费米粒子系统(如电子系统)中属于能量E 的一个量子态被一个电子占据的概率。 6 本征半导体价带中的空穴浓度: 7)本征费米能级Ei :本征半导体的费米能级。在什么条件下,本征Fermi 能级靠近禁带的中央:在室温下可以近似认为费米能级处于带隙中央 8)本征载流子浓度n i : 对本征半导体而言,导带中每单位体积的电子数与价带每单位体积的空穴数相同, 即浓度相同,称为本征载流子浓度,可表示为n =p =n i . 或:np=n i 2 9) 简并半导体:当杂质浓度超过一定数量后,费米能级进入了价带或导带的半导体。 10) 非简并半导体载流子浓度: 且有: n p=n i 2 其中: n 型半导体多子和少子的浓度分别为: p 型半导体多子和少子的浓度分别为:

半导体器件综合测试实验报告

1实验目的 了解、熟悉半导体器件测试仪器,半导体器件的特性,并测得器件的特性参数。掌握半导体管特性图示仪的使用方法,掌握测量晶体管输入输出特性的测量方法; 测量不同材料的霍尔元件在常温下的不同条件下(磁场、霍尔电流)下的霍尔电压,并根据实验结果全面分析、讨论。 2实验内容 测试3AX31B、3DG6D的放大、饱和、击穿等特性曲线,根据图示曲线计算晶体管的放大倍数; 测量霍尔元件不等位电势,测霍尔电压,在电磁铁励磁电流下测霍尔电压。 3实验仪器 XJ4810图示仪、示波器、三极管、霍尔效应实验装置。 4实验原理 4.1三极管的主要参数 4.1.1 直流放大系数 共发射极直流放大系数β β=-( 4-1) (I I)/I C CEO B 时,β可近似表示为 当I I C CEO β=( 4-2) I/I C B 4.1.2 交流放大系数 共发射极交流放大系数β定义为集电极电流变化量与基极电流变化量之比,即

CE C B v i i β=?=?常数 ( 4-3) 4.1.3 反向击穿电压 当三极管内的两个PN 结上承受的反向电压超过规定值时,也会发生击穿,其击穿原理和二极管类似,但三极管的反向击穿电压不仅与管子自身的特性有关,而且还取决于外部电路的接法。 4.2霍尔效应 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。 图4-1 霍尔效应示意图 如图4-1所示,磁场B 位于Z 的正向,与之垂直的半导体薄片上沿X 正向通以电流s I (称为控制电流或工作电流),假设载流子为电子(N 型半导体材料),它沿着与电流s I 相反的X 负向运动。由于洛伦兹力L f 的作用,电子即向图中虚线箭头所指的位于y 轴负方向的B 侧偏转,并使B 侧形成电子积累,而相对的A 侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力E f 的作用。随着电荷积累量的增加,E f 增大,当两力大小相等(方向相反)时,L f =-E f ,则电子积累便达到动态平衡。这时在A 、B 两端面之间建立的电场称为霍尔电场H E ,相应的电势差称为霍尔电压H V 。

新型半导体材料与器件仿真实验项目

新型半导体材料与器件仿真实验项目 课程介绍与课件 电子科学与技术专业及微电子科学与工程专业的教学内容中,涉及到半导体纳米材料与器件。纳米材料与器件的宏观物理特性是由材料的微观电子结构所决定的。但是,材料的微观电子结构无法直接观察和测量,对学生理解和掌握所学知识带来了一定的难度;其次,制备纳米材料时需要考虑很多因素,如起始反应物的选择、反应物用量和配比,反应条件的设计。为了获得性能好的产品,往往需要进行大量重复性的实验,对每一次实验结果进行分析检测,再改进方案重新实验。即不断反复试验、不断摸索、不断修改,一直到获得最佳的结果为止。如果需要摸索的条件多,实验研究的过程相应会增长,不利于提高研究效率。 通过虚拟仿真实验,以图形化、视频化的方式,栩栩如生的向学生展示了纳米材料的微观电子结构与宏观光学特性之间的关系;降低了实验成本。加深了学生对学科基础理论知识的理解,使学生掌握本专业领域常用的设计与仿真软件工具,增强学生分析问题、解决问题的能力,进而达到较佳的教学效果。 在教学中,以启发式教学为主的教学方法。采用录像、视频的形式,演示课程中所涉及的文物保护纳米涂层的作用,演示纳米材料的吸收光谱随纳米线尺寸的变化。这部分穿插在多媒体课件中实施,解决传统课程黑板讲述不直观的问题。激发学生的学习兴趣。每次实验前,将学生分成若干个小组,通过小组讨论,进行合作学习,培养学生的思维表达能力,让学生多多参与,亲自动手、亲自操作、激发学习兴趣、促进学生主动学习。小组讨论后,指导教师先进行一个基本的实验流程操作,对一些关键或容易出错之处进行强调,使学生首先有一个感性的认识。每次实验都编排有依实验过程的相关问题的实验报告,学生一边实验操作一边思考,达到对理论或难点知识的深刻理解。为了给学生提供一个良好的实验条件, 在课后学生可以在校园网内任何网络端口可全天候上机实践,并与指导老师进行交互。若有任何问题,学生可以在网络平台给教师留言,进行意见反馈。

Silvaco工艺及器件仿真5

4.2 使用ATLAS的NMOS器件仿真 4.2.1 ATLAS概述 ATLAS是一个基于物理规律的二维器件仿真工具,用于模拟特定半导体结构的电学特性,并模拟器件工作时相关的内部物理机理。 ATLAS可以单独使用,也可以在SILVACO’s VIRTUAL WAFER FAB仿真平台中作为核心工具使用。通过预测工艺参数对电路特性的影响,器件仿真的结果可以与工艺仿真和SPICE 模型提取相符。 1 ATLAS输入与输出 大多数ATLAS仿真使用两种输入文件:一个包含ATLAS执行指令的文本文件和一个定义了待仿真结构的结构文件。 ATLAS会产生三种输出文件:运行输出文件(r un-t i m e ou t pu t)记录了仿真的实时运行过程,包括错误信息和警告信息;记录文件(log files)存储了所有通过器件分析得到的端电压和电流;结果文件(s o l u t i on f il e s)存储了器件在某单一偏置点下有关变量解的二维或三维数据。 2 ATLAS命令的顺序 在ATLAS中,每个输入文件必须包含按正确顺序排列的五组语句。这些组的顺序如图4.52所示。如果不按照此顺序,往往会出现错误信息并使程序终止,造成程序非正常运行。 图4.52 ATLAS命令组以及各组的主要语句 3 开始运行ATLAS 要在DECKBUILD下开始运行ATLAS,需要在UNIX系统命令提示出现时输入: deckbuild -as& 命令行选项-as指示DECKBUILD将ATLAS作为默认仿真工具开始运行。 在短暂延时之后,DECKBUILD将会出现,如图4.53所示。从DECKBUILD输出窗口可以看出,命令提示已经从A THENA变为了ATLAS。 图4.53 ATLAS的DECKBUILD窗口 4 在ATLAS中定义结构 在ATLAS中,一个器件结构可以用三种不同的方式进行定义: 1.从文件中读入一个已经存在的结构。这个结构可能是由其他程序创建的,比如ATHENA或DEVEDIT; 2.输入结构可以通过DECKBUILD自动表面特性从ATHENA或DEVEDIT转化而来; 3.一个结构可以使用ATLAS命令语言进行构建。 第一和第二种方法比第三种方法方便,所以应尽量采用前两种方法。在本章中,我们将通过第二种方法,利用DECKBUILD的自动表面特性,将NMOS结构从ATHENA转化为ATLAS。 4.2.2 NMOS结构的ATLAS仿真 在本章中,我们将以下几项内容为例进行介绍: 1.Vds=0.1V时,简单Id-Vgs曲线的产生; 2.器件参数如Vt,Beta和Theta的确定; 3.Vgs分别为1.1V,2.2V和3.3V时,Id-Vds曲线的产生。 这里将采用由ATHENA创建的NMOS结构来进行NMOS器件的电学特性仿真。

半导体器件特性仿真

实验报告 课程名称:___模拟电子技术实验____________指导老师:__樊伟敏___ _成绩: 实验名称:________ pspice的使用练习1_____实验类型:_EDA___________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 实验5 PSpice 使用练习——半导体器件特性仿真 一.实验目的 1.了解PSpice软件常用菜单和命令的使用。 2.掌握PSpice中电路图的输入和编辑方法。 3.学习PSpice分析设置、仿真、波形查看的方法。 4.学习半导体器件特性的仿真分析方法。 二.实验准备 1.阅读PSpice软件的使用说明。 2.了解二极管、三极管的伏安特性。 3.理解二极管和三极管伏安特性的测试电路。 三.实验内容 1.二极管伏安特性测试电路如图5.1所示。输入该电路图,设置合适的分析方法及参数,用PSpice软件 仿真分析二极管的伏安特性。 R1 D1 D1N4001 图5.1 二极管特性测试电路 2.在直流分析中设置对温度的内嵌分析,仿真分析二极管在不同温度下的伏安特性。 3.将图5.1所示电路中的电源VS用VSIN元件代替,并设置合适的元件参数,仿真反系二极管两端的输 出波形。 4.三极管特性测试电路如图 5.2所示,用PSpice程序仿真分析三极管的输出特性,并估算其电流放大倍 数。

实验名称:_____pspice 的使用_____姓名:____宋飞凤________学号:___ 3099901028 ____ Rc 图5.2 三极管特性测试电路 四.实验内容和步骤 1.二极管特性的仿真分析 1.1二极管伏安特性 (1)输入图5.1电路图 (2)仿真二极管伏安特性时的设置 直流扫描(DC Sweep )分析参数设置:扫描变量类型为电压源,扫描变量为Vs ,扫描类型为线性扫描,初始值为-200V ,终值为40V ,增量为0.1V 。 (3)运行仿真分析程序 (4)查看仿真结果 ①在Probe 程序中显示I (D )曲线,结果如图5.3显示。 装 订 线 P.2

器件仿真实验

半导体器件基础实验 1.实验目的 通过利用EDA工具对肖特基二极管进行模拟仿真,并通过利用控制变量法,通过对影响PN结特性的一些因素的调节,观察其对PN结特性的影响。 2.实验概述 1、改变掺杂浓度对肖特基二极管I-V 曲线的影响 2、改变金属功函数对肖特基二极管I-V 曲线的影响 3、改变温度对肖特基二极管I-V 曲线的影响 4、改变N区分布函数对肖特基二极管I-V 曲线的影响 3.实验内容 1.N 区浓度对 IV 曲线及结构的影响

6e18 6e10

N型轻掺杂浓度为6e10 # (c) Silvaco Inc., 2013 go atlas mesh space.mult=1.0 #绘制x向网格 x.meshloc=0.00 spac=0.5 x.meshloc=3.00 spac=0.2 x.meshloc=5.00 spac=0.25 x.meshloc=7.00 spac=0.25 x.meshloc=9.00 spac=0.2 x.meshloc=12.00 spac=0.5 #绘制y向网格 y.meshloc=0.00 spac=0.1 y.meshloc=1.00 spac=0.1 y.meshloc=2.00 spac=0.2 y.meshloc=5.00 spac=0.4 # 用硅半导体作衬底 region num=1 silicon # 定义电极 electr name=anode x.min=5 length=2 electr name=cathode bot #.... N-epi doping N型掺杂 doping n.typeconc=6e10 uniform #.... Guardring doping P型掺杂 doping p.typeconc=1e19 x.min=0 x.max=3 junc=1 rat=0.6 gauss doping p.typeconc=1e19 x.min=9 x.max=12 junc=1 rat=0.6 gauss #.... N+ doping N型重掺杂浓度21 doping n.typeconc=1e21x.min=0 x.max=12 y.top=2 y.bottom=5 uniform # 存储结构文件并展示 save outf=diodeex01_0.str

(精)功率器件仿真基本方法

功率器件仿真基本方法 对于微波大功率有源器件来说,其输入输出阻抗是一个关键的参数,且不易测量。而在设计中,没有这些参数,设计将无从下手。目前微波大功率的有源器件大多采用金属氧化物半导体场效应晶体管(LDMOSFET-Lateral Diffused metallic oxide semiconductor field effect transistor),因此本文以LDMOS功率管的仿真为例探讨微波有源器件仿真。 由于大家所公认的大功率器件仿真的难度,特别是在器件模型建立方面的难度,使得这一工作较其他电路如小信号电路仿真做的晚,且精度也较小信号电路低。目前公司内部在这方面所作的工作也相对较少。 随着技术的发展,目前的很多仿真软件已经做的很完善,如ADS,它可以提供各种数字和模拟系统及电路的仿真平台,用户的主要任务就是给目标器件建模和搭建电路。而目前我们使用的主流LDMOS器件即Motorola的大部分器件均提供ADS仿真的模型,我们只要直接使用,这给我们的仿真工作带来了极大的方便,极大的减小了工作量,并提高了准确度。 本文主要探讨使用ADS2002仿真计算大功率LDMOS器件的工作点、输入输出阻抗及其对应的线性指标、电流、增益等电参数。 1LDMOS器件模型 首先我们了解一下Motorola的LDMOS器件库的情况。图1.1是其在原理图中的符号。 图1.1 Motorola LDMOS器件模型

它的器件分为两类:单管(MRF_MET_MODEL & MRF_ROOT_MODEL)和对管(MRF_MET_PP_MODEL & MRF_ROOT_PP_MODEL)。从上面的名称我们可以看出,每一个管子有两个模型,即MET模型和ROOT模型。 MET LDMOS 模型(Moto Electro Thermal Model)是一个经验大信号模型,它可以精确的描述在任意的偏置点和环境温度下的电流电压特性。其大信号和小信号模型分别如图1.2和图1.3所示[1]。ROOT模型是一种基于HP Root FET Model generator产生的数据库模型,该模型生成器根据小信号的S参数和测量得到的直流数据生成大信号模型。ROOT模型给出的器件特性是偏置点、频率和功率电平的函数。该模型适用于已经有测量数据但是物理的或经验的模型还没有建立的器件的仿真[2]。 图1.2大信号等效电路MET LDMOS 模型

Silvaco工艺及器件仿真4

4.1.16源/漏极注入和退火 要形成NMOS 器件的重掺杂源/漏极,就需要进行砷注入。砷的浓度为153 510cm -?,注入能量为50KeV 。为了演示这一注入过程,我们将再一次使用ATHENA Implant 菜单。在调用出注入菜单以后,具体步骤如下: a. 在Impurity 栏中将注入杂质从Phosphorus 改为Arsenic ;分别在Dose 和Exp :中输入值5和15;在Energy 、Tilt 和Rotation 中分别输入值50、7、30;将Material Type 选为Crystalline ;在Comment 栏中输入Source/Drain Implant ;点击WRITE 键,注入语句将会出现在如下所示的文本窗口中: #Source/Drain Implant implant arsenic dose=5e15 energy=15 crytal 紧接着源/漏极注入的是一个短暂的退火过程,条件是1个大气压,900C ,1分钟,氮气环境。该退火过程可通过Diffuse 菜单实现,步骤如下: b. 在Diffuse 菜单中,将Time 和Tempreture 的值分别设为1和900;在Ambient 栏中,点击Nitrogen ;激活Gas pressure ,并将其值设为1;在Display 栏中点击Models ,然后可用的模式将会列出来;选中Diffusion 模式并选择Fermi 项。不要选择Oxidation 模式;在Comment 栏中添加注释Source/Drain Annealing 并点击WRITE 键;下面这些扩散语句将会出现在文本窗口中: #Source/Drain Annealing method Fermi diffus time=1 temp=900 nitro press=1.00 c. 点击DECKBUILD 控制栏上的Cont 键以继续进行ATHENA 仿真,并将结构的杂质分布图表示出来,如图4.39; 图4.39 源/漏极的注入和退火过程 接下来,我们将会看到退火过程前后Net Doping (净掺杂)的一些变化。操作步骤如下: a. 在源/漏极退火后结构的TONYPLOT 中,依次点击File 和Load Structure…菜单项;

现代半导体器件与仿真实验报告

现代半导体器件与仿真作业实验报告 实验1:利用模型仿真电容性能 1.实验目的:建立模型仿真电容性能,掌握电容。 2.实验要求:利用pspice建立模型仿真电容性能。 3. 实验步骤: Step1:打开pspice,建立新文档,输入代码,建立模型,设置VC1,VC2,TC1,TC2(电容的一阶二阶电压,温度系数)为0.001,0.002,0.005,0.015,以及电容倍乘系数为1.5。 Step2:保存文档文件为XXXXX.cir文件,并运行,模拟run。 Step3:打开图表,观察各个曲线,与预期结果进行对比分析。

(电流随时间变化) (电容两端电压随时间的变化) 4.实验心得:通过对电容模型的模拟仿真,基本熟练掌握利用pspice建立电子元件并进行仿真观察其电路特性,对电容的电路特性也有了更为直观的了解。 实验2:自建电容模型并仿真电容性能 1.实验目的:建立电容模型,仿真电容性能。 2.实验要求:建立电容模型并在pspice中仿真电容性能。 3.实验过程: Step1:输入代码: ******CAPMODEL****** *****************

.subckt differs 1 3 Rin 1 0 1MEG E1 5 0 1 0 1 Ctime 5 6 0.25N Rtime 6 7 1K R2 6 0 1G E2 7 0 6 0 -1G Eout 8 0 7 0 1 R3 3 0 1G Rout 8 3 1K .ends differs ***************** .subckt cpip n1 n2 PARAMS:l=10u w=10u pt=27 .param ere0=1.0996e-12 tox=1.0e-6 .param ptc1=2.09e-05 ptc2=3.72e-08 pvc1=-7.72e-05 pvc2=-9.12e-06 .param tfac={1.0+ptc1*(pt-25.0)+ptc2*(pt-25.0)*(pt-25.0)} E1 vfac 0 value={1+pvc1*(v(n2,n1))+pvc2*v(n2,n1)*v(n2,n1)} *R2 vfac 0 100meg E2 cvalue 0 value={ere0*l*w/tox*V(vfac)*tfac} *R3 cvalue 0 100meg E3 n3 0 n1 n2 1 X00 n3 n4 differs R1 n4 0 100MEG Gvalue n1 n2 value={V(cvalue,0)*V(n4,0)} .ends cpip *********************************** X01 1 0 cpip PARAMS:l=20u w=20u pt=27 VCC 1 0 PULSE(0 1 0 0 0 1ms 2ms) .TRAN 0 10ms .OP .PROBE .end

Silvaco工艺及器件仿真1

§4 工艺及器件仿真工具SILVACO-TCAD 本章将向读者介绍如何使用SILVACO公司的TCAD工具ATHENA来进行工艺仿真以及ATLAS来进行器件仿真。假定读者已经熟悉了硅器件及电路的制造工艺以及MOSFET和BJT的基本概念。 4.1 使用ATHENA的NMOS工艺仿真 4.1.1 概述 本节介绍用ATHENA创建一个典型的MOSFET输入文件所需的基本操作。包括: a. 创建一个好的仿真网格 b. 演示淀积操作 c. 演示几何刻蚀操作 d. 氧化、扩散、退火以及离子注入 e. 结构操作 f. 保存和加载结构信息 4.1.2 创建一个初始结构 1 定义初始直角网格 a. 输入UNIX命令:deckbuild-an&,以便在deckbuild交互模式下调用ATHENA。在短暂的延迟后,deckbuild主窗口将会出现。如图4.1所示,点击File目录下的Empty Document,清空DECKBUILD文本窗口; 页脚内容1

图4.1 清空文本窗口 b. 在如图4.2所示的文本窗口中键入语句go Athena ; 图4.2 以“go athena”开始 接下来要明确网格。网格中的结点数对仿真的精确度和所需时间有着直接的影响。仿真结构中存在离子注入或者形成PN结的区域应该划分更加细致的网格。 c. 为了定义网格,选择Mesh Define菜单项,如图4.3所示。下面将以在0.6μm×0.8μm的方形区域内创建非均匀网格为例介绍网格定义的方法。 页脚内容2

图4.3 调用ATHENA网格定义菜单 2 在0.6μm×0.8μm的方形区域内创建非均匀网格 a. 在网格定义菜单中,Direction(方向)栏缺省为X;点击Location(位置)栏并输入值0;点击Spacing(间隔)栏并输入值0.1; b. 在Comment(注释)栏,键入“Non-Uniform Grid(0.6um x 0.8um)”,如图4.4所示; c. 点击insert键,参数将会出现在滚动条菜单中; 图4.4 定义网格参数图 4.5 点击Insert键后 页脚内容3

相关主题