搜档网
当前位置:搜档网 › 第7章滞后变量习题

第7章滞后变量习题

第7章滞后变量习题
第7章滞后变量习题

1

第七章 滞后变量模型

一.单项选择题

1.下列属于有限分布滞后模型的是( )。

A.u y b y b x b y t

t t t t a +++++=--Λ22110

B.u y b y b y b x b y t

k t k t t t t a ++++++=---Λ22110 C.u x b x b y t

t t t a ++++=-Λ110

D.

u x b x b x b y t

k t k t t t a +++++=--Λ110

2.消费函数模型t C ?

=400+0.5I t +0.3I t-1+0.1I t-2,其中I 为收入,则当期收入I t 对未来消费

C t+2的影响是:I 增加一单位,C t+2增加( )。

3.在分布滞后模型

u x b x b x b y t

k t k t t t +++++=--Λ110α中,延期过渡性乘数( )。

A.b 0

B.b i (i=1,2,…,k)

C.∑=k

i i

b 1 D.∑=k

i i

b 0

4.在分布滞后模型的估计中,使用时间序列资料可能存在的序列相关问题就表现为( )。

A.异方差问题

B.自相关问题

C.多重共线性问题

D.随机解释变量问题 5.有限多项式分布滞后模型中,通过将原分布滞后模型中的参数表示为滞后期i 的有限多项式,从而克服了原分布滞后模型估计中的( )。 A. 异方差问题 B.序列相关问题

C. 多重共线性问题

D.由于包含无穷多个参数从而不可能被估计的问题

6.在分布滞后模型Y t =α+β0X t +β1X t-1+β2X t-2+…+u t 中,短期影响乘数为( ).

A .αβ-11 B.1β C.αβ-11

D.0β

6.对于有限分布滞后模型

t

s t s t t t t u X X X X Y ++++++=---ββββαΛ22110

在一定条件下,参数

i

β可近似用一个关于i 的多项式表示(i=0,1,2……k ),其中多项

式的阶数m 必须满足( )

A .k m < B.k m = C.k m > D.k m ≥

7.自适应预期模型基于如下的理论假设:影响被解释变量t Y 的因素不是t X ,而是关于t X

的预期*

t X ,且预期*

t X 形成的过程是***11()t

t t t X

X X X γ---=-,其中01γ<<,

γ被称为 ( ) A 、衰减率 B 、预期系数

C 、调整因子

D 、预期误差 8.Koyck 变换是将无限分布滞后模型0

t i t i

t i Y X

αβμ∞

-==+

+∑转换为自回归模型,然后进行估

计,这里假设偏回归系数按几何衰减即0i

i ββλ=,01,1λλ<<-称为 ()

A 、衰减率

B 、调整速率

C 、预期系数

D 、待估参数

9.关于自适应预期模型和局部调整模型,下列说法错误的有( ) A . 它们都是由某种期望模型演变形成的 B . 它们最终都是一阶自回归模型

C . 它们都满足古典线性回归模型的所有假设,从而可直接OLS 方法进行估计

D .它们的经济背景不同

10.局部调整模型不具有如下特点( )

A .对应的原始模型中被解释变量为期望变量,它不可观测

B .模型是一个一阶自回归模型

C .模型中含有一个滞后被解释变量

1

-t Y ,但它与随机扰动项不相关

D .模型的随机扰动项存在自相关

11.下列哪个模型的一阶线性自相关问题可用D-W 检验( )。 A.有限多项式分布滞后模型 B.自适应预期模型 C.库伊克变换模型 D.局部调整模型

12.对于Koyck 变换后自回归模型与自适应预期模型,估计方法可采用 () A 、加权最小二乘法 B 、广义差分法 C 、普通最小二乘法 D 、工具变量法

二、多项选择题

1、需要用工具变量法进行估计的自回归分布滞后模型有() A 、不经变换的无限期分布滞后模型 B 、有限期分布滞后模型 C 、Koyck 变换模型 D 、自适应预期模型 E 、局部调整模型

2、不能直接应用OLS 估计分布滞后模型的原因有() A 、对于无限期滞后模型,没有足够的样本

B 、对于有限期滞后模型,没有先验准则确定滞后期的长度

C 、可能存在多重共线性问题

D 、滞后期较长的分布滞后模型,缺乏足够的自由度进行统计检验

E 、解释变量与随机干扰项相关

3、有限分布滞后模型的修正估计方法有()

A 、经验加权法

B 、Almon 多项式法

C、Koyck多项式法

D、工具变量法

E、普通最小二乘法

4、关于自回归模型,下列表述正确的有()

A、估计自回归模型时的主要问题在于,滞后被解释变量的存在可能导致它与随机干扰

项相关,以及随机干扰项出现序列相关

B、Koyck模型和自适应预期模型都存在解释变量与随机干扰项同期相关问题

C、局部调整模型中解释变量与随机干扰项没有同期相关,因此可以应用OLS估计

D、无限期分布滞后模型通过一定的方法可以转换为一阶自回归模型

E、以上都正确

三、简答题

1.什么是滞后现象?产生滞后现象的原因主要有哪些?

答:

解释变量和被解释变量的因果联系可能不在同时发生,在这一过程中通常有时间滞后,解释变量需要通过一段时间才能完全作用与被解释变量。由于经济活动的连续性,被解释变量的当前变化往往受到自身过去取值水平的影响。被解释变量受自身或其它经济变量前期水平的影响称为滞后现象。

产生滞后现象主要是由于经济变量自身、决策者心理、技术和制度的原因。

2.有限分布滞后模型估计的困难是什么?

答:

(1)损失自由度。

(2)产生多重共线性。

(3)滞后长度难以确定。

3. 什么是经验加权估计法?常见的滞后结构类型有那几种?

答:

根据实际经济问题的特点及经验判断,对滞后变量赋予一定的权数,构成各滞后变量的线性组合,形成新的变量,再用最小二乘法进行估计。其基本思路是减少模型中被估计的参数个数。

常见的滞后结构类型有:递减滞后结构、不变滞后结构和倒V型滞后结构。

4.经验加权估计法的优缺点、通常做法是什么?

答:

优点是简单易行、不损失自有度、避免多重共线性和参数估计具有一致性等。缺点是设置全书的主观随意性较大,要求对实际问题的特征具有比较透彻的了解。通常的做法是多选几组权数分别进行估计,根据检验统计量选取最佳方程。

5.什么是阿尔蒙估计法?其基本原理是什么?

答:

利用有限多项式来减少待估参数的数量,以减少多重共线性和参数估计中的自由度损失。其基本原理是,如果有限分布滞后模型

Y t = a + b

X

t

+ b

1

X

t-1

+ b

1

X

t-1

+ ┅┅ + b

k

X

t-k

+ U

t

中的参数b

i

( I = 1,2,……,k) 的分布可以近似地用一个关于I 的低阶多项式表示,就可以利用多项式减少模型中的参数。

3

虚拟变量案例

虚拟变量(dummy variable) 在实际建模过程中,被解释变量不但受定量变量影响,同时还受定性变量影响。例如需要考虑性别、民族、不同历史时期、季节差异、企业所有制性质不同等因素的影响。这些因素也应该包括在模型中。 由于定性变量通常表示的是某种特征的有和无,所以量化方法可采用取值为1或0。这种变量称作虚拟变量,用D表示。虚拟变量应用于模型中,对其回归系数的估计与检验方法与定量变量相同。 1.截距移动 设有模型, y t = 0 + 1 x t + 2D + u t , 其中y t,x t为定量变量;D为定性变量。当D= 0 或1时,上述模型可表达为, + 1x t + u t , (D = 0) y t = (0 + 2) + 1x t + u t , (D = 1) D =0 D = 1 +2 图8.1 测量截距不同 D= 1或0表示某种特征的有无。反映在数学上是截距不同的两个函数。若2显著不为零,说明截距不同;若2为零,说明这种分类无显著性差异。 例:中国成年人体重y(kg)与身高x(cm)的回归关系如下: –105 + x D = 1 (男) y = - 100 + x - 5D = – 100 + x D = 0 (女) 注意: ①若定性变量含有m个类别,应引入m-1个虚拟变量,否则会导致多重共线性,称作虚拟变量陷阱(dummy variable trap)。 ②关于定性变量中的哪个类别取0,哪个类别取1,是任意的,不影响检验结果。

③定性变量中取值为0所对应的类别称作基础类别(base category)。 ④对于多于两个类别的定性变量可采用设一个虚拟变量而对不同类别采取赋值不同的方法处理。如: 1 (大学) D =0 (中学) -1 (小学)。 【案例1】中国季节GDP数据的拟合(虚拟变量应用,file:case1及case1-solve) GDP序列图不用虚拟变量的情形若不采用虚拟变量,得回归结果如下, GDP = 1.5427 + 0.0405 T (11.0) (3.5) R2 = 0.3991, DW = 2.6,s.e. = 0.3 定义 1 (1季度) 1 (2季度) 1 (3季度) D1 = D2 = D3 = 0 (2, 3,4季度) 0 (1, 3, 4季度) 0 (1, 2, 4季度) 第4季度为基础类别。 GDP = 2.0922 + 0.0315 T – 0.8013 D1 – 0.5137 D2– 0.5014 D3 (64.2) (15.9) (-24.9) (-16.1) (-15.8) R2 = 0.9863, DW = 1.96,s.e. = 0.05 附数据如下: 年GDP t D1D2D3 1996:11.31561100 1996:21.66002010

高中数学第二章概率5第2课时离散型随机变量的方差学案北师大版选修

第2离散型随机变量的方差 学习目标1.理解取有限个值的离散型随机变量的方差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题. 知识点离散型随机变量的方差 甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为X和Y,X和Y的分布列为 X 01 2 P 6 10 1 10 3 10 Y 01 2 P 5 10 3 10 2 10 思考1试求EX,EY. 思考2能否由EX与EY的值比较两名工人技术水平的高低? 思考3试想用什么指标衡量甲、乙两工人技术水平的高低? 梳理(1)离散型随机变量的方差的含义 设X是一个离散型随机变量,用E(X-EX)2来衡量X与EX的________________,E(X-EX)2是(X-EX)2的________,称E(X-EX)2为随机变量X的方差,记为________. (2)方差的大小与离散型随机变量的集中与分散程度间的关系 方差越____,随机变量的取值越分散;方差越____,随机变量的取值就越集中在其均值周

围. (3)参数为n,p的二项分布的方差 当随机变量服从参数为n,p的二项分布时,其方差DX=np(1-p). 类型一求离散型随机变量的方差 命题角度1已知分布列求方差 例1已知X的分布列如下: X -10 1 P 1 2 1 4 a (1)求X2 (2)计算X的方差; (3)若Y=4X+3,求Y的均值和方差. 反思与感悟方差的计算需要一定的运算能力,公式的记忆不能出错!在随机变量X2的均值比较好计算的情况下,运用关系式DX=EX2-(EX)2不失为一种比较实用的方法.另外注意方差性质的应用,如D(aX+b)=a2DX. 跟踪训练1已知η的分布列为 η010205060 P 1 3 2 5 1 15 2 15 1 15 (1)求方差; (2)设Y=2η-Eη,求DY.

离散型随机变量及其分布列教案

离散型随机变量及其分布列第一课时 2.1.1离散型随机变量 教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量. 2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想 描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识. 3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识 数学的科学价值和应用价值. 教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究. 教学方法:启发讲授式与问题探究式. 教学手段:多媒体 教学过程: 一、创设情境,引出随机变量 提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示? 启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系. 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果. 再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗? 让学生思考得出结论:投进零个球——— 0分 投进一个球——— 1分 投进两个球——— 2分 投进三个球——— 3分 得分结果可以用数字0、1、2、3表示. 二、探究发现 1、随机变量 问题1.1:任何随机试验的所有结果都可以用数字表示吗? 引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量. 问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念? 引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量. 随机变量常用字母X、Y、ξ、η来表示. 问题1.3:随机变量与函数有类似的地方吗? 引导学生回顾函数的理解: 函数 实数实数 在引导学生类比函数的概念,提出对随机变量的理解:

2019-2020学年高中数学 2.3.1离散型随机变量的期望学案 新人教A版选修2-3.doc

2019-2020学年高中数学 2.3.1离散型随机变量的期望学案 新人教 A 版选修2-3 【教学目标】 1了解离散型随机变量的期望的意义,会根据离散型随机变量的分布列求出期望. ⒉理解公式“E (a ξ+b )=aE ξ+b ”,以及“若ξ~Β(n ,p),则E ξ=np ”.能熟练地应用它们求相应的离散型随机变量的期望 【教学重难点】 教学重点:离散型随机变量的期望的概念 教学难点:根据离散型随机变量的分布列求出期望 【教学过程】 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量并且不改变其属性(离 散型、连续型) 5. 分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…, ξ取每一个值xi (i=1,2,…)的概率为 ()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 6. 分布列的两个性质: ⑴Pi ≥0,i =1,2,…; ⑵P1+P2+…=1. 7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ, (k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 0 1 … k … n P n n q p C 00 1 11-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B(n ,p),其中n ,p 为参数,并记k n k k n q p C -=

第八章 虚拟变量回归 思考题

第八章 虚拟变量回归 思考题 8.1 什么是虚拟变量 ? 它在模型中有什么作用 ? 8.2 虚拟变量为何只选 0 、 1, 选 2 、 3 、 4 行吗 ? 为什么 ? 8.3 对 (8.10) 式的模型 , 如果选择一个虚拟变量 1,01D ?? =??-? 大专及大专以上,高中 ,高中以下 这样的设置方式隐含了什么假定 ? 这一假定合理吗 ? 8.4 引入虚拟解释变量的两种基本方式是什么 ? 它们各适用于什么情况 ? 8.5 四种加法方式引入虚拟变量会产生什么效应? 8.6 引入虚拟被解释变量的背景是什么?含有虚拟被解释变量模型的估计方法有哪些 ? 8.7 设服装消费函数为 12233t i i i i Y D D X u αααβ=++++ 其中, i X =收入水平 ;Y = 年服装消费支出 ; 1,30D ?=? ?大专及大学以上 ,其他 ;1,20D ?=??女性,其他 试写出不同人群组的服装消费函数模型。 8.8 利用月度数据资料 ,为了检验下面的假设,应引入多少个虚拟解释变量 ? 1) 一年里的 12 个月全部表现出季节模式 ; 2) 只有 2 月、 6 月、 8 月、 10 月和 12 月表现出季节模式。 练习题 8.1 1971 年 ,Sen 和 Sztvastava 在研究贫富国之间期望寿命的差异时 , 利用 101 个国家的数据 , 建立了如下回归模型 []? 2.409.39ln 3.36(ln 7)i i i i Y X D X =-+-- (4.37)(0.857)(2.42) R2=0.752 其中 ,X 是以美元计的人均收入 ;Y 是以年计的期望寿命 ; Sen 和 Srimstava 认为人均收入的临界值为 1097 美元 (ln1097=7), 若人均收入超过 1097 美元 , 则被认定为富国 ; 若人均收入低于1097美元 , 被认定为贫穷国。括号内的数值为对应参数估计值的t 值。 1) 解释这些计算结果。 2) 回归方程中引入(ln 7)i i D X =-的原因是什么?如何解释这个回归解释变量? 3) 如何对贫穷国进行回归 ? 又如何对富国进行回归 ? 4)这个回归结果中可得到的一般结论是什么 ?

52.3.2离散型随机变量的方差导学案(选修2-3)

§2.3.2离散型随机变量的方差导学案 高二数学组 一、教学目标 1、通过实例,理解离散型随机变量的方差; 2、能计算简单离散型随机变量的方差。 重点:离散型随机变量的方差的概念 难点:根据离散型随机变量的分布列求出方差 二、自学引入: 问题1:某射手在10次射击中所得环数为:10,9,8,10,8,10,10,10,8,9. 求这名射手所得环数的方差。 问题2:某射手在一次射击中所得环数 能否根据分布列求出这名射手所得环数的方差? 引入概念: (1)方差的概念:设一个离散型随机变量X所有可能取得值是x1,x2,…,x n;这些值对应的概率为p1,p2,…,p n,则 D(X)= , 叫做这个离散型随机变量X的方差。 离散型随机变量的方差反映了离散型随机变量的取值。 (2)D(X)的叫做随机变量X的标准差。 三、问题探究: (1)若随机变量X服从参数为p的二点分布,则D(X)= ()。 (2)若随机变量X服从参数为n,p的二项分布,则D(X)= ()。 四、典例解析: 例1 甲、乙两射手在同样条件下进行射击,成绩的分布列如下: 射手甲: 射手乙: 谁的射击水平比较稳定。 变式训练设X是一个离散型随机变量,其分布列如下表,试求D(X)

例2 已知某离散型随机变量X 服从下面的二项分布: k k k C k X P -==449.01.0)( (k=0,1,2,3,4). 求E (X )和D (X )。 变式训练 一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为 0.02。设发病的牛的头数为X ,求E (X )和D (X )。 五、小结: 六、作业:课后练习A 、B 。 §2.3. 2离散型随机变量的方差当堂检测 高二数学组 1、已知()~,,8, 1.6B n p E D ξξξ==,则,n p 的值分别是( ) A .1000.08和; B .200.4和; C .100.2和; D .100.8和 2、设投掷1颗骰子的点数为ξ,则( ) A.E ξ=3.5,D ξ=3.52 B.E ξ=3.5,D ξ=12 35 C.E ξ=3.5,D ξ=3.5 D.E ξ=3.5,D ξ= 16 35 3、有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为X ,求E (X ),D (X ) 4、A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示: A 机床 B 机床 问哪一台机床加工质量较好

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概 率()i i P X x p ==(12)i =、……称为X 的概率分 布或分布律,表格表示形式如下: [2] 性质: ? 0i p ≥ ?11n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞= ? 则称X 为连续型随机变量,()f x 称为概率密度函 数或者密度函数。

[2] 连续型随机变量的密度函数的性质 ?()0f x ≥ ? ()1f x dx +∞ -∞=? ?{}()()()P a X b F b F a f x dx +∞ -∞<≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= (3) 连续型随机变量和离散型随机变量的区别: [1] 由连续型随机变量的定义,连续型随机变量的定义域是 (),-∞+∞,对于任何x ,000 {}()()0P X x F x F x ==--=;而对于离散型随机变量的分布函数有有限个或可列个间 断点,其图形呈阶梯形。 [2] 概率密度()f x 一定非负,但是可以大于1,而离散型随 机变量的概率分布i p 不仅非负,而且一定不大于1. [3] 连续型随机变量的分布函数是连续函数,因此X 取任何 给定值的概率都为0. [4] 对任意两个实数a b <,连续型随机变量X 在a 与b 之间 取值的概率与区间端点无关,即:

《离散型随机变量的概念》教学设计

离散型随机变量的概念》教学设计 一、教材分析 《离散型随机变量的概念》是人教 A 版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第一课时。本章是在必修三中学习了基本的概率统计知识的基础上,进一步学习随机变量及其分布的知识。本节内容一方面承接了必修三的知识;另一方面,掌握好这一节课将有助于后续的学习,因此它在知识体系上起着承上启下的作用。随机变量是连接随机现象和实数空间的一座桥梁,从而使得更多的数学工具有了用武之地。离散型随机变量是最简单的随机变量。本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法。 二、学情分析 学生在必修 3 概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1 中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括。 三、教学策略分析 学生是教学的主体,本节课要给学生提供各种参与机会。本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,培养学生分析问题、 解决问题的能力

四、目标分析 1知识与技能目标:理解随机变量和离散型随机变量的概念,能够运用随机变量表示随机事件,学会恰当的定义随机变量; 2、过程与方法目标:在教学过程中,以不同的实际问题为导向,弓I导学生分析问题的特点,归纳问题的共性,提高理解分析能力和抽象概括能力; 3、情感与态度目标:通过列举生活中的实例,提高学生学习数学的积极性, 使学生进一步感受到数学与生活的零距离,增强数学应用意识。 五、教学重点与难点 教学重点:随机变量、离散型随机变量概念的理解及随机变量的实际应用;教学难点:对随机变量概念的透彻理解及对引入随机变量目的的认识。 六、教学过程设计:

滞后变量

1970~1991年美国制造业固定厂房设备投资Y 和销售量X 的相关数据如下表所示。 单位:10 亿美元 (1)假定销售量对厂房设备支出有一个分布滞后效应,使用4期滞后和2次多项式去估计此分布滞后模型; (2)检验销售量与厂房设备支出的格兰杰因果关系,使用直至6期为止的滞后并评述你的结果。 (1)设要估计的分布滞后模型为: t t t t t t t X X X X X Y μβββββα++++++=----443322110 根据阿尔蒙变换,令)4,3,2,1,0(2210=++=i i i i αααβ 或t t t t W W W Y μαααα++++=221100 其中:4 3212432114 32101694432------------+++=+++=++++=t t t t t t t t t t t t t t t t X X X X W X X X X W X X X X X W 在EVIEWS 软件下,可通过选择Quick\Generate Series …,在出现Generate Series 阶段by Eq …窗口分别输入“t W 0=X+X (-1)+X (-2)+X (-3)+X (-4); t W 1=X(-1)+2*X(-2)+3*X(-3)+4*(X-4); t W 2=X(-1)+4*X(-2)+9*X(-3)+16*X(-4) 生成三个序列t W 0、t W 1、t W 2然后做Y 关于t W 0、t W 1、t W 2的OLS 回归,估计结果如下:

1125.0;1551.0;0117.0;3174.0;8324.0,8255.3043210-=-=-===-=∧ ∧∧∧∧∧βββββαα 步骤: 1 建立工作文件并录入数据,如图1所示 图 1

高中数学选修2-3离散型随机变量导学案

2.1.1离散型随机变量 【学习要求】 1.理解随机变量及离散型随机变量的含义. 2.了解随机变量与函数的区别与联系. 【学法指导】 引进随机变量的概念,就可以用数字描述随机现象,建立连接数和随机现象的桥梁,通过随机变量和函数类比,可以更好地理解随机变量的定义,随机变量是函数概念的推广. 【知识要点】 1.随机试验:一般地,一个试验如果满足下列条件: (1)试验可以在相同的情形下重复进行; (2)试验所有可能的结果是明确的,并且不只一个; (3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验. 2.随机变量:在随机试验中,随着变化而变化的变量称为随机变量. 3.离散型随机变量:所有取值可以的随机变量,称为离散型随机变量. 【问题探究】 探究点一随机变量的概念 问题1掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢? 问题2随机变量和函数有类似的地方吗? 例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)上海国际机场候机室中2013年10月1日的旅客数量; (2)2013年某天济南至北京的D36次列车到北京站的时间; (3)2013年某天收看齐鲁电视台《拉呱》节目的人数; (4)体积为1 000 cm3的球的半径长. 小结随机变量从本质上讲就是以随机试验的每一个可能结果为自变量的一个函数,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能的值,而不知道究竟是哪一个值. 跟踪训练1指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. (1)某人射击一次命中的环数; (2)任意掷一枚均匀硬币5次,出现正面向上的次数; (3)投一颗质地均匀的骰子两次出现的点数(最上面的数字)中的最小值; (4)某个人的属相. 探究点二离散型随机变量的判定 问题1什么是离散型随机变量? 问题2非离散型随机变量和离散型随机变量有什么区别? 例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ; ③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是() A.①②③④B.①②④C.①③④D.②③④ 小结该题主要考查离散型随机变量的定义,判断时要紧扣定义,看是否能一一列出. 跟踪训练2指出下列随机变量是否是离散型随机变量,并说明理由. (1)白炽灯的寿命ξ; (2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ; (3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ; (4)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数. 探究点三离散型随机变量的应用 例3(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ.写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果. (2)抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么? 小结解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果. 跟踪训练3下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果. (1)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ,所含红粉笔的支数η. (2)从4张已编有1~4的卡片中任意取出2张,被取出的卡片号数之和ξ. (3)离开天安门的距离η. (4)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ. 【当堂检测】 1.下列变量中,不是随机变量的是() A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度 C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数 2.10件产品中有3件次品,从中任取2件,可作为随机变量的是() A.取到产品的件数B.取到正品的概率 C.取到次品的件数D.取到次品的概率 3.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是() A.2枚都是4点B.1枚是1点,另1枚是3点 C.2枚都是2点D.1枚是1点,另1枚是3点,或者2枚都是2点 4.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出2个球,以ξ表示取出的球的最大号码,则“ξ=6”表示的试验结果是___________________. 【课堂小结】 1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件.

2020届二轮复习 离散型随机变量 学案(全国通用)

离散型随机变量 学习目标 1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系. 知识点一随机变量 思考1抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果,这种试验结果能用数字表示吗? 答案可以,可用数字1和0分别表示正面向上和反面向上. 思考2在一块地里种10棵树苗,棵数为x,则x可取哪些数字? 答案x=0,1,2,3, (10) (1)定义 在随机试验中,可以确定一个对应关系,使得每一个试验结果都用一个确定的数字表示,数字随试验结果的变化而变化,像这种随着试验结果变化而变化的变量称为随机变量. (2)表示:随机变量常用字母X,Y,ξ,η…表示. 知识点二随机变量与函数的关系 思考随机变量和函数有类似的地方吗? 答案随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.试验结果相当于函数的自变量,随机变量相当于函数的函数值,随机变量可以看作函数概念的推广. 知识点三离散型随机变量 1.定义:所有取值可以一一列出的随机变量称为离散型随机变量. 2.特征: (1)可用数值表示. (2)试验之前可以判断其出现的所有值. (3)在试验之前不能确定取何值.

(4)试验结果能一一列出. 类型一随机变量的概念 例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)某机场一年中每天运送乘客的数量. (2)某单位办公室一天中接到电话的次数. (3)明年5月1日到10月1日期间所查酒驾的人数. (4)明年某天济南一青岛的某次列车到达青岛站的时间. 解(1)某机场一年中每天运送乘客的数量可能为0,1,2,3,…,是随机变化的,因此是随机变量. (2)某单位办公室一天中接到电话的次数可能为0,1,2,3,…,是随机变化的,因此是随机变量. (3)明年5月1日到10月1日期间,所查酒驾的人数可能为0,1,2,3,…,是随机变化的,因此是随机变量. (4)济南一青岛的某次列车到达青岛站的时间每次都是随机的,可能提前,可能准时,亦可能晚点,故是随机变量. 反思与感悟随机变量的辨析方法 1.随机试验的结果是否具有可变性,即每次试验对应的结果不尽相同. 2.随机试验的结果的确定性.即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量. 跟踪训练1下列变量中,不是随机变量的是() A.一射击手射击一次命中的环数 B.标准状态下,水沸腾时的温度 C.抛掷两枚骰子,所得点数之和 D.某电话总机在时间区间(0,T)内收到的呼叫次数 答案 B 解析B中求沸腾时的温度是一个确定的值. 类型二离散型随机变量的判定

回归分析方法及其应用中的例子

3.1.2 虚拟变量的应用 例3.1.2.1:为研究美国住房面积的需求,选用3120户家庭为建模样本,回归模型为: 123log log P Y βββ++logQ= 其中:Q ——3120个样本家庭的年住房面积(平方英尺) 横截面数据 P ——家庭所在地的住房单位价格 Y ——家庭收入 经计算:0.247log 0.96log P Y -+logy=4.17 2 0.371R = ()() () 上式中2β=0.247-的价格弹性系数,3β=0.96的收入弹性系数,均符合经济学的常识,即价格上升,住房需求下降,收入上升,住房需求也上升。 但白人家庭与黑人家庭对住房的需求量是不一样的,引进虚拟变量D : 01i D ?=?? 黑人家庭 白人家庭或其他家庭 模型为:112233log log log log D P D P Y D Y βαβαβα+++++logQ= 例3.1.2.2:某省农业生产资料购买力和农民货币收入数据如下:(单位:十亿元) ①根据上述数据建立一元线性回归方程:

? 1.01610.09357y x =+ 20.8821R = 0.2531y S = 67.3266F = ②带虚拟变量的回归模型,因1979年中国农村政策发生重大变化,引入虚拟变量来反映农村政策的变化。 01i D ?=?? 19791979i i <≥年 年 建立回归方程为: ?0.98550.06920.4945y x D =++ ()() () 20.9498R = 0.1751y S = 75.6895F = 虽然上述两个模型都可通过显着性水平检验,但可明显看出带虚拟变量的回归模型其方差解释系数更高,回归的估计误差(y S )更小,说明模型的拟合程度更高,代表性更好。 3.5.4 岭回归的举例说明 企业为用户提供的服务多种多样,那么在这些服务中哪些因素更为重要,各因素之间的重要性差异到底有多大,这些都是满意度研究需要首先解决的问题。国际上比较流行并被实践所验证,比较科学的方法就是利用回归分析确定客户对不同服务因素的需求程度,具体方法如下: 假设某电信运营商的服务界面包括了A1……Am 共M 个界面,那么各界面对总体服务满意度A 的影响可以通过以A 为因变量,以A1……Am 为自变量的回归分析,得出不同界面服务对总体A 的影响系数,从而确定各服务界面对A 的影响大小。 同样,A1服务界面可能会有A11……A1n 共N 个因素的影响,那么利用上述方法也可以计算出A11……A1n 对A1的不同影响系数,由此确定A1界面中的重要因素。 通过两个层次的分析,我们不仅得出各大服务界面对客户总体满意度影响的大小以及不同服务界面上各因素的影响程度,同时也可综合得出某一界面某一因素对总体满意度的影响大小,由此再结合用户满意度评价、与竞争对手的比较等因素来确定每个界面细分因素在以后工作改进中的轻重缓急、重要性差异等,从而起到事半功倍的作用。 例 3.5.4:对某地移动通信公司的服务满意度研究中,利用回归方法分析各服务界面对总体满意度的影响。 a. 直接进入法 显然,这种方法计算的结果中,C 界面不能通过显着性检验,直接利用分析结果是错误

人教A版选修2-3 第二章2.1.1离散型随机变量 学案

2.1.1 离散型随机变量 知识点随机变量 (1)定义:在随机试验中,确定了一个对应关系,使得每一个试验结果都用一个□01确定的数字表示.在这个对应关系下,□02数字随着□03试验结果的变化而变化.像这种随着□04试验结果变化而变化的变量称为随机变量. (2)表示:随机变量常用字母□05X,Y,ξ,η表示. 知识点随机变量与函数的关系 相同点随机变量和函数都是一种映射 随机变量是随机试验的结果到□01实数的映射,函数是□02实数到□03实区别 数的映射 随机试验结果的范围相当于函数的□04定义域,随机变量的取值范围相联系 当于函数的□05值域 知识点离散型随机变量 所有取值可以□01一一列出的随机变量,称为离散型随机变量. 随机试验的特点 (1)试验的所有结果可以用一个数来表示; (2)每次试验总是恰好出现这些结果中的一个,但在一次试验之前,却不能肯定这次试验会出现哪一个结果.判断一个变量是否为离散型随机变量,首先看它是不是随机变量,其次看可能取值是否能一一列出,也就是说变量的取值若是有限的,或者是可以列举出来的,就可以视为离散型随机变量,否则就不是离散型随机变量.

1.判一判(正确的打“√”,错误的打“×”) (1)离散型随机变量的取值是任意的实数.( ) (2)随机变量的取值可以是有限个,也可以是无限个.( ) (3)离散型随机变量是指某一区间内的任意值.( ) 答案(1)×(2)√(3)× 2.做一做 (1)甲进行3次射击,甲击中目标的概率为1 2 ,记甲击中目标的次数为ξ,则 ξ的可能取值为________. (2)同时抛掷5枚硬币,得到硬币反面向上的个数为ξ,则ξ的所有可能取值的集合为________. (3)在8件产品中,有3件次品,5件正品,从中任取一件取到次品就停止,抽取次数为X,则X=3表示的试验是________. 答案(1)0,1,2,3 (2){0,1,2,3,4,5} (3)共抽取3次,前两次均是正品,第3次是次品 解析(1)甲可能3次全击中,也可能一次未中,中1次,2次,所以ξ的取值为0,1,2,3. (2)当硬币全部为正面向上时,ξ=0,硬币反面向上的个数还可能有1个,2个,3个,4个,也可能都反面向上,即5个. (3)由随机试验可知X=3表示抽取3次,前两次均是正品,第3次是次品. 探究1 随机变量的概念 例1 下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)某机场一年中每天运送乘客的数量. (2)某单位办公室一天中接到电话的次数. (3)明年5月1日到10月1日期间所查酒驾的人数. (4)明年某天济南—青岛的某次列车到达青岛站的时间. [解] (1)某机场一年中每天运送乘客的数量可能为0,1,2,3,…,是随机变化的,因此是随机变量. (2)某单位办公室一天中接到电话的次数可能为0,1,2,3,…,是随机变化的,因此是随机变量. (3)明年5月1日到10月1日期间,所查酒驾的人数可能为0,1,2,3,…,是随机变化的,因此是随机变量.

离散型随机变量及其分布范文

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ??????、ξ取每一个值()1,2,i x i =???的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) 01,2,i p i ≥=???,;12(2) 1P P ++ = 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+ 知识点二:两点分布: 若随机变量X 的分布列: 则称 X 的分布列为两点分布列. 特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1) 为成功率. (2)两点分布又称为0-1分布或伯努利分布 (3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

第7章滞后变量习题

第七章 滞后变量模型 一.单项选择题 1.下列属于有限分布滞后模型的是( )。 A.u y b y b x b y t t t t t a +++++=-- 22110 B.u y b y b y b x b y t k t k t t t t a ++++++=--- 22110 C.u x b x b y t t t t a ++++=- 110 D.u x b x b x b y t k t k t t t a +++++=-- 110 2.消费函数模型t C ? =400+0.5I t +0.3I t-1+0.1I t-2,其中I 为收入,则当期收入I t 对未来消费C t+2的影响是:I 增加一单位,C t+2增加( )。 A.0.5单位 B.0.3单位 C.0.1单位 D.0.9单位 3.在分布滞后模型u x b x b x b y t k t k t t t +++++=-- 110α中,延期过渡性乘数( )。 A.b 0 B.b i (i=1,2,…,k) C.∑=k i i b 1 D.∑=k i i b 0 4.在分布滞后模型的估计中,使用时间序列资料可能存在的序列相关问题就表现为( )。 A.异方差问题 B.自相关问题 C.多重共线性问题 D.随机解释变量问题 5.有限多项式分布滞后模型中,通过将原分布滞后模型中的参数表示为滞后期i 的有限多项式,从而克服了原分布滞后模型估计中的( )。 A. 异方差问题 B.序列相关问题 C. 多重共线性问题 D. 由于包含无穷多个参数从而不可能被估计的问题 6.在分布滞后模型Y t =α+β0X t +β1X t-1+β2X t-2+…+u t 中,短期影响乘数为( ). A .αβ-11 B.1β C.αβ-11 D. β 6.对于有限分布滞后模型 t s t s t t t t u X X X X Y ++++++=---ββββα 22110 在一定条件下,参数 i β可近似用一个关于i 的多项式表示(i=0,1,2……k ),其中多项 式的阶数m 必须满足( ) A .k m < B.k m = C.k m > D.k m ≥ 7.自适应预期模型基于如下的理论假设:影响被解释变量t Y 的因素不是t X ,而是关于t X

最新《2.1.1离散型随机变量》导学案

高一数学必修2-3 2.1--01 《2.1.1离散型随机变量》导学案 编撰崔先湖姓名班级组名. 【学习目标】1.理解随机变量的意义; 2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量 的例子; 3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量. 【学习重点】随机变量、离散型随机变量、连续型随机变量的意义 【学习难点】随机变量、离散型随机变量、连续型随机变量的意义 【学法指导】自主与讨论相结合 【导学过程】 一教材导读 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:称为随机变量.随机变量常用字母…表示.思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的映为,函数把映为.在这两种映射之间,试验结果的范围相当于函数的,随机变量的取值范围相当于函数的.我们把随机变量的取值范围叫做随机变量的. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品”, {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出3 件以上次品”又如何用X 表示呢? 定义2:,称为离散型随机变量. 离散型随机变量的例子很多.例如某人射击一次可能命中的环数X 是一个离散型随机变量,它的所有可能取值为;某网页在24小时内被浏览的次数Y也是一个离散型随机变量,它的所有可能取值为。 思考3:电灯的寿命X是离散型随机变量吗? 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变 4.离散型随机变量与连续型随机变量的区别与联系: 注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上 (2)若ξ是随机变量,b a b a, , + =ξ η是常数,则η也是随机变量 二、题型导航 题型一、随机变量概念的辨析 【例1】将一颗均匀骰子掷两次,不能作为随机变量的是:() (A)两次出现的点数之和;(B)两次掷出的最大点数; (C)第一次减去第二次的点数差;(D)抛掷的次数。 变式1 (1)洪湖车站每天候车室候车的人数X,(2)张三每天走路的步数Y,(3)下落的篮球离地面的距离Z,(4)每天停靠洪湖港的船的数量S.不是离散型随机变量的是 解题总结 题型二、随机变量的值域 【例2】写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果 (1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ; (2)某单位的某部电话在单位时间内收到的呼叫次数η 变式2写出下列各随机变量可能取得值: (1)抛掷一枚骰子得到的点数。 (2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。 (3)抛掷两枚骰子得到的点数之和。 (4)某项试验的成功率为0.001,在n次试验中成功的次数。 (5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值 解题总结

计量经济学实验7虚拟变量模型

实验七虚拟变量 【实验目的】 掌握虚拟变量的设置方法。 【实验内容】 一、试根据表7-1的1998年我国城镇居民人均收入与彩电每百户拥有量的统计资料建立我国城镇居民彩电需求函数; 资料来源:据《中国统计年鉴1999》整理计算得到 二、试建立我国税收预测模型(数据见实验一); 三、试根据表7-2的资料用混合样本数据建立我国城镇居民消费函数。

最低收入户 2397.6 2476.75 0 2523.1 2617.8 1 低收入户 2979.27 3303.17 0 3137.34 3492.27 1 中等偏下户 3503.24 4107.26 0 3694.46 4363.78 1 中等收入户 4179.64 5118.99 0 4432.48 5512.12 1 中等偏上户 4980.88 6370.59 0 5347.09 6904.96 1 高收入户 6003.21 7877.69 0 6443.33 8631.94 1 最高收入户 7593.95 10962.16 8262.42 12083.79 1 资料来源:据《中国统计年鉴》1999-2000整理计算得到 【实验步骤】 一、我国城镇居民彩电需求函数 ⒈相关图分析; 键入命令:SCAT X Y ,则人均收入与彩电拥有量的相关图如7-1所示。 从相关图可以看出,前3个样本点(即低收入家庭)与后5个样本点(中、高收入)的拥有量存在较大差异,因此,为了反映“收入层次”这一定性因素的影响,设置虚拟变量如下: ?? ?=低收入家庭 中、高收入家庭 1D 图7-1 我国城镇居民人均收入与彩电拥有量相关图 ⒉构造虚拟变量; 方式1:使用DATA 命令直接输入;

相关主题