搜档网
当前位置:搜档网 › 电磁感应中的电路、电量及图象问题

电磁感应中的电路、电量及图象问题

电磁感应中的电路、电量及图象问题
电磁感应中的电路、电量及图象问题

第六讲 电磁感应中的电路、电量及图象问题(一)

1.I =q

t

是电流在时间t 内的平均值,变形公式q =It 可以求时间t 内通过导体某一横截面的电荷量.

2.闭合电路中电源电动势E 、内电压U 内、外电压(路端电压)U 外三者之间的关系为E =U 内+U 外,其中电源电动势E 的大小等于电源未接入电路时两极间的电势差. 3.电磁感应中的电路问题

在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势.若回路闭合,则产生感应电流,所以电磁感应问题常与电路知识综合考查. 4.解决与电路相联系的电磁感应问题的基本方法是:

(1) 明确哪部分导体或电路产生感应电动势,该导体或电路就是电源,其他部分是外电路. (2) 用法拉第电磁感应定律确定感应电动势的大小,用楞次定律确定感应电动势的方向. (3) 画等效电路图.分清内外电路,画出等效电路图是解决此类问题的关键. (4) 运用闭合电路欧姆定律、串并联电路特点、电功率、电热等公式联立求解. 5.电磁感应中的电量问题

电磁感应现象中通过闭合电路某截面的电荷量q =I Δt ,而I =E

R =n ΔΦΔtR ,则q =n ΔΦR

,所以q 只和线圈匝数、磁通量的变化量及总电阻有关,与完成该过程需要的时间无关. 6.电源内部电流的方向是从负极流向正极,即从低电势流向高电势. 7.求解电路中通过的电荷量时,一定要用平均电动势和平均电流计算.

8.电磁感应中的图象问题:对于图象问题,搞清物理量之间的函数关系、变化范围、初始条件、斜率的物理意义等,往往是解题的关键. 9.解决图象问题的一般步骤

(1) 明确图象的种类,即是B -t 图象还是Φ-t 图象,或者E -t 图象、I -t 图象等. (2) 分析电磁感应的具体过程. (3) 用右手定则或楞次定律确定方向对应关系. (4) 结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式.

(5) 根据函数关系式,进行数学分析,如分析斜率的变化、截距等. (6) 画图象或判断图象. 1.用相同导线绕制的边长为L 或2L 的四个闭合导线框,以 相同的速度匀速进入右侧匀强磁场,如图所示.在每个线框 进入磁场的过程中,M 、N 两点间的电压分别为U a 、U b 、U c 和U d .下列判断正确的是 ( B )

A .U a

B .U a

C .U a =U b

D .U b

2.如图所示,有一范围足够大的匀强磁场,磁感应强度B =0.2 T ,磁场方向垂直纸面向里.在磁场中有一半径r =0.4 m 的金属圆环,磁场与圆环面垂直,圆环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2 Ω.一金属棒MN 与圆环接触良好,棒与圆环的电阻均忽略不计.( 1 ) 若棒以v 0=5 m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径的瞬时MN 中的电动势和流过灯L 1的电流;( 2 ) 撤去金属棒MN ,若此时磁场随时间均匀变化,

磁感应强度的变化率为ΔB Δt =4

π

T/s ,求回路中的电动势和灯L 1的电功率.

解析 (1) 等效电路如图所示.

MN 中的电动势E 1=B ·2r ·v 0=0.8 V MN 中的电流I =E 1

R 0/2

=0.8 A 流过灯L 1的电流I 1=I

2

=0.4 A

(2) 等效电路如图所示回路中的电动势E 2=ΔB

Δt

·πr 2 =0.64 V

回路中的电流I ′=E 2

2R 0

=0.16 A 灯L 1的电功率P 1=I ′2R 0=5.12×10-2 W

3.如图所示,在直线电流附近有一根金属棒ab ,当金属棒以b 端为圆心, 以ab 为半径,在过导线的平面内匀速旋转到达图中的位置时 ( BD )

A .a 端聚积电子

B .b 端聚积电子

C.金属棒内电场强度等于零

D.U a>U b

4.如图所示,一线圈用细杆悬于P点,开始时细杆处于水平位置,释放后让它在匀强磁场中运动,已知线圈平面始终与纸面垂直,当线圈第一次通过位置Ⅰ,Ⅱ,Ⅲ时(位置Ⅱ正好是

细杆竖直位置),线圈内的感应电流方向(顺着磁场方向看去)是( D )

A.Ⅰ,Ⅱ,Ⅲ位置均是顺时针方向

B.Ⅰ,Ⅱ,Ⅲ位置均是逆时针方向

C.Ⅰ位置是顺时针方向,Ⅱ位置为零,Ⅲ位置是逆时针方向

D.Ⅰ位置是逆时针方向,Ⅱ位置为零,Ⅲ位置是顺时针方向

5.如图所示为一种早期发电机原理示意图,该发电机由固定的圆形线圈和

一对用铁芯连接的圆柱形磁铁构成,两磁极相对于线圈平面对称,在磁极

绕转轴匀速转动过程中,磁极中心在线圈平面上的投影沿圆弧XOY运动

(O是线圈中心),则(D)

A.从X到O,电流由E经G流向F,先增大再减小

B.从X到O,电流由F经G流向E,先减小再增大

C.从O到Y,电流由F经G流向E,先减小再增大

D.从O到Y,电流由E经G流向F,先增大再减小

6.如图甲所示,A、B为两个相同的环形线圈,共轴并靠近

放置,A线圈中通过如图乙所示的电流I,则(ABC)

A.在t1到t2时间内A、B两线圈相吸引

B.在t2到t3时间内A、B两线圈相排斥

C.t1时刻两线圈作用力为零

D.t2时刻两线圈作用力最大

7.2013年9月25日,我国“神舟七号”载人飞船发射成功,

在离地面大约200 km的太空运行.假设载人舱中有一边长为50 cm的正方形导线框,在宇航员操作下由水平方向转至竖直方向,此时地磁场磁感应强度B=4×10-5 T,方向如图所示.

求:(1) 该过程中磁通量的改变量的大小是多少?

(2) 该过程线框中有无感应电流?设线框电阻为R=0.1 Ω,

若有电流则通过线框的电荷量是多少?(sin 37°=0.6,cos 37°=0.8)

解析(1)设线框在水平位置时法线n方向竖直向上,

穿过线框的磁通量Φ1=BS sin 37°=6.0×10-6 Wb.

当线框转至竖直位置时,线框平面的法线方向水平向右,

与磁感线夹角θ=143°,穿过线框的磁通量Φ2=BS cos 143°=-8.0×10-6 Wb,

该过程磁通量的改变量大小ΔΦ=|Φ1-Φ2|=1.4×10-5 Wb.

(2)因为该过程穿过闭合线框的磁通量发生了变化,所以一定有感应电流.根据电磁感应定律得,

I=E

R=

ΔΦ

RΔt. 通过的电荷量为q=I·Δt=

ΔΦ

R=1.4×10-

4 C.

8.在竖直方向的匀强磁场中,水平放置一圆形导体环.

规定导体环中电流的正方向如图甲所示,磁场向上为正.

当磁感应强度B随时间t按图乙变化时,下列能正确表

示导体环中感应电流变化情况的是(C)

9.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一

边a 、b 两点间的电势差绝对值最大的是 ( B )

10.如图所示,两条平行虚线之间存在匀强磁场,虚线间的距离为L ,磁场 方向垂直纸面向里,abcd 是位于纸面内的梯形线圈,ad 与bc 间的距离也 为L ,t =0时刻bc 边与磁场区域边界重合.现令线圈以恒定的速度v 沿垂 直于磁场区域边界的方向穿过磁场区域,取沿a —b —c —d —a 方向为感应 电流正方向,则在线圈穿越磁场区域的过程中,感应电流I 随时间t 变化的 图线可能是 ( B )

11.如图所示,将直径为d 、电阻为R 的闭合金属圆环从磁感应强度为B 的 匀强磁场中拉出,这一过程中通过金属圆环某一截面的电荷量为 ( A )

A.B πd 24R

B.2πBd R

C.Bd 2R

D.Bd 2πR

12.在物理实验中,常用一种叫做“冲击电流计”的仪器测定通过电路的电量.如图2所示,探测线圈与冲击电流计串联后可用来测定磁场的磁感应强度.已知线圈的匝数为n ,面积为S ,线圈与冲击电流计组成的回路电阻为R .若将线圈放在被测量的匀强磁场中,开始线圈平面与磁场垂直,现把探测线圈翻转90°,冲击电流计测出通过线圈的电量为q ,由上述数据可测出被测量磁场的磁感应强度为 ( B )

A.qR

S B.qR nS C.qR

2nS D.qR 2S

13.如图甲所示,一个闭合线圈固定在垂直纸面的匀强磁场中, 设磁场方向向里为磁感应强度B 的正方向,线圈中的箭头为电 流I 的正方向.线圈及线圈中感应电流I 随时间变化的图线如 图乙所示,则磁感应强度B 随时间变化的图线可能是 ( CD )

14.用均匀导线做成的正方形线框边长为0.2 m,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以10 T/s的变化率增强时,线框中a、b两点间的电势差是(B)

A.U ab=0.1 V

B.U ab=-0.1 V

C.U ab=0.2 V

D.U ab=-0.2 V

15.在竖直向上的匀强磁场中,水平放置一个不变形的单匝

金属圆线圈,规定线圈中感应电流的正方向如图甲所示,当

磁场的磁感应强度B随时间t如图乙变化时,图中正确表示

线圈中感应电动势E变化的是(A)

16.如图甲所示,光滑导轨水平放置在竖直方向的匀强

磁场中,匀强磁场的磁感应强度B随时间的变化规律如

图乙所示(规定向下为正方向),导体棒ab垂直导轨放置,

除电阻R的阻值外,其余电阻不计,导体棒ab在水平

外力F的作用下始终处于静止状态.规定a→b的方向

为电流的正方向,水平向右的方向为外力的正方向,则

在0~2t0时间内,能正确反映流过导体棒ab的电流与

时间或外力与时间关系的图线是(D)

17.如图所示的区域内有垂直于纸面向里的匀强磁场,磁感应强度为B。一个电阻为R、半径为L、圆心角为45°的扇形闭合导线框绕垂直于纸面的O轴匀速转动(O轴位于磁场边界),周期为T0,则线框内产生的感应电流的图象为(规定电流顺时针方向为正) (A)

第六讲电磁感应中的电路、电量及图象问题(二)1.如图所示,在0≤x≤2L的区域内存在着匀强磁场,磁场方向垂直

于xy坐标系平面(纸面)向里.具有一定电阻的矩形线框abcd位于xy

坐标系平面内,线框的ab边与y轴重合,bc边长为L.设线框从t=0时

刻起在外力作用下由静止开始沿x轴正方向做匀加速运动,则线框中的

感应电流i(取逆时针方向的电流为正)随时间t变化的函数图象可能是图

中的( D )

2.如图所示,宽度为d的有界匀强磁场,方向垂直于纸面向里.在纸面所在

平面内有一对角线长也为d的正方形闭合线圈ABCD,沿AC方向垂直磁场边

界匀速穿过该磁场区域.规定逆时针方向为感应电流的正方向,t=0时C点

恰好进入磁场,则从C点进入磁场开始到A点离开磁场为止,闭合线圈中感

应电流随时间的变化图象正确的是 ( A )

3.如图所示,用粗细相同的铜丝做成边长分别为L 和2L 的两只闭合正方形线框a 和b ,以相同的速度从磁感应强度为B 的匀强磁场区域中匀速地拉到磁场外,不考虑线框的重力, 若闭合线框的电流分别为I a 、I b ,则I a ∶I b 为 ( C )

A .1∶4

B .1∶2

C .1∶1

D .不能确定

4.如图所示,两个相同导线制成的开口圆环,大环半径为小环半径的2倍,现用电阻不计的导线将两环连接在一起,若将大环放入一均匀变化的磁场中,小环处在磁场外,a 、b 两点间电压为U 1,若将小环放入这个磁场中,大环在磁场外,a 、b 两点间电压为U 2,则 ( B )

A. U 1U 2=1

B. U 1

U 2=2 C. U 1U 2=4 D. U 1U 2=14

5.如图所示,竖直平面内有一金属圆环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的

匀强磁场垂直穿过环平面,与环的最高点A 用铰链连接长度为2a 、电阻为R

2

的导体棒AB ,AB 由水平位置紧

贴环面摆下,当摆到竖直位置时,B 点的线速度为v , 则这时AB 两端的电压大小为 ( A )

A. Ba v 3

B. Ba v 6

C. 2Ba v 3 D .Ba v

6.三角形导线框abc 固定在匀强磁场中,磁感线的方向与导线 所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度 B 随时间t 变化的规律如图所示。规定线框中感应电流i 沿顺时 针方向为正方向,下列 i — t 图象中正确的是( B )

7. 如图a 所示,圆形线圈P 静止在水平桌面上,其正上方悬挂 另一个线圈Q ,P 与Q 共轴,Q 中通有变化电流,电流随时间 变化的规律如图b 所示,P 所受的重力为G ,桌面对P 的支持 力为N ,则( AD )

A . t 1时刻N >G

B . t 2时刻N >G

C . t 3时刻N

D . t 4时刻N =G

Q

P a

图b

图o

i

1

t 2

t 3

t 4

t t

9.如图所示,两平行的虚线间的区域内存在着有界匀强磁场,有一较小的三角形线框abc 的ab 边与磁场边界平行,现使此线框向右匀速穿过磁场区域,运动过程中始终保持速度方向与ab 边垂直.则下列图中哪一个可以定性地表示线框在上述过程中感应电流随时间变化的规律?( D )

10.图中A 是一底边宽为L 的闭合线框,其电阻为R 。现使线框以恒定的速度v 沿x 轴向右运动,并穿过图中所示的宽度为d 的匀强磁场区域,已知L< d ,且在运动过程中线框平面始终与磁场方向垂直。若以x 轴正方向作为力的正方向,线框从图6所示位置开始运动的时刻作为时间的零点,则在图所示的图像中,可能正确反映上述过程中磁场对线框的作用力F 随时间t 变化情况的是( D )

11.如图所示,一个菱形的导体线框沿着自己的对角做匀速运动,穿过具有一定宽度的匀强磁场区城,巳 知对角线AC 的长度为磁场宽度的两倍且与磁场边界垂直.下面对于线框中感应电流随时间交化的图象(电流以ABCD 顺序流向为正方向,从C 点进入磁场开始计时)正确的是( B )

12.如图甲所示,光滑导轨水平放置在竖直方向的匀强磁场中,匀强磁场的磁感应强度B 随时间的变化规 律如图乙所示(规定向下为正方向),导体棒ab 垂直导轨放置,除电阻R 的阻值外,其余电阻不计,导体 棒ab 在水平外力F 的作用下始终处于静止状态.规定a→b 的方向为电流的正方向,水平向右的方向为外 力的正方向,则在0~2t 0时间内,能正确反映流过导体棒ab 的电流与时间及外力与时间关系的图线是

( D )

13.如图所示矩形导线框abcd 放在匀强磁场中,在外力控制下处于静止状态,如图(甲)所示。磁感线方 向与导线框所在平面垂直,磁感应强度B 随时间变化的图象如图(乙)所示。t =0时刻,磁感应强度的方向 垂直导线框平面向里,在0~4s 时间内,导线框ad 边所受安培力随时间变化的图象(规定以向左为安培力 正方向)可能是图(丙)中的( D )

14.如图7所示,在PQ 、QR 区域中存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于 纸面.一导线框abcdefa 位于纸面内,框的邻边都相互垂直,bc 边与磁场的边界P 重合.导线框与磁场区 域的尺寸如图所示.从t =0时刻开始,线框匀速横穿两个磁场区域.以a →b →c →d →e →f 为线框中的电动 势E 的正方向,则如图所示的四个E -t 关系示意图中正确的是 ( C )

15.半径为r 带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d ,如图甲所示.有一变化的磁场垂直于纸面,规定垂直于纸面向里为正方向,磁场变化规律如图乙所示.在t =0时刻平行金属板之间中心有一重力不计、电荷量为q 的静止微粒,则以下说法中正确的是 ( A )

A .第2 s 内上极板为正极

B .第3 s 内上极板为负极

C .第2 s 末微粒回到了原来位置

D .第3 s 末两极板之间的电场强度大小为0.2πr 2

d

16.如图所示,在直角坐标系xOy 中,有边长为L 的正方形金属线框abcd ,其 一条对角线ac 和y 轴重合、顶点a 位于坐标原点O 处.在y 轴右侧的一、四 象限内有一垂直纸面向里的匀强磁场,磁场的上边界与线框的ab 边刚好完全 重合,左边界与y 轴重合,右边界与y 轴平行.t =0时刻,线框以恒定的速度 v 沿垂直于磁场上边界的方向穿过磁场区域.取沿a →b →c →d →a 方向的感应 电流为正方向,则在线框穿过磁场区域的过程中,感应电流I 、ab 间的电势差 U ab 随时间t 变化的图线是下图中的 ( AD )

17.如图(a),线圈ab 、cd 绕在同一软铁芯上.在ab 线圈中通以变化的电流,用示波器测得线圈cd 间电 压如图(b)所示.已知线圈内部的磁场与流经线圈的

电流成正比,则下列描述线圈ab 中电流随时间变化 关系的图中,可能正确的是 ( C )

18.如图甲所示,空间存在一宽度为2L 的有界匀强磁场,磁场方向垂直纸面向里.在光滑绝缘水平面内有一边长为L 的正方形金属线框,其质量m =1 kg 、电阻R =4 Ω,在水平向左的外力F 作用下,以初速度v 0=4 m/s 匀减速进入磁场,线框平面与磁场垂直,外力F 大小随时间t 变化的图线如图乙所示.以线框右边进入磁场时开始计时.(1) 求匀强磁场的磁感应强度B ; (2) 求线框进入磁场的过程中,通过线框的电荷量q ; (3) 判断线框能否从右侧离开磁场?说明理由.

解析 (1)由F -t 图象可知,线框的加速度a =F 2

m

=2 m/s 2,

线框的边长L =v 0t -12at 2=(4×1-1

2

×2×12) m =3 m ,

t =0时刻线框中的感应电流I =BL v 0

R

线框所受的安培力F 安=BIL , 由牛顿第二定律F 1+F 安=ma , 又F 1=1 N ,联立得B =1

3 T =0.33 T.

(2)线框进入磁场的过程中,平均感应电动势E =BL 2

t 平均电流I =E R

,通过线框的电荷量q =I t ,

联立得q =0.75 C.

(3)设匀减速运动速度减为零的过程中线框通过的位移为x ,由运动学公式得0-v 20=-2ax , 代入数值得x =4 m<2L , 所以线框不能从右侧离开磁场.

(含答案解析)电磁感应中的电路问题

电磁感应中的电路问题 一、基础知识 1、内电路和外电路 (1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源. (2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路. 2、电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦ Δt . (2)路端电压:U =IR =E -Ir . 3、对电磁感应中电源的理解 (1)电源的正负极、感应电流的方向、电势的高低、电容器极板带电问题,可用右手定则或楞次定律判定. (2)电源的电动势的大小可由E =Blv 或E =n ΔΦ Δt 求解. 4、对电磁感应电路的理解 (1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做功转化为电能. (2)“电源”两端的电压为路端电压,而不是感应电动势. 5、解决电磁感应中的电路问题三步曲 (1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,利用E =n ΔΦ Δt 或E =Blv sin θ求感应电动势的大小,利用右手定则 或楞次定律判断电流方向. (2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图. (3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 二、练习 1、[对电磁感应中等效电源的理解]粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场 中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是 ( )

答案 B 解析 线框各边电阻相等,切割磁感线的那个边为电源,电动势相同均为Blv .在A 、C 、D 中,U ab =14Blv ,B 中,U ab =3 4 Blv ,选项B 正确. 2、如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直 时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环 的最高点A 铰链连接的长度为2a 、电阻为R 2 的导体棒AB 由水平 位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两 端的电压大小为 ( ) A. Bav 3 B. Bav 6 C.2Bav 3 D .Bav

电磁感应中的能量问题练习

电磁感应中的能量问题练习 一、单项选择题 1.如图所示,固定的水平长直导线中通有电流I,矩形线框与导线在同一竖直平面内,且一边与导线平行.线框由静止释放,在下落过程中() A.穿过线框的磁通量保持不变B.线框中感应电流方向保持不变 C.线框所受安培力的合力为零D.线框的机械能不断增大 答案: B 解析: 当线框由静止向下运动时,穿过线框的磁通量逐渐减小,根据楞次定律可得产生的感应电流的方向为顺时针且方向不发生变化,A错误,B正确;因线框上下两边所在处的磁场强弱不同,线框所受的安培力的合力一定不为零,C错误;整个线框所受的安培力的合力竖直向上,对线框做负功,线框的机械能减小,D错误. 2.如图所示,固定在水平绝缘平面上足够长的金属导轨不计电阻,但表 面粗糙,导轨左端连接一个电阻R,质量为m的金属棒(电阻也不计) 放在导轨上,并与导轨垂直,整个装置放在匀强磁场中,磁场方向与 导轨平面垂直.用水平恒力F把ab棒从静止起向右拉动的过程中 ①恒力F做的功等于电路产生的电能 ②恒力F和摩擦力的合力做的功等于电路中产生的电能 ③克服安培力做的功等于电路中产生的电能 ④恒力F和摩擦力的合力做的功等于电路中产生的电能和棒获得的动能之和 以上结论正确的有() A.①②B.②③C.③④D.②④ 答案: C 解析: 在此运动过程中做功的力是拉力、摩擦力和安培力,三力做功之和为棒ab动能增加量,其中安培力做功将机械能转化为电能,故选项C正确.

3. 一个边长为L 的正方形导线框在倾角为θ的光滑固定斜面上由静止开始沿斜面下滑,随后进入虚线下方方向垂直于斜面 的匀强磁场中.如图所示,磁场的上边界线水平,线框的下边ab 边始终水平,斜面以及下方的磁场往下方延伸到足够远.下列推理判断正确的是( ) A .线框进入磁场过程b 点的电势比a 点高 B .线框进入磁场过程一定是减速运动 C .线框中产生的焦耳热一定等于线框减少的机械能 D .线框从不同高度下滑时,进入磁场过程中通过线框导线横截面的电荷量不同 答案: C 解析: ab 边进入磁场后,切割磁感线,ab 相当于电源,由右手定则可知a 为等效电源的正极,a 点电势高,A 项错.由于线框所受重力的分力mg sin θ与安培力大小不能确定,所以不能确定其是减速还是加速,B 项错;由能量守恒知C 项 对;由q =n ΔΦR 知,q 与线框下降的高度无关,D 项错. 4. 如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导 轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁 场方向与导轨平面垂直,棒在竖直向上的恒力F 作用下加速上升的一段时间内,力F 做的功与 安培力做的功的代数和等于( ) A .棒的机械能增加量 B .棒的动能增加量 C .棒的重力势能增加量 D .电阻R 上放出的热量 答案: A 解析: 由动能定理有W F +W 安+W G =ΔE k ,则W F +W 安=ΔE k -W G ,W G <0,故ΔE k -W G 表示机械能的增加量.选A 项.

电磁感应电荷量问题

CD、EF是水平放置的电阻可忽略的光滑水平金属导轨,两导轨距离水平地面高度为H,导轨间距为L,在水平导轨区域存在磁感应强度大小为B,方向垂直导轨平面向上的矩形有界匀强磁场(磁场区域为CPQE),如图所示,导轨左端与一弯曲的光滑轨道平滑连接,弯曲的光滑轨道的上端接有一电阻R,将一阻值也为R的导体棒从弯曲轨道上距离水平金属导轨高度h处由静止释放,导体棒最终通过磁场区域落在水平地面上距离水平导轨最右端x处. 已知导体棒与导轨始终接触良好,重力加速度为g,求 (1)电阻R中的最大电流的大小与方向; (2)整个过程中,导体棒中产生的焦耳热; (3)若磁场区域的长度为d,求全程流过导体棒的电量.

如图所示,在倾角α=30°的光滑固定斜面上,相距为d的两平行虚线MN、PQ间分布有大小为B、方向垂直斜面向下的匀强磁场.在PQ上方有一质量m、边长L(L

离MN的高度为h.现将线框由静止释放,线框下落过程中ab边始终保持水平,且ab边离开磁场前已做匀速直线运动,求线框从静止释放到完全离开磁场的过程中 ⑴ab边离开磁场时的速度v;⑵通过导线横截面的电荷量q;⑶导线框中产生的热量Q. 如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m, 上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ =30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接

电磁感应与电路

电磁感应与电路 1、如图所示,匀强磁场的磁感应强度B=1T,平行导轨宽 l=1m。两根相同的金属杆MN、PQ在外力作用下均以v=1m/s 的速度贴着导轨向左匀速运动,金属杆电阻为r="0.5" ?。导轨 右端所接电阻R=1?,导轨电阻不计。(已知n个相同电源的并 联,等效电动势等于任意一个电源的电动势,等效内阻等于任 意一个电源内阻的n分之一) (1)运动的导线会产生感应电动势,相当于电源。用电池等符号画出这个装置的等效电路图(2)求10s内通过电阻R的电荷量以及电阻R产生的热量 2、如图所示,宽度为L=0.20 m的足够长的平行光滑金属导轨固 定在绝缘水平面上,导轨的一端连接阻值为R=1.0Ω的电阻。导轨 所在空间存在竖直向下的匀强磁场,磁感应强度大小为B="0.50" T。一根质量为m=10g的导体棒MN放在导轨上与导轨接触良好, 导轨和导体棒的电阻均可忽略不计。现用一平行于导轨的拉力拉 动导体棒沿导轨向右匀速运动,运动速度v="10" m/s,在运动过程中保持导体棒与导轨垂直。求: (1)在闭合回路中产生的感应电流的大小;(2)作用在导体棒上的拉力的大小; 3、如图所示,带有微小开口(开口长度可忽略)的单匝线圈处于垂直 纸面向里的匀强磁场中,线圈的直径为m,电阻,开口 处AB通过导线与电阻相连,已知磁场随时间的变化图 像如乙图所示,求:⑴线圈AB两端的电压大小为多少?⑵在前2 秒内电阻上的发热量为多少?

4、(12分)如图所示,在竖直向上磁感强度为B的匀 强磁场中,放置着一个宽度为L的金属框架,框架的右 端接有电阻R.一根质量为m,电阻忽略不计的金属棒 受到外力冲击后,以速度v沿框架向左运动.已知棒与 框架间的摩擦系数为μ,在整个运动过程中,通过电阻 R的电量为q,设框架足够长.求: (1)棒运动的最大距离;(2)电阻R上产生的热量。 5、(15分)如图所示,两平行金属导轨间的距离 L=0.40m,金属导轨所在的平面与水平面夹角θ=37o,在导 轨所在平面内,分布着磁感应强度B=0.50T、方向垂直于 导轨所在平面的匀强磁场。金属导轨的一端接有电动势 E=4.5V、内阻r=0.50Ω的直流电源。现把一个质量 m=0.04kg的导体棒ab放在金属导轨上,导体棒恰好静止。 导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨 接触的两点间的电阻R0=2.5Ω,金属导轨的其它电阻不 计,g取10m/s2。已知sin37o=0.60, cos37o=0.80,试求: ⑴通过导体棒的电流⑵导体棒受到的安培力大小⑶导体棒受到的摩擦力的大小。 6、(10分)如图所示,固定于水平桌面上足够长的 两平行光滑导轨PQ、MN,其电阻不计,间距 d=0.5m,P、M两端接有一只理想电压表,整个装置 处于竖直向下的磁感应强度B0=0.2T的匀强磁场中, 两金属棒L1、L2平行地搁在导轨上,其电阻均为r= 0.1Ω,质量分别为M1=0.3kg和M2=0.5kg。固定棒L1,使L2在水平恒力F=0.8N的作用下,由静止开始运动。试求: (1) 当电压表读数为U=0.2V时,棒L2的加速度为多大; (2)棒L2能达到的最大速度v m.

电磁感应电路和图像问题

学案46 电磁感应中的电路与图象问题 一、概念规律题组 图1 1.用均匀导线做成的正方形线框边长为0.2 m,正方形的一半放在垂直纸面向里的匀强磁场中,如图1所示.当磁场以10 T/s的变化率增强时,线框中a、b两点间的电势差是() A.U ab=V B.U ab=-V C.U ab=V # D.U ab=-V 图2 2.如图2所示,导体AB在做切割磁感线运动时,将产生一个感应电动势,设导体AB 的电阻为r,导轨左端接有阻值为R的电阻,磁场磁感应强度为B,导轨宽为d,导体AB匀速运动,速度为v.下列说法正确的是() A.在本题中分析电路时,导体AB相当于电源,且A端为电源正极 B.U CD=Bdv C.C、D两点电势关系为:φC<φD D.在AB中电流从B流向A,所以φB>φA 3.穿过闭合回路的磁通量Φ随时间t变化的图象分别如图3所示,下列关于回路中产生的感应电动势的论述,正确的是() !

图3 A.图①中,回路产生的感应电动势恒定不变 B.图②中,回路产生的感应电动势一直在变大 C.图③中,回路在0~t1时间内产生的感应电动势小于在t1~t2时间内产生的感应电动势 D.图④中,回路产生的感应电动势先变小再变大 二、思想方法题组 4.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如下图所示,则在移出过程中线框的一边a、b两点间电势差绝对值最大的是() 5.如图4甲所示,光滑导轨水平放置在斜向下且与水平方向夹角为60°的匀强磁场中,匀强磁场的磁感应强度B随时间t的变化规律如图乙所示(规定斜向下为正方向),导体棒ab 垂直导轨放置,除电阻R的阻值外,其余电阻不计,导体棒ab在水平外力作用下始终处于静止状态.规定a→b的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~t 时间内,能正确反映流过导体棒ab的电流i和导体棒ab所受水平外力F随时间t变化的图象是() > 图4 一、电磁感应中的电路问题 1.内电路和外电路

电磁感应中的电路问题含答案解析

电磁感应中的电路问题 一、基础知识 1、电路和外电路 (1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源. (2)该部分导体的电阻或线圈的电阻相当于电源的阻,其余部分是外电路. 2、电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦ Δt . (2)路端电压:U =IR =E -Ir . 3、对电磁感应中电源的理解 (1)电源的正负极、感应电流的方向、电势的高低、电容器极板带电问题,可用右手定则或楞次定律判定. (2)电源的电动势的大小可由E =Blv 或E =n ΔΦ Δt 求解. 4、对电磁感应电路的理解 (1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做功转化为电能. (2)“电源”两端的电压为路端电压,而不是感应电动势. 5、解决电磁感应中的电路问题三步曲 (1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,利用E =n ΔΦ Δt 或E =Blv sin θ求感应电动势的大小,利用右手定则 或楞次定律判断电流方向. (2)分析电路结构(、外电路及外电路的串、并联关系),画出等效电路图. (3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 二、练习 1、[对电磁感应中等效电源的理解]粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场 中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是 ( )

答案 B 解析 线框各边电阻相等,切割磁感线的那个边为电源,电动势相同均为Blv .在A 、C 、D 中,U ab =14Blv ,B 中,U ab =3 4Blv ,选项B 正确. 2、如图所示,竖直平面有一金属环,半径为a ,总电阻为R (指拉直 时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环 的最高点A 铰链连接的长度为2a 、电阻为R 2 的导体棒AB 由水平 位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两 端的电压大小为 ( ) A.Bav 3 B.Bav 6 C.2Bav 3 D .Bav 答案 A 解析 摆到竖直位置时,AB 切割磁感线的瞬时感应电动势E =B ·2a ·(1 2v )=Bav .由闭合电路欧姆定律得,U AB =E R 2+R 4 ·R 4=1 3Bav ,故选A. 3、如图所示,两根足够长的光滑金属导轨水平平行放置,间距为l =1 m ,cd 间、de 间、 cf 间分别接阻值为R =10 Ω的电阻.一阻值为R =10 Ω的导体棒ab 以速度v =4 m/s 匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小为B =0.5 T 、方向竖直向下的匀强磁场.下列说法中正确的是 ( ) A .导体棒ab 中电流的流向为由b 到a B .cd 两端的电压为1 V

高中物理复习课:电磁感应中的动力学和能量问题教案

复习课:电磁感应中的动力学和能量问题教案 班级:高二理科(6)班下午第一节授课人:课题电磁感应中的动力学与能量问题第一课时 三维目标1.掌握电磁感应中动力学问题的分析方法 2.理解电磁感应过程中能量的转化情况 3.运用能量的观点分析和解决电磁感应问题 重点1.分析计算电磁感应中有安培力参与的导体的运动及平衡问题 2.分析计算电磁感应中能量的转化与转移 难点1.运用牛顿运动定律和运动学规律解答电磁感应问题 2.运用能量的观点分析和解决电磁感应问题 教具多媒体辅助课型复习课课 时 安 排 2课时 教学过程一、电磁感应中的动力学问题 课前同学们会根据微课视频完成学案上的知识清单:1.安培力的大小 2.安培力的方向判断 3.两种状态及处理方法 状态特征处理方法 平衡态加速度为零根据平衡条件列式分析 非平衡态 加速度不为 零 根据牛顿第二定律进行动态分析或结 合功能关系进行分析 4.力学对象和电学对象的相互关系

教学过程指导学生处理学案上的例题和拓 展训练 例1:如图所示,在磁感应强 度为B,方向垂直纸面向里的 匀强磁场中,金属杆MN放 在光滑平行金属导轨上,现用平行于金属杆的恒力F,使MN从静止开始向右滑动,回路的总电阻为R,试分析MN 的运动情况,并求MN的最大速度。 拓展训练1:如图所示,两根足 够长的平行金属导轨固定在倾 角θ=30°的斜面上,导轨电 阻不计,间距L=0.4 m。导轨 所在空间被分成区域Ⅰ和Ⅱ, 两区域的边界与斜面的交线为 MN,Ⅰ中的匀强磁场方向垂直 斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T。在区域Ⅰ中,将质量m1=0.1 kg,电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑。然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑。cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2。问: (1)cd下滑的过程中,ab中的电流方向; (2)ab刚要向上滑动时,cd的速度v多大; 例2:如图所示的图中,导体棒ab垂直放在水平导轨上,导轨处在方向垂直于水平面向下的匀强磁场中。导体棒和导轨间接触良好且摩擦不计,导体棒、导轨的电阻均可忽略,今给导体棒ab一个向右的初速度V0。有的同学说电容器断路无电流,棒将一直匀速运动 下去;有的同学认为棒相当于电 源,将给电容器充电,电路中有电 流,所以在安培力的作用下,棒将 减速。关于这个问题你怎么看呢?

电磁感应中电量问题的若干求解方法

电磁感应中电量问题的若干求解方法 江苏省苏州工业园区第二高级中学 (215121) 陆永华 一、利用法拉第电磁感应定律求解 由闭合电路欧姆定律得E I R r =+,根据法拉第电磁感应定律得E n t ?Φ=?, 所以 E q I t t n t n R r R r t R r ?Φ?Φ=?=?=?=++?+()() 。 例1(09年广东卷 改编)如图1(a ) 所示,一个电阻值 为R ,匝数为n 的圆 形金属线与阻值为2R 的电阻1R 连结成闭合回路。线圈的半径为1r ,在线圈中半径为2r 的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图1(b )所示。图线与横、纵轴的截距分别为0t 和0B ,导线的电阻不计。求0至0t 时间内通过电阻1R 上的电量q 。 解析:由图象分析可知及由法拉第电磁感应定律得 111 E q I t t n t n R R R R t R R ?Φ?Φ=?=?=?=++?+()() 由题意得,在0t 时间内0 B S B S ?Φ=??=,

而2 2S r π=,1 2R R =, 代入可得,通过电阻1R 上的电量2023nB r q R π=。 二、利用动量定理求解 在电磁感应中,往往会遇到被研究对象在磁场力(变力)作用下,做一般的变速运动求电量的问题。在求解时,可避开中间过程,分析各有关物理量的初、末状态情况,思维切入点是分析运动稳定时的速度。 当导体棒只受安培力作用时,安培力对棒的冲量为:A F t BILt =,其中It 即为该过程中电磁感应时通过导体的电量q ,即安培力冲量为BLq ,当两个过程中磁通量变化量?Φ相同时,由q n R r ?Φ=+() 可知,此时通过的电量也相同,安培力冲量也相同。 又由动量定理得A F t p ?=?,所以 p q I t BL ?=?=。

物理 电磁感应中的能量问题 基础篇

物理总复习:电磁感应中的能量问题 【考纲要求】 理解安培力做功在电磁感应现象中能量转化方面所起的作用。 【考点梳理】 考点、电磁感应中的能量问题 要点诠释: 电磁感应现象中出现的电能,一定是由其他形式的能转化而来的,具体问题中会涉及多种形式能之间的转化,如机械能和电能的相互转化、内能和电能的相互转化。分析时应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功就可以知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就是将其他形式的能转化为电能,做正功就是将电能转化为其他形式的能,然后利用能量守恒列出方程求解。 电能求解的主要思路: (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。 (2)利用能量守恒求解:机械能的减少量等于产生的电能。 (3)利用电路特征求解:通过电路中所产生的电流来计算。 【典型例题】 类型一、根据能量守恒定律判断有关问题 例1、如图所示,闭合线圈abcd用绝缘硬杆悬于O点,虚线表示有界磁场B,把线圈从图示位置释放后使其摆动,不计其它阻力,线圈将() A.往复摆动 B.很快停在竖直方向平衡而不再摆动 C.经过很长时间摆动后最后停下 D.线圈中产生的热量小于线圈机械能的减少量 【思路点拨】闭合线圈在进出磁场的过程中,磁通量发生变化,闭合线圈产生感应电流,其机械能转化为电热,根据能量守恒定律机械能全部转化为内能。 【答案】B 【解析】当线圈进出磁场时,穿过线圈的磁通量发生变化,从而在线圈中产生感应电流,机械能不断转化为电能,直至最终线圈不再摆动。根据能量守恒定律,在这过程中,线圈中产生的热量等于机械能的减少量。 【总结升华】始终抓住能量守恒定律解决问题,金属块(圆环、闭合线圈等)在穿越磁场时有感应电流产生,电能转化为内能,消耗了机械能,机械能减少,在磁场中运动相当于力学部分的光滑问题,不消耗机械能。上述线圈所出现的现象叫做电磁阻尼。用能量转化和守恒定律解决此类问题往往十分简便。磁电式电流表、电压表的指针偏转过程中也利用了电磁阻尼现象,所以指针能很快静止下来。 举一反三 【变式】光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示).一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是( )

电磁感应中的能量转化及电荷量问题例题

电磁感应中的能量转化及电荷量问题 一、电磁感应电路中电荷量的求解 回路中磁通量发生变化时,电荷发生定向移动而形成感应电流,在Δt内迁移的电荷量(感应电荷量)为q=I·Δt =E R·Δt=n ΔΦ Δt· 1 R·Δt= nΔΦ R.其中n为匝数,R为总电阻. 从上式可知,线圈匝数一定时,感应电荷量仅由回路电阻和磁通量的变化量决定,与时间无关. 例1如图X31所示,导线全部为裸导线,半径为r的圆内有垂直于纸面的匀强磁场,磁感应强度为B,一根长度大于2r的导线MN以速度v在圆环上无摩擦地自左向右匀速滑动,电路的固定电阻为R,其余电阻忽略不计.试求MN从圆环的左端滑到右端的过程中电阻R上的电流的平均值及通过的电荷量. πBrv 2R Bπr2 R [解析]由于ΔΦ=B·ΔS=B·πr2,完成这一变化所用的时间Δt= 2r v,故E= ΔΦ Δt= πBrv 2,所以电阻R上的电流的平均值为I= E R= πBrv 2R, 通过R的电荷量为q=I·Δt= Bπr2 R. 二、电磁感应中的能量转化问题 1.电磁感应中能量的转化 电磁感应过程实质是不同形式的能量相互转化的过程,电磁感应过程中产生感应电流,在磁场中必定 受到安培力作用,因此要维持感应电流,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能.可以简化为下列形式: 同理,电流做功的过程,是电能转化为其他形式的能的过程,电流做了多少功就有多少电能转化为其他形式的能. 2.解决电磁感应能量转化问题的基本方法 (1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向; (2)画出等效电路,求出回路中电阻消耗电能的表达式; (3)分析导体机械能的变化,用能量守恒关系得到机械能的改变与回路中电能的改变所满足的方程. 例2如图X32所示,固定的水平光滑金属导轨间距为L,左端接有阻值为R的电阻,处在方向竖直向下、磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻可

电磁感应中的能量转换问题_经典

在电磁感应中的动力学问题中有两类常见的模型. 类型“电—动—电”型“动—电—动”型 示 意 图 棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计 分析S闭合,棒ab受安培力F= BLE R ,此 时a= BLE mR ,棒ab速度v↑→感应电 动势BLv↑→电流I↓→安培力F= BIL↓→加速度a↓,当安培力F=0 时,a=0,v最大,最后匀速 棒ab释放后下滑,此时a=gsin α,棒 ab速度v↑→感应电动势E=BLv↑→ 电流I= E R ↑→安培力F=BIL↑→加速 度a↓,当安培力F=mgsin α时,a= 0,v最大,最后匀速 运动 形式 变加速运动变加速运动 最终状态匀速运动vm= E BL 匀速运动vm= mgRsin α B2L2

1、如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦. (1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图. (2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小. (3)求在下滑过程中,ab杆可以达到的速度最大值.

1、解析 (1)如右图所示,ab 杆受重力mg ,竖直向下;支持力FN ,垂直斜面向上;安培力F ,平行斜面 向上. (2)当ab 杆速度为v 时,感应电动势 E =BLv ,此时电路中电流 I =E R =BLv R ab 杆受到安培力F =BIL =B2L2v R 根据牛顿运动定律,有ma =mgsin θ-F =mgsin θ-B2L2v R a =gsin θ-B2L2v mR . (3)当B2L2v R =mgsin θ时,ab 杆达到最大速度vm =mgRsin θB2L2

电磁感应中的感应电量

电磁感应中感应电量 的计算方法及其应用 在电磁感应中,对通过导体横截面的感应电荷量的求解问题,我们往往只注重于对电荷量求解方法的研究。教学中,若能将这一计算方法适当变形,我们会发现,其在实际问题中对相关物理量的求解过程往往会令人耳目一新、豁然开朗。 一、感应电荷量求解方法的变形与应用 令在水平面上垂直切割磁感线的导体棒长L ,质量为m ,切割磁感线的始速度为V 0,末速度为V t ,匀强磁场的磁感应强度为B ,闭合回路总电阻为R,求在时间△t 内通过导体棒电荷量q 的大小。 1. 利用动量定理求解:(对动生电动势适用) 由动量定理有: —B I L ·t ?=?P=t mV —0mV ① 由电流的定义式有: I =t q ? ② 由①②有q= BL P ?=BL m V m V t 0 - 2. 利用法拉第电磁感应定律求解:(对动生、感生电动势均适用) 由法拉第电磁感应定律有: E =t n ??φ =t S B n ?? ① 由闭合电路欧姆定律有: I = R E ② 由电流的定义式有: I =t q ? ③ 由①②③有q=R n φ? =R S B n ? 通过上述两种不同方法所求出的感应电荷量结果一致。由于求解过程中的I 、 E 、 F = B I L 均为相应物理量对时间的平均值,为加深印象,引起重视,我们可以 将这一求解感应电荷量的方法叫为“平均值观点”。 二、感应电荷量求解方法的变形与应用

由于两种不同计算方法能得到相同的结论不同的表达形式,而动量定理中包含时间?t 与速度V ,面积?S 中间接包含位移s ,通过变形,将两种不同感应电荷量的表达形式建立等式,可求出对应段落内的时间、速度、位移、功与能量。 1.变形求时间 【例1】如图1所示,两根平行金属导轨MN,PQ 相距为d ,导轨平面与水平面夹角为θ,导轨上端跨接一定值电阻R ,导轨电阻不计,整个装置处于方向垂直导轨平面向上,磁感应强度大小为B 的匀强磁场中,金属棒ab 垂直于MN,PQ 静止放置,且与导轨保持良好接触,其长度刚好也为d ,质量为m ,电阻为r ,现给金属棒一沿斜面向上的始速度V 0,金属棒沿导轨上滑距离s 后再次静止,已知金属棒与导轨间的动摩擦因数为μ,求金属棒在导轨上运动的时间。 解析:对金属棒进行受力分析由动量定理有 —m gSin θ.t —μmg.Cos θ.t —B I dt=— 运动过程电流的平均值 I = t q =r R E + ② 金属棒切割磁感线产生的平均电动势 E =t ??φ =t BdS ③ 由②③有q=I t=r R BdS + ④ 由①④有t= ) cos )(()(2 20θμθmg mgSin r R S d B r R mV ++-+ 2.变形求速度 【例2】如图2所示,电阻为R ,质量为m ,变长为L 的正方形导线圈abcd ,从距匀强磁场上边界h 高处自由下落,测得自线圈的下边cd 进入磁场至线圈的上边ab 进入磁场历时为t ,单边有界匀强磁场的磁感应强度为B ,试求线圈的上边界ab 刚进入磁场时线圈的速度。 解析:令线圈刚进入磁场的速度为V 0,则 mgh=202 1 mV ① 令ab 进入磁场时的速度为V 1,对线圈进入磁场 过程进行受力分析由动量定理有 m gt —B I Lt= m V 1—m V 0 ② 切割磁感线过程电流的平均值 I = t q =R E ③

电磁感应与电路全面版

电磁感应与电路 思想方法提炼 电磁感应是电磁学的核心内容,也是高中物理综合性最强的内容之一,高考每年必考。题型有选择、填空和计算等,难度在中档左右,也经常会以压轴题出现。 在知识上,它既与电路的分析计算密切相关,又与力学中力的平衡、动量定理、功能关系等知识有机结合;方法能力上,它既可考查学生形象思维和抽象思维能力、分析推理和综合能力,又可考查学生运用数知识(如函数数值讨论、图像法等)的能力。 高考的热点问题和复习对策: 1.运用楞次定律判断感应电流(电动势)方向,运用法拉第电磁感应定律,计算感应电动势大小.注重在理解的基础上掌握灵活运用的技巧. 2.矩形线圈穿过有界磁场区域和滑轨类问题的分析计算。要培养良好的分析习惯,运用动力学知识,逐步分析整个动态过程,找出关键条件,运用运动定律特别是功能关系解题。 3.实际应用问题,如日光灯原理、磁悬浮原理、电磁阻尼等复习时应多注意。 此部分涉及的主要内容有: 1.电磁感应现象. (1)产生条件:回路中的磁通量发生变化. (2)感应电流与感应电动势:在电磁感应现象中产生的是感应电动势,若回路是闭合的,则有感应电流产生;若回路不闭合,则只有电动势,而无电流. (3)在闭合回路中,产生感应电动势的部分是电源,其余部分则为外电路. 2.法拉第电磁感应定律:E=n ,E=BLvsin θ, 注意瞬时值和平均值的计算方法不同. 3.楞次定律三种表述: (1)感应电流的磁场总是阻碍磁通量的变化(涉及到:原磁场方向、磁通量增减、感应电流的磁场方向和感应电流方向等四方面).右手定则是其中一种特例. (2)感应电流引起的运动总是阻碍相对运动. (3)自感电动势的方向总是阻碍原电流变化. 4.相关链接 (1)受力分析、合力方向与速度变化,牛顿定律、动量定理、动量守恒定律、匀速圆周运动、功和能的关系等力学知识. (2)欧姆定律、电流方向与电势高低、电功、电功率、焦耳定律等电路知识. t ??Φ

§9.3互感和自感电磁感应中的电路问题

§9.3 互感和自感电磁感应中的电路问题 1.互感现象 当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,此现象称为互感。 2. 自感 (1)自感现象:由于导体自身电流发生变化而产生的电磁感应现象。自感现象是电磁感应的特例.一般的电磁感应现象中变化的原磁场是外界提供的,而自感现象中是靠流过线圈自身变化的电流提供一个变化的磁场.它们同属电磁感应,所以自感现象遵循所有的电磁感应规律. (2)自感电动势:自感现象中产生的电动势叫做自感电动势。自感电动势和电流的变化率(△I/△t)及自感系数L成正比。自感系数由导体本身的特性决定,线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大;线圈中加入铁芯,自感系数也会增大。 自感电动势仅仅是减缓了原电流的变化,不会阻止原电流的变化或逆转原电流的变化.原电流最终还是要增加到稳定值或减小到零. (3)通电自感:通电时电流增大,阻碍电流增大,自感电动势和原来电流方向相反。 (4)断电自感:断电时电流减小,阻碍电流减小,自感电动势与原来电流方向相同。 自感现象只有在通过电路的电流发生变化时才会产生.在判断电路性质时,一般分析方法是:当流过线圈L的电流突然增大瞬间,我们可以把L 看成一个阻值很大的电阻;电路电流稳定时,看成导线;当流经L的电流突然减小的瞬间,我们可以把L看作一个电源,它提供一个跟原电流同向的电流. 当电路中的电流发生变化时,电路中每一个组成部分,甚至连导线,都会产生自感电动势去阻碍电流的变化,只不过是线圈中产生的自感电动势比较大,其它部分产生的自感电动势非常小而已.3.涡流 当线圈中的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内且形成旋涡,很象水中的旋涡,简称涡流。 (1)把块状金属放在变化的磁场中,或者让它在磁场中运动时,金属块内将产生感应电流,这种电流在金属块内自成闭合电路,很像水里的漩涡,称涡电流,涡流常常很强。 (2)涡流的减小:在各种电机和变压器中,为了减少涡流的损失,在电机和变压器上通常用涂有绝缘漆的薄硅钢片叠压制成的铁芯。 (3)涡流的利用:冶炼金属的高频感应炉就是利用强大的涡流使金属尽快熔化,电学测量仪表的指针快速停止摆动也是利用铝框在磁场中转动产生的涡流。 4. 电磁感应中电路问题 在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路充当电源.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是: ①确定电源,用电磁感应的规律确定感应电动势的大小和方向; ②分析电路结构,明确内、外电路,必要时画等效电路; ③运用闭合电路欧姆定律、串并联电路性质,电功率等公式联立求解. 【典型例题】 [例1]在如图(a)(b)所示电路中,电阻R和自感线圈L的电阻值都很小,且小于灯D 的电阻, 接通开关S,使电路达到稳定,灯泡D发光,则() (a)(b) A.在电路(a)中,断开S,D将逐渐变暗 B.在电路(a)中,断开S,D将先变得更亮,然后才变暗 C.在电路(b)中,断开S,D将逐渐变暗 D.在电路(b)中,断开S,D将先变得更亮,然后渐暗 [例2]如图甲所示,空间存在着一个范围足够大的竖直向下的匀强磁场区 域,磁场的磁感应强度大小 为B 。边长为L的正方形 金属abcd(下简称方框)放 在光滑的水平面上,其外侧 套着一个与方框边长相同 的U型金属框架MNPQ(下 c a b M d N B Q P

电磁感应中的电路问题专题练习(含答案)

电磁感应中的电路问题专题练习 1.用均匀导线做成的正方形线圈边长为l,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以的变化率增强时,则下列说法正确的是( ) A.线圈中感应电流方向为adbca B.线圈中产生的电动势E=· C.线圈中a点电势高于b点电势 D.线圈中a,b两点间的电势差为· 2.如图所示,用粗细相同的铜丝做成边长分别为L和2L的两只闭合线框a和b,以相同的速度从磁感应强度为B的匀强磁场区域中匀速地拉到磁场外,不考虑线框的重力,若闭合线框的电流分别为I a,I b,则I a∶I b为( ) A.1∶4 B.1∶2 C.1∶1 D.不能确定 3.在图中,EF,GH为平行的金属导轨,其电阻不计,R为电阻,C为电容器,AB为可在EF和GH上滑动的导体棒,有匀强磁场垂直于导轨平面.若用I1和I2分别表示图中该处导线中的电流,则当AB棒( D )

A.匀速滑动时,I1=0,I2=0 B.匀速滑动时,I1≠0,I2≠0 C.加速滑动时,I1=0,I2=0 D.加速滑动时,I1≠0,I2≠0 4.如图所示,导体棒在金属框架上向右做匀加速运动,在此过程中( ) A.电容器上电荷量越来越多 B.电容器上电荷量越来越少 C.电容器上电荷量保持不变 D.电阻R上电流越来越大 5.用相同导线绕制的边长为L或2L的四个闭合导体线框,以相同的速度进入右侧匀强磁场,如图所示.在每个线框进入磁场的过程中,M,N 两点间的电压分别为U a,U b,U c和U d.下列判断正确的是( ) A.U a

电磁感应中求电量的策略BW

电磁感应中求电量的策略 B W Last revision on 21 December 2020

电磁感应中求电量的策略 程柱建(江苏省如皋市丁堰中学 226521) 1.用法拉第电磁感应定律 由闭合电路欧姆定律得 由法拉第电磁感应定律得 所以 .E q I t t n t n R r R r t R r ?Φ?Φ =?= ?=?=++?+()() 例1 放在绝缘水平面上的两条平行导轨MN 和PQ 之间宽度为L ,置于磁感应强度为B 的匀强磁场中,B 的方向垂直于导轨平面,导轨左端接有阻值为R 的电阻,其它部分电阻不计.导轨右端接一电容为C 的电容器,长为2L 的金属棒放在导轨上与导轨垂直且接触良好,其a 端放在导轨PQ 上.现将 金属棒以a 端为轴,以角速度 ω沿导轨平面顺时针旋转?90角,如图1所示.求这个过程中通过电阻R 的总电量是多少(设导轨长度比2L 长得多) 分析 从ab 棒开始旋转,直到b 端脱离导 轨的过程中,其感应电动势不断增大,对C 不断充电,同时又与R 构成回路.通过R 的 电量为 式中ΔS 等于ab 所扫过的三角形 aDb ’的面积,如图2中虚 线所示.所以 所以 2.2q R = 当ab 棒运动到b ’时,电容C 上所带电量为C CU q =',此时m C E U =, 而 ω2 22 2BL v L B E m =??=, 所以 C BL q ω22'=. 当ab 脱离导轨后,C 对R 放电,通过R 的电量为q’,所以整个过程中通过R 的总电量为 )223 (223'222C R BL C BL R BL q q q ωω+=+= +=总. 2.用动量定理 在金属棒只受到安培力时,由动量定理得 p t F ?=?安,其中安培力L I B F =安. 所以 .p q I t BL ?=?= C a 图1 C a 图2

电磁感应与电路

专题检测(六) (时间90分钟,满分100分) 一、选择题(每小题5分,共50分) 1.(2010·重庆理综)一输入电压为220 V ,输出电压为36 V 的变压器副线圈烧坏.为获知此变压器原、副线圈匝数,某同学拆下烧坏的副线圈,用绝缘导线在铁芯上新绕了5匝线圈,如图1所示,然后将原线圈接到220 V 交流电源上,测得新绕线圈的端电压为1 V .按理想变压器分析,该变压器烧坏前的原、副线圈匝数分别为 A .1 100,360 B .1 100,180 C .2 200,180 D .2 200,360 解析 根据U 1U 2=n 1n 2可得2001=n 1 5,可知n 1=1 100.排除C 、D 两项.再由22036=n 1 n 2 可知n 2=180,故A 错B 对. 答案 B 2.(2010·福建理综)中国已投产运行的1 000 kV 特高压输电是目前世界上电压最高的输电工程.假设甲、乙两地原来用500 kV 的超高压输电,输电线上损耗的电功率为P .在保持输送电功率和输电线电阻都不变的条件下,现改用1 000 kV 特高压输电,若不考虑其他因素的影响,则输电线上损耗的电功率将变为 A.P 4 B.P 2 C .2P D .4P 解析 设输送功率为P ,输送电流为I ,输送电压为U ,则P =UI ,I =P U ,P 损=I 2R .输送电压升为原来的2倍,则输送电流降为原来的一半,P 损降为原来的四分之一,故选A. 答案 A 3.(2009·海南国兴中学联考)如图2所示,等腰三角形内分布有垂直于纸面向外的匀强磁场,它的底边在x 轴上且长为2L ,高为L .纸面内一边长为L 的正方形导线框沿x 轴正方向做匀速直线运动穿过匀强磁场区域,在t =0时刻恰好位于图中所示的位置.以顺时针方向为导线框中电流的正方向,在图3中能够正确表示电流-位移(I -x )关系的是

一电磁感应中的电路问题要点

电磁感应中的电路问题 ▲知识梳理 1.求解电磁感应中电路问题的关键是分析清楚内电路和外电路。 “切割”磁感线的导体和磁通量变化的线圈都相当于“电源”,该部分导体的电阻相当于内电阻,而其余部分的电路则是外电路。 2.几个概念 (1)电源电动势或。 (2)电源内电路电压降,r是发生电磁感应现象导体上的电阻。(r是内电路的电阻) (3)电源的路端电压U,(R是外电路的电阻)。 3.解决此类问题的基本步骤 (1)用法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和方向。(2)画等效电路:感应电流方向是电源内部电流的方向。 (3)运用闭合电路欧姆定律结合串、并联电路规律以及电功率计算公式等各关系式联立求解。 特别提醒:路端电压、电动势和某电阻两端的电压三者的区别: (1)某段导体作为外电路时,它两端的电压就是电流与其电阻的乘积。 (2)某段导体作为电源时,它两端的电压就是路端电压,等于电流与外电阻的乘积,或等于电动势减去内电压,当其内阻不计时路端电压等于电源电动势。 (3)某段导体作为电源时,电路断路时导体两端的电压等于电源电动势 1:图中EF、GH为平行的金属导轨,其电阻可不计,R为电阻器,C为电容器,AB为可在EF和GH上滑动的导体横杆。有均匀磁场垂直于导轨平面。若用和分别表示图中该处导线中的电流,则当横杆AB() A.匀速滑动时,=0,=0 B.匀速滑动时,≠0,≠0 C.加速滑动时,=0,=0 D.加速滑动时,≠0,≠0

2、两根光滑的长直金属导轨、平行置于同一水平面内,导轨间距为l,电阻不计,M、处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C。 长度也为l、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中。ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为s的过程中,整个回路中产生的焦耳热为Q。求: (1)ab运动速度v的大小; (2)电容器所带的电荷量q。 3、如图所示,两条平行的光滑水平导轨上,用套环连着一质量为0.2kg、电阻为2Ω的导体杆ab,导轨间匀强磁场的方向垂直纸面向里。已知=3Ω,= 6Ω,电压表的量 程为0~10 V,电流表的量程为0~3 A(导轨的电阻不计)。求: (1)将R调到30Ω时,用垂直于杆ab的力F=40 N,使杆ab沿着导轨向右移动且达到最大速度时,两表中有一表的示数恰好满量程,另一表又能安全使用,则杆ab的速度多大?(2)将R调到3Ω时,欲使杆ab运动达到稳定状态时,两表中有一表的示数恰好满量程,另一表又能安全使用,则拉力应为多大? (3)在第(1)小题的条件下,当杆ab运动达到最大速度时突然撤去拉力,则电阻上还能产生多少热量?