搜档网
当前位置:搜档网 › 玻璃退火温度的简易计算方法

玻璃退火温度的简易计算方法

玻璃退火温度的简易计算方法
玻璃退火温度的简易计算方法

玻璃退火温度的简易计算方法①

伍洪标

(武汉理工大学材料科学与工程学院,湖北 武汉 430070)

摘要:采用Excel 的添加趋势线方法对玻璃退火温度的实验数据进行线性拟合,与用最小二乘法

拟合计算相比,大大地简化了计算过程,具有方便实用的特点。

关键词:玻璃;性能测试;退火温度计算

中图分类号:TP311.54 文献标识码:A 文章编号:1000-2871(2004)03-0040-03

Simplif ied C alculating Method of the Annealing

T emperature of G lass

W U Hong νbiao

(College of Materials Science and Engineering ,Wuhan University of Technology ,Wuhan 430070,China )

Abstract :Comparing with using least squares techniques ,adopting the method of adding tendency

chart by Excel for the linear fitting calculation of the experimental data of the glass annealing tem 2

perature can greatly simplify the procedures.The method is convenient and practical.

K ey w ords :G lass ;Property testing ;Annealing temperature calculation

Microsoft Office 中的Excel 是功能强大的电子表格处理软件,能够进行复杂的运算,在我国的政府机关、经济管理部门和各种企业、事业的管理部门中已经广泛应用。相比之下,Excel 在科技工作中的应用较少,在当前国内书市中几乎没有专门介绍这方面的书籍。其实,Excel 2000及以后的版本更进一步加强了数据运算的能力及数据统计的功能,能够解决科学实验中的许多实际问题,使用起来十分方便快捷,也是科技人员应当使用的得力工具。

1985年,笔者对玻璃退火温度的传统求值方法进行改进,采用最小二乘法将实验数据进行拟合,用BA 2SIC 编程计算玻璃的退火温度,计算结果比作图法精确[1]。近来,笔者用Excel 2000计算玻璃的退火温度,收到简单、省时、省力、计算结果精确的效果。现将计算方法介绍于下,供对此有兴趣的有关同行参考。1 计算基础

用双折射仪测定玻璃的退火温度时,玻璃加热前内应力的计算公式如下:

Δ0=3(φmax -φ0)d

式中 Δ0—待测玻璃试样加热前的光程差,nm/cm

 第32卷第3期2004年6月 玻璃与搪瓷G LASS &ENAMEL Vol.32No.3J un.2004

①收稿日期:2003-03-16

d —光程的长度,cm

φmax —检偏镜为补偿玻璃试样内应力所产生的双折射而旋转的角度,° φ0—起偏镜和检偏镜置于正交位置时,检偏镜的旋转角度,°

将玻璃试样加热,记下各测量点检偏镜的旋转角度φi ,即可用下式计算各温度测点的光程差:

Δi =3(φi -φ0)d

⑵ 由于在玻璃退火温度区域内,试样加热前后的光程差比值(Δi /Δ0)与加热温度(T )呈线性关系。因此,其线性方程为:

Y =A 0+A 1T ⑶

根据定义,玻璃的退火上限温度为:在此温度下保温3min 能消除玻璃内应力的95%。玻璃的退火下限温度为:在此温度下保温3min 仅能消除玻璃内应力的5%。因此,玻璃的退火上、下限温度分别为:

T 下=(Y 下-A 0)/A 1=(0.95-A 0)/A 1⑷

T 上=(Y 上-A 0)/A 1=(0.05-A 0)/A 1⑸

2 Excel 2000的算法

在Excel 中,采用最小二乘法将实验数据进行拟合也能计算玻璃的退火温度,只是计算的步骤较多。本文采用Excel 的添加趋势线方法计算玻璃的退火温度,不仅简单,还很直观。计算方法如下。

2.1 原始实验数据的输入

图1 实验数据的输入与计算

计算机开机正常后,启动Excel ,在屏幕上可

看见图1所示的表格。为了方便查看数据,首先

在1~4行做出表头,再将实验数据输入电子表

格中。

其中,在第1列(A )和第2列(B )中输入实验

持续的时间;第3列(C )中输入实验时的炉温;第

4列(D )中输入起偏镜和检偏镜置于正交位置

时,检偏镜的旋转角度φ0;第5列(E )中输入检偏

镜为补偿玻璃试样内应力所产生的双折射而旋

转的角度φmax ;第6列(F )中输入各测量点检偏

镜的旋转角度φi 。

2.2 光程差的计算根据⑴式计算玻璃加热前的内应力。即在单元格G5中输入“=33(E5-D5)”,然后单击公式按钮左边的“√”,Excel 会自动给出计算结果。

根据⑵式计算玻璃加热后的内应力。即在单元格H5中输入“=33(F5-D5)”,然后单击公式按钮左边的“√”,让Excel 自动给出计算结果。然后把光标指向H5单元格的右下角的填充柄上,当光标变为黑色实心的“+”时,按下鼠标(左键)向下拖动至H17单元格,释放鼠标,Excel 会自动计算出各测定点光程差的结果。

2.3 光程差比值(Δi /Δ0)的计算

第9列(I )第5行的单元格(I5)中输入“=H5/G5”,然后单击公式按钮左边的“√”,让Excel 自动给出计算结果。

然后把光标指向I5单元格的右下角的填充柄上,当光标变为黑色实心的“+”时,按下鼠标(左键)向下拖动至I17单元格,释放鼠标,Excel 会自动计算出各测定点光程差比值(Δi /Δ0)的结果。

2.4 作图

?

14? 第32卷第3期 玻璃与搪瓷

⑴作图数据的准备 为了作图,需要打开新的工作表。首先将图1中的温度数据输入这个工作表上的第1列中,然后在第2列中输入试样加热前后的光程差比值(Δi /Δ0),如图2中的A 、B 列所示

图2 玻璃试样退火温度图的绘制

⑵绘制曲线 在图2的工作表中,用鼠标点击Excel 工作表上A3单元格,按下鼠标(左键)向下拖动至B15单元格,选取第A3、B15所组成的数据区域,释放鼠标。再用鼠标点击Excel 工具栏的【图表向导】图标,弹出“图表向导图”,在【图表类型】栏里选择【XY 散点图】,在【子图表类型】栏里选左边系列中间的类型。

点击【完成】后即可作出图2中所示的“温度-光程差比值”

(T -Δi /Δ0)曲线。⑶添加趋势线 趋势线以图形的方式显示某个系列数据的变化趋势,多用于预测研究。这里用来确定玻璃的退火上、下限温度。

在图2的Excel 工作表中,用鼠标点击工具栏的【图表】,在弹出的菜单中选择【添加趋势线】命令,弹出

【添加趋势线】对话框。打开【类型】选项卡,选取【线性】。

打开【选项】选项卡。用鼠标点击【显示公式】前的白框。点击【确定】,Excel 就确定(画出)一条拟合直线,并给出直线的方程(如图3所示)。

y =-0.006x +3.3544

⑹ ⑷退火温度的计算 根据⑷、⑸、⑹式,玻璃的退火上、下限温度为:

T 上=(3.3544-0.05)/0.006

⑺ T 下=(3.3544-0.95)/0.006⑻

图3 添加趋势线

为此,先用鼠标点击图2的工作表中第14行的G14单元格,

再在编辑栏中输入计算公式“=(3.3544-0.95)/0.006”,然

后单击公式按钮左边的“√”,Excel 会自动给出玻璃退火下限温度

的计算结果:T 下=400.7℃

同理,用鼠标点击图2的Excel 工作表上第15行的G15单元

格,在编辑栏中输入计算公式“=(3.3544-0.05)/0.006”,然

后单击公式按钮左边的“√”,Excel 会自动给出玻璃退火上限温度

的计算结果:T 上=550.7℃3 结论

用Excel 2000软件来计算玻璃试样的退火温度,不需要象BASIC 那样编写详细的计算程序。

(下转第39页)

?24?

玻璃与搪瓷 2004年 

⑵鼓泡系统投入使用前必须预先做好配料、熔制的工艺方案———工艺预案。鼓泡系统投入使用后要及时检测、调整使之迅速达到最佳状态。工艺预案制定时要特别注意以下5点:

①泡频、泡径的初始设定值及调整方案。

②熔化作业参数的调整方案。

③配合料中组分的挥发及价态变化的预计和调整方案。

④配合料及玻璃氧化还原指数(Redox No.)和澄清值的调整方案,以平衡鼓泡的氧化作用。⑤为使以上4点做得更好,应采用数学模拟对投产窑进行全面深入的分析和判断。通过数学模拟可以对窑炉内的玻璃温度场、速度场、砂粒熔化时间、澄清气泡消除时间及出料口玻璃液温度等参数的变化趋势和变化量有较全面的了解,并以其做为工艺预案研究的参考依据。

⑶必须切实做好鼓泡系统及其装置的运行管理和维护保养。鼓泡管及其配套系统是长期在高温、高压等恶劣条件下工作的,为保证长期正常运行,必须做到精心管理和维护。

4 关于鼓泡与熔化在认识上的误区

4.1 认为“鼓泡只能用于有色玻璃的熔制,对无色透明玻璃则不适用”这种看法是不正确的。20年来,国外、国内的大量实践证明:只要鼓泡区布置得当,泡频、泡径调节合理,鼓泡在无色透明玻璃上同样发挥着良好的作用。特别是脉冲式鼓泡的灵活调控能力从根本上保证了鼓泡运行的合理性和可靠性。因此,生产无色透明玻璃的熔窑,如浮法平板玻璃窑、高白器皿玻璃窑、无碱玻璃纤维窑、高硼玻璃窑、保温瓶玻璃窑及输液瓶、酒瓶、饮料瓶熔窑等,均已采用了脉冲式鼓泡并已取得明显效益。

4.2 认为“鼓泡只能使用在热点区,熔化区只能采用电助熔等强化手段”

这种看法也是不正确的。随着人们对玻璃液流认识的深化,现在能够合理地利用熔化区环流和液泉主流之间产生的二次环流的上升流区域内设置鼓泡———助熔鼓泡。助熔鼓泡可以有效地提高熔化速率,促进澄清。而其一次投资及运行成本远低于其它强化手段。现在国内几座采用助熔鼓泡的窑炉均明显地提高了熔化率,除前面提到的北京保温瓶厂29m 2窑炉外,又如广西梧州33m 2白料池炉的熔化率达到3.0,制品质量明显改善。

4.3 认为“鼓泡只能起到均化作用”

这种看法是不全面的。鼓泡不仅对玻璃液有很强的均化作用,同时还有较强的调节玻璃液氧化还原势的作用。因此除对玻璃液可产生脱色或调色效用外,还可在以还原硫澄清的玻璃熔制过程中,利用鼓泡的作用建立起适当的硫酸盐溶解度梯度,从而产生极好的澄清效果。

总之,鼓泡技术从诞生至今已经历了约50年,她伴随着玻璃熔制工艺理论的深化和材料技术、控制技术的发展而日臻完善,作为玻璃熔制工艺的最重要的强化技术之一,今后必将为玻璃行业做出更多的贡献。(上接第42页)

用Excel 2000中的添加趋势线功能来计算玻璃试样的退火上、下限温度不需要许多难懂的数学知识,不必对实验数据进行具体的拟合计算,方法简单易懂,很快就能学会。

用Excel 2000计算玻璃试样的退火上、下限温度和作曲线图不仅方便,而且精确、直观。电子表格做成功之后,只需将另一试样的测定数据输入表格中(即在表中修改原始数据),立即可得测试结果。具有实用意义。

参考文献:

[1] 伍洪标.玻璃退火温度数据的计算机处理[J ].玻璃,1985,(1):18-28.

[2] 北京东方人华科技有限公司.Excel 2002入门与提高[M ].北京:清华大学出版社,2001.

?

93? 第32卷第3期 玻璃与搪瓷

简易数字温度计设计汇总

课程设计任务书 2015—2016学年第二学期 专业:学号姓名: 课程设计名称:电子技术课程设计 设计题目:简易数字温度计的设计 完成期限:自2016 年6月13 日至2016 年 6 月26 日共 2 周 一、设计依据 本课题要求利用电子技术相关知识设计出一个能够实现±0.1℃精度的数字温度计。电路由温度采集电路、数字频率计电路和LED显示电路构成。通过本课题练习,学生的综合知识应用能力、设计能力将有较大提高,对今后从事电子产品的研制、生产、经营维修等打下基础。 二、主要内容及要求 主要内容: 1、给出详细的总体设计方案; 2、完成各部分具体功能电路设计,主要包括基于热敏电阻的温度信号采集电路、555振荡电路、频率计电路、LED显示电路设计; 3、给出正确的电路图,仿真、调试验证各部分设计的正确性; 4、整理设计成果,完成课程设计说明书的撰写。 要求所设计数字温度计的输出温度的范围-20~+45℃、误差范围±0.1℃,具体温度显示采用数码管实现。 三、途径和方法 利用模拟电子技术和数字电子技术的相关知识设计一个数控温度计,可以先查阅相关资料(网上查找或参考相关书籍手册),明确课题的方向和目的,然后学习完成课题所需的理论知识,了解温度信号采集电路、555振荡电路、频率计电路、LED显示电路设计的工作原理;在理解的基础上确定设计电路方案,完成电路设计,画出原理图及PCB印制版图,通过仿真分析验证设计的正确性,最后提交课程设计说明书一份。 四、时间安排

课题讲解:2小时 阅读资料:10小时 撰写设计说明书:12小时 修订设计说明书:6小时 五、主要参考资料 [1]孙丽霞.数字电子技术[M].北京:高等教育出版社,2006:174-196. [2]杨素行.模拟电子技术基础简明教程[M].北京:高等教育出版社,2007:40-92. [3]高吉祥.全国大学生电子设计竞赛培训系列教程-基本技能训练与单元电路设计[M].北京:电子工业出版社,2007:24-57. [4]黄智伟.全国大学生电子设计竞赛训练教程[M].北京:电子工业出版社, 2005.1:43-66. [5]彭介华.电子技术课程设计指导[M] .北京:高等教育出版社,2002.12:37-228. [6]陈永甫.新编555集成电路应用800例[M].北京:电子工业出版,2000:80-130. [7]萧宝瑾. protel 99 SE操作指导与电路设计实例(第一版)[M]. 太原:太原理工大学,2004:198-230. [8]张义申,陆坤. 电子设计技术[M]. 西安:电子科技大学出版,1996:48-62. 指导教师(签字):教研室主任(签字): 批准日期:年月日

温度计校准方法

温度计校准方法 1、目的:确保温度计精度 2、范围:适用数显温度计、玻璃温度计、双金属温度计精度校准。 3、校准方法 3.1校准周期:数显和玻璃温度计6个月、双金属温度计1年 3.2校准条件:20±5℃ 3.3校准用标准器:恒温炉、F200数显温度计 3.4外观检查: 3.4.1开机时显示屏幕应清晰,电池电量应充足。 3.4.2探头应无损伤、凹痕、氧化锈蚀及其它附着物。 3.4.3玻璃温度计的玻璃棒及毛细管粗细应均匀笔直,感温泡和玻璃棒无裂痕,液柱无断节和气泡。 3.5精度检查: 3.5.1可根据现场适用范围选择50℃、100℃、150℃、200℃等测量点(至少3个点)。 3.5.2让恒温炉开机半小时以上,达到设定温度直至温度变化小于0.1℃/min 3.5.3将被检探头及F200数显温度计探头分别插入相匹配的恒温炉孔内,要使探头全部插入孔内,待显示稳定分别读取温度计和F200数显温度计的显示值。 3.5.4玻璃温度计浸没深度不小于75mm,双金属温度计感温泡应全浸。 3.5.5校准时观察玻璃温度计液柱不得中断、倒流,上升时不得有显

见停滞或跳跃现象,下降时不得在壁管上有液滴或挂色,双金属温度计升温时指针平稳,无跳动、卡住等现象。3.5.6待温度稳定后分别读取标准值与被测值,读数视线应与刻度线垂直。 3.5.7若示值超差,应对显示器和探头单独校准。 3.6允许误差: 3.6.1热电偶热电阻允许误差:±(设定值×0.5%+0.5)℃,必要时可根据说明书或实际要求。下表是热电偶及热电阻允许误差,必要时可作依据。(t为设定值) 3.6.2玻璃温度计允许误差:

3.6.3双金属温度计允许误差=精度等级%×F.S,必要时参照其说明书上之要求。 3.7注意事项: 3.7.1感温头要防止冲、撞。 3.7.2保管时应注意通风干燥和无腐蚀环境中。 3.7.3不用时,尽量取出电池,以防电池漏液腐蚀仪表。 3.7.4温度高时应防止烫伤,表头勿近水。 4、表单记录 4.1校正记录表

Touchdown-PCR的退火温度设计原则

Touchdown PCR退火温度的设计原则 ①降落PCR是在同一个pcr管内进行PCR,只是每个循环的温度不同(如每个循环降1度)。一般兼并引物用这种方法多些。 ②设计多循环反应的程序,以使相连循环的退火温度越来越低。由于开始时的退火温度选择为高于估计的Tm值,随着循环的进行,退火温度逐渐降到Tm值,并最终低于这个水平,用于确保第一个引物—模板杂交事件发生在最互补的反应物之间,即那些产生目的扩增产物的反应物之间。尽管退火温度最终会降到非特异杂交的Tm值,但此时目的扩增产物已开始几何扩增,在剩下的循环中处于超过任何滞后(非特异)PCR产物的地位。 ③由于目标是在较早的循环中避免低Tm值配对,在TD—PCR中最好应用热启动技术。设计时,退火温度的范围应跨越15℃左右,从高于估计Tm值至少几度到低于它10℃。 ④例:一对没有简并的引物—模板的计算Tm值为62℃。 则:从65℃—>50℃(每2cycles降退火温度1℃),再在50℃退火温度下做15个循环。 实验中如持续出现假象带(杂带),则是因为起始退火温度太低,或目的扩增产物和非目的产物的Tm值相差无几,或非目的扩增物以更高的扩增效率扩增,可把退火温度每降低1℃所需的循环数增加到3或4。 ⑤touchdown PCR是为了增加反应的特异性,降低非特异产物的产生。在整个反应过程是一个温度由高到低的过程,在温度降低的过程中,会出现一个温度是上下游引物最适的退火温度,大量引物与模板结合,由此产生特异性产物;温度继续降低时,未结合的引物已很少或没有,非特异性产物就很少或没有。 设置温度时,高温以Tm较高的引物为准,低温以Tm较低的引物为准. 我常用的程序是:65C----50C, 1C/2s(2s 降低1度) ⑥降落PCR(touchdown PCR),一种PCR技术,主要用于PCR的条件的优化。在许多情况下引物的设计使得PCR难以进行,例如特异性不够易错配等。退火温度过高会使PCR效率过低,但退火温度过低则会使非特异扩增过多。这虽然可以通过反复尝试来优化,但费时费力。降落PCR提供了一个较为简易的优化方法。其原理大致是这样的。首先在较高的温度下扩增,此时虽然扩增效率低,但非特异扩增基本没有。随着退火温度的降低,非特异扩增会逐步增多。但由于此时特异的扩增产物已经达到一定的数量优势,因此会对非特异扩增产生强烈的竞争抑制,从而大幅提高PCR的特异性和效率。 PCR加产物平末端加A方法 背景:高保真PCR酶利用自身的3’→5’外切酶活性(pfu DNA Polymerase,PrimeSTAR HS DNA Polymerase等)能保证PCR产物的保真度,但扩增的PCR产物为不带A尾的平末端DNA片段,不能直接TA克隆。因此,平末端DNA片段需要进行加A后方可TA克隆。平末端DNA加A的步骤一般是先纯化PCR产物,加入dATP Buffer利用Taq DNA polymerase在平末端片段后加上A尾后才能与T载体的T头互补连接TA克隆。步骤较为烦锁,要购买特定的dATP Buffer。

退火时间和温度的确定1

退火时间和温度的确定 退火的时间是如何确定的,是不是通过保温时间就是t=kaH这个公式?等效厚度H对于管件 是1.5倍的壁厚合金钢如35CrMo、42CrMo我取的a=2.1,感觉这个公式算出来的时间太长了,出来的硬度明显偏低。 还有就是如果为去应力退火,去应力退火的温度范围一般为500-650度,不同的钢种如何选择温度呢?温度是根据钢种确定的还是根据时间确定的?,对于几个挨着的管件一起进入台车炉那么K=2, 退火是将钢材或各种金属机械零件加热到适当温度,保温一段时间,然后缓慢冷却,可以获得接近平衡状态组织的热处理工艺。在机械制造行业,退火通常作为工件制造加工过程中的预备热处理工序。 一. 完全退火 完全退火是将钢件或各种机械零件加热到临界点Ac3以上的适当温度、在炉内保温缓慢逐渐冷却的工艺方法。其目的是为了细化组织、降低硬度、改善机械切削加工性能及去除内应力。 完全退火适用于中碳钢和中碳合金钢的铸钢件、焊接件、轧制件等。 完全退火工艺曲线。 3. 工件装炉:一般中、小件均可直接装入退火温度的炉内,亦可低温装炉,随炉升温。 4. 保温时间:保温时间是指从炉子仪表到达规定退火加热温度开始计算至工件在炉内停止 加热开始降温时的全部时间。工件堆装时,主要根据装炉情况估定,一般取2~3h。 5. 工件冷却:保温完成后,一般停电(火),停止加热,关闭炉门逐渐缓冷至500℃即可出 炉空冷。对某些合金元素含量较高、按上述方式冷却后硬度仍然偏高的工件,可采用等 温冷却方法,即在650℃附近保温2~4h后再炉冷至500℃。 二. 去应力退火 去应力退火是将工件加热到Ac1以下的适当温度,保温一定时间后逐渐缓慢冷却的工艺方法。其目的是为了去除由于机械加工、变形加工、铸造、锻造、热处理以及焊接后等产生的残余应力。 1. 去应力退火工艺曲线。 2. 不同的工件去应力退火工艺。 3. 去应力退火的温度,一般应比最后一次回火温度低20~30℃,以免降低硬度及力学性能。 4. 对薄壁工件、易变形的焊接件,退火温度应低于下限。 5. 低温时效用于工件的半加工之后(如粗加工或第一次精加工之后),一般采用较低的温度。

简易温度计设计

信息与电气工程学院 课程设计说明书(2014 /2015学年第二学期) 课程名称:《单片机原理及应用》课程设计 题目:简易温度计设计 专业班级: 学生姓名: 学号: 指导教师: 设计周数:2周 设计成绩: 年月日

1、实验目的 设计并制作出一个以单片机为核心的简易温度计系统 2、主要任务 1、确定整体设计方案; 2、设计键盘输入电路; 3、设计显示电路; 4、合理分配地址,编写系统程序; 5、采用Proteus进行仿真,软硬件联机调试。 3、技术要求 (1)以MCS-51单片机为核心,18b20为敏感元件,设计出一简易温度计; (2)使用三位数码管显示温度,并能进行温度设置; 4、以MCS-51单片机为核心设计简易温度计的简介 传统的温度检测以热敏电阻为温度敏感元件,需要后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定误差。以MCS-51为核心,18b20为测温传感器,通过3位共阳极LED数码管传送数据,实现温度显示。具有读数方便,测温范围广,测温精确,数字显示,可靠性高等特点。 5

6、系统硬件电路原理图

6.1 时钟电路 晶振电路由一个晶振与两个电容连接组成,与单片机的18、19管脚相连,另一端接地,电路图为: 电容大小没有固定值,一般5到30pf,晶振是给单片机提供工作信号脉冲的。这个脉冲就是单

片机的工作速度。一般用内部振荡方式,这种方式比较稳定。晶振频率为12MHZ,单片机工作速度就是每秒12M。单片机的工作频率是有范围的,不能太大,一般24M就不上去了,不然不稳定。 6.2 复位电路 复位电路由一个有极性电容、一个电阻与一个按键连接而成,一端连单片机的RST端,另一端接电源,电源另一端接单片机的EA。 其中电容是通过充放电来实现维持一段时间的高电平,电容充电时间与R C的值成正比,当按下按键时,由于电容充电,RST维持一段时间高电平以达到复位的目的。 一般情况下,选择大小为10到30uF的电容,而电阻一般选用1到10K?的。 电路图为: 6.3 DS18b20温度传感电路 此部分电路负责温度信号的采集、将温度信号转换成数字代码储存在温度控制寄存器中,向单片机发送温度数据等重要功能,主要由DS18b20芯片来完成,该电路的电路图为: 其中DQ为DS18b20的数据输入/输出端引脚,与单片机的P3.5口相连,单片机通过P3.5口向DS18b20发出各种命令,并读取其转换后的温度数据。 由于DS18B20单线通信功能是分时完成的,所以有严格的时隙概念,读写时序很重要。系统

PCR的退火温度选择

熔解温度(Tm)是引物的一个重要参数。这是当50%的引物和互补序列表现为双链DNA分子时的温度.Tm对于设定PCR退火温度是必需的。在理想状态下,退火温度足够低,以保证引物同目的序列有效退火,同时还要足够高,以减少非特异性结合。合理的退火温度从55℃到70℃。退火温度一般设定比引物的 Tm低5℃。 设定Tm有几种公式。有的是来源于高盐溶液中的杂交,适用于小于18碱基的引物。有的是根据GC含量估算Tm。确定引物Tm最可信的方法是近邻分析法。这种方法从序列一级结构和相邻碱基的特性预测引物的杂交稳定性。大部分计算机程序使用近邻分析法。 根据所使用的公式及引物序列的不同,Tm会差异很大。因为大部分公式提供一个估算的Tm 值,所有退火温度只是一个起始点。可以通过分析几个逐步提高退火温度的反应以提高特异性。开始低于估算的Tm5℃,以2℃为增量,逐步提高退火温度。较高的退火温度会减少引物二聚体和非特异性产物的形成。 为获得最佳结果,两个引物应具有近似的Tm值。引物对的Tm差异如果超过5℃,就会引物在循环中使用较低的退火温度而表现出明显的错误起始。如果两个引物Tm不同,将退火温度设定为比最低的Tm低5℃ 或者为了提高特异性,可以在根据较高Tm设计的退火温度先进行5个循环,然后在根据较低Tm设计的退火温度进行剩余的循环。这使得在较为严紧的条件下可以获得目的模板的部分拷贝。 当引物长度低于20个bp可以根据Tm=3GC+2AT,对于更长的寡聚核苷酸,Tm计算公式为:Tm = 81.5 + 16.6 x Log10[Na+] + 0.41 (%GC) – 600/size 公式中,Size = 引物长度。

简易数字温度计设计

简易数字温度计设计 Prepared on 22 November 2020

课程设计任务书 2015—2016学年第二学期 专业:学号姓名: 课程设计名称:电子技术课程设计 设计题目:简易数字温度计的设计 完成期限:自2016年6月13日至2016年6月26日共2周 一、设计依据 本课题要求利用电子技术相关知识设计出一个能够实现±℃精度的数字温度计。电路由温度采集电路、数字频率计电路和LED显示电路构成。通过本课题练习,学生的综合知识应用能力、设计能力将有较大提高,对今后从事电子产品的研制、生产、经营维修等打下基础。 二、主要内容及要求 主要内容: 1、给出详细的总体设计方案; 2、完成各部分具体功能电路设计,主要包括基于热敏电阻的温度信号采集电路、555振荡电路、频率计电路、LED显示电路设计; 3、给出正确的电路图,仿真、调试验证各部分设计的正确性; 4、整理设计成果,完成课程设计说明书的撰写。 要求所设计数字温度计的输出温度的范围-20~+45℃、误差范围±℃,具体温度显示采用数码管实现。 三、途径和方法

利用模拟电子技术和数字电子技术的相关知识设计一个数控温度计,可以先查阅相关资料(网上查找或参考相关书籍手册),明确课题的方向和目的,然后学习完成课题所需的理论知识,了解温度信号采集电路、555振荡电路、频率计电路、LED显示电路设计的工作原理;在理解的基础上确定设计电路方案,完成电路设计,画出原理图及PCB印制版图,通过仿真分析验证设计的正确性,最后提交课程设计说明书一份。 四、时间安排 课题讲解:2小时 阅读资料:10小时 撰写设计说明书:12小时 修订设计说明书:6小时 五、主要参考资料 [1]孙丽霞.数字电子技术[M].北京:高等教育出版社,2006:174-196. [2]杨素行.模拟电子技术基础简明教程[M].北京:高等教育出版社,2007:40-92. [3]高吉祥.全国大学生电子设计竞赛培训系列教程-基本技能训练与单元电路设计[M].北京:电子工业出版社,2007:24-57. [4]黄智伟.全国大学生电子设计竞赛训练教程[M].北京:电子工业出版社,:43-66. [5]彭介华.电子技术课程设计指导[M].北京:高等教育出版社,:37-228. [6]陈永甫.新编555集成电路应用800例[M].北京:电子工业出版,2000:80-130. [7]萧宝瑾.protel99SE操作指导与电路设计实例(第一版)[M].太原:太原理工大学,2004:198-230. [8]张义申,陆坤.电子设计技术[M].西安:电子科技大学出版,1996:48-62.

退火温度和时间对制备多晶硅薄膜的影响

退火温度和时间对制备多晶硅薄膜的影响 摘要:通过PECVD法于不同温度直接沉积非晶硅(a-Si∶H)薄膜,选择于850℃分别退火2h、3h、6h、8h,于700℃分别退火5h、7h、10h、13h,于900℃分别退火1h、3h、8h,分别于720℃、790℃、840℃、900℃、940℃退火1h,然后用拉曼光谱和SEM进行对比分析,发现退火温度与退火时间的影响是相互关联的,并且出现一系列晶化效果好的极值点。 关键词:PECVD法;非晶硅薄膜;多晶硅薄膜;二次晶化;拉曼光谱;扫描电镜 0引言 太阳能电池作为一种清洁能源正越来越受到人们的重视。太阳能电池分为单晶硅、多晶硅和薄膜太阳能电池等。单晶硅和多晶硅电池技术成熟、效率高,但成本较高。薄膜材料与单晶硅和多晶硅材料相比,在成本降低方面具有诱人的前景。硅薄膜材料分非晶硅和多晶硅2种,非晶硅薄膜材料制造工艺相对简单,但转换效率低、寿命短、稳定性差,将其进一步晶化成寿命长、转换效率相对高的多晶硅薄膜材料被认为是薄膜太阳能电池未来发展的方向,将非晶硅薄膜材料二次晶化成为多晶硅薄膜是有意义的研究方向。 多晶硅薄膜泛指晶粒在几(十)纳米到厘米级的硅薄膜。制备多晶硅薄膜主要包括2个过程---沉积硅膜和再晶化。2个过程都可采用不同的方法。沉积可采用化学气相沉积法(CVD)和物理气相沉积法(PVD)。低温下沉积硅薄膜难以形成较大的晶粒,不利于制备较高效率的电池,需要通过二次晶化技术,提高晶粒尺寸。目前,二次晶化的方法主要有固相晶化法(SPC)金属诱导晶化(MIC)、区熔晶化(ZMR)等。本实验先用等离子体增强化学气相沉积法(PECVD法)在玻璃上低温沉积非晶硅薄膜,再利用常规电阻加热炉退火制备多晶硅薄膜。 1实验 第一步,将清洗过的石英玻璃衬底置于PECVD系统中,射频辉光放电分解SiH4+H2制得非晶硅薄膜。真空度为5.6×10-4Pa,氢稀释比为95%,沉积室中电极间距为2cm,工作气压为133.3Pa,放电功率为60W,沉积时间为2.5h,厚度约为0.84μm。第二步,氮气保护下,样品于850℃分别退火2h、3h、6h、8h,于700℃分别退火5h、7h、10h、13h,于900℃分别退火1h、3h、8h,分别于720℃、790℃、840℃、900℃、940℃退火1h,自然冷却后取出。第三步,采用REN-ISHAW-2000拉曼光谱分析样品,计算晶化率,并采用JEOLJSM-5610LV扫描电镜观察样品。 2结果与分析 图1是非晶硅薄膜于850℃分别退火2h、3h、6h、8h的拉曼光谱图。由图1可知,在退火温度不变的情况下,随着退火时间的延长,非晶硅薄膜的晶化越来越充分,520cm-1处的晶硅特征峰非常明显,晶化效果很好。850℃退火2h的晶化率为55%,从520cm-1处的晶硅特征峰的相对高度看,850℃退火3h硅膜结晶的情况相对较好,晶化率为67%。在退火温度不变的情况下,随着退火时间的延 长,520cm-1处的晶硅特征峰相对高度降低,8h时晶化率为58%。从图1可以看

简易数字式温度计设计

摘要 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该高精度数字式温度计采用了由DALLAS公司生产的单线数字温度传感器DS18B20,它具有独特的单线总线接口方式。本毕业论文详细的介绍了单线数字温度传感器DS18B20的测量原理、特性以及在温度测量中的硬件和软件设计,该温度计具有接口简单、精度高、抗干扰能力强、工作稳定可靠等特点。 关键词:DS18B20 温度传感器STC89C51

目录 第一章绪论3 1.1 课题背景及研究意义3 1.2 国外的现状3 1.3 设计的目的4 1.4 设计实现的目标4 1.5 数字温度计简介5

第一章绪论 1.1 课题背景及研究意义 随着新技术的不断开发与应用,近年来单片机发展十分迅速,一个以微机应用为主的新技术革命浪潮正在蓬勃兴起,单片机的应用已经渗透到电力、冶金、化工、建材、机械、食品、石油等各个行业。传统的温度采集方法不仅费时费力,而且精度差,单片机的出现使得温度的采集和数据处理问题能够得到很好的解决。温度是工业对象中的一个重要的被控参数。然而所采用的测温元件和测量方法也不相同;产品的工艺不同,控制温度的精度也不相同。本系统所使用的加热器件是电炉丝,功率为三千瓦,要求温度在400~1000℃。静态控制精度为2.43℃。 本设计使用单片机作为核心进行控制。单片机具有集成度高,通用性好,功能强,特别是体积小,重量轻,耗能低,可靠性高,抗干扰能力强和使用方便等独特优点,在数字、智能化方面有广泛的用途。 1.2 国外的现状 温度控制系统在国各行各业的应用虽然已经十分广泛,但从国生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。成熟的温控产品主要以“点位”控制及常规的PID控制器为主,它们只能适应一般温度系统控制,而用于较高控制场合的智能化、自适应控制仪表,国技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,对相关企业资源进行了重组,相继建立了一些国家、企业的研发中心,开展创新性研究,使我国仪表工

温度计校准程序

温度计校准程序 1 目的:保证温度计的精确性。 2 适用范围:适用于本实验室所使用的温度计。 3 职责:本SOP 由室负责人落实。 4 程序 4.1 由设备科人员送质检局对温度计进行校准。 4.2 每年进行1 次。 4.3 经校准过的温度计可作为微量恒温器温度校温的参照。 1、温度计肯定有偏差的,看你使用的范围,如果低温使用的话,最好使用充分的冰水混合物校准,这个不一般比较稳定,不需要标准温度计的。 2、测高温的(50摄氏度以上)最好使用一支经过验证的比较精密的水银温度计来校准,楼主图片所示的那种,作为标准温度计有点粗放,有很精密的那种,买一支应该没问题。3、校准的频率很不错了,CCP用的每天校,其它的最好每周吧?每年一次官方校;然后最好就是规定特殊情况的处理,如跌落了,损伤探针…… 4、校准以后肯定有一个结果了?偏差肯定是有的,多少是可接受的?如何处理(写在温度计上,检测的结果根据偏差校正?),多少是不可接受的,如何处理? 5、责任人要明确。 以上个人看法。 加样器校准标准操作程序 1 目的:保证加样器加样的准确性。 2 加样器范围:各种品牌、型号的固定、可调和多通道加样器。 3 职责:本SOP 由室负责人执行落实。

4 校准程序 4.1 校准环境和用具要求: 4.1.1 室温:20~25℃,测定中波动范围不大于±0.5℃。 4.1.2 电子天平:放置于无尘和震动影响的台面上,房间尽可能有空调。称量时为保证天平内的湿度(相对湿度60~90%),天平内应放置一装有10ml 蒸馏水的小烧杯。 4.1.3 小烧杯:5~10ml 体积。 4.1.4 测定液体:温度为20~25℃的去气双蒸水。 4.1.5 选择校准体积:⑴拟校准体积;⑵加样器标定体积的中间体积;⑶最小可调体积(不小于拟校准体积的1%)。(4)如为固定体积加样器,则只有一种校准体积。 4.2 校准步骤: 4.2.1 将加样器调至拟校准体积,选择合适的吸头; 4.2.2 调节好天平; 4.2.3 来回吸吹蒸馏水3 次,以使吸头湿润,用纱布拭干吸头; 4.2.4 垂直握住加样器,将吸头浸入液面2~3mm 处,缓慢(1~3 秒)一致的吸取蒸馏水; 4.2.5 将吸头离开液面,靠在管壁,去掉吸头外部的液体; 4.2.6 将加样器以30℃角放入称量烧杯中,缓慢一致地将加样器压至第一档,等待1~3 秒,再压至第二档,使吸头里的液体完全排出;

退火炉热工知识

传热与传质、燃料及燃烧、(气体动力学)、热工设备、热工仪表及控制 1.燃料的发热量(热值) 定义:单位质量/体积的燃料完全燃烧,当燃烧产物冷却到燃烧前的温度时所放出的热量(一般室温25℃)。 依据燃烧产物中水蒸气(包括燃料中所含水生成的水蒸气和燃料中的氢燃烧时生成的水蒸气)的不同形态,分为两种发热量:高温发热量、低位发热量 高位发热量(高位热值):燃料完全燃烧,燃烧产物中的水蒸汽全部凝结为液态水时所放出的热量 低位发热量(低位热值):燃料完全燃烧,燃烧产物中的水蒸汽仍以气态存在时所放出的热量。 即它们的区别仅是:水的状态不同,25℃水的汽化热2440‐2500KJ/kg 实际燃烧时,因温度很高,燃烧产物中的水蒸气均以气态形式存在,不可能凝结为水,故一般所测定的为低位发热量(低位热值)。 天然气的发热量(低位热值)一般为8000~8500×4.18KJ/Nm3 提问: 燃料的热值如何定义?通常所说的某种燃料的热值是什么意义? 2.基本传热方式 传热是由温度差引起的。只要有温度差存在,热量就会自发地从高温物体向低温物体转移。 传热有三种方式:对流、导热、辐射 在预热段低温区,以对流传热为主;在高温区,以辐射传热为主。 提问: 基本的传热方式有哪几种? 在加热炉的不同温度区间,产品与热气流的传热方式各有什么特点? 3.气体燃料燃烧的基本条件 (1)有燃料(如天然气) (2)有空气(助燃风) (3)达到着火温度-燃烧所需的最低温度 提问: 气体燃料燃烧的基本条件是什么? 4.气体燃料燃烧的过程 (1) 混合-燃料与空气的混合 (2) 着火 (3) 燃烧 提问: 说一说气体燃料燃烧的过程 5.依据燃气与空气的混合情况,分为三种燃烧方法 (1) 长焰燃烧-燃气和空气在燃烧器内不混合,喷出后靠扩散作用进行边混合边燃烧,火焰长。 (2) 短焰燃烧-燃气在燃烧器内与部分空气(一次空气)混合,喷出后燃烧并进一步与二次空气混合燃烧,火焰较短 (3) 无焰燃烧-燃气与空气在燃烧器内(或进燃烧器前)完全混合,在燃烧器内(或喷出后)燃烧,火焰短而透明,几乎无火焰。

简易数字温度计课程设计

唐山学院 单片机原理课程设计 题目简易数字温度计 系 (部) 智能与信息工程学院 班级 姓名 学号 指导教师 2017 年 1 月 2 日至 1 月 6 日共 1 周 2017年1月4日

《单片机原理》课程设计任务书

课程设计成绩评定表

目录 1.方案论证 0 2.硬件设计............................................ 错误!未定义书签。 2.1系统构成 (1) 2.2器件选择 (1) 2.2.1 AT89C51概述 (1) 2.2.2 AT89C51引脚功能 (3) 2.2.3复位电路的设计 (4) 2.3数字温度传感器 (5) 2.3.1 DS1621的技术指标 (5) 2.3.2 DS1621的工作原理 (6) 2.4 单片机和DS1621接口电路...................... 错误!未定义书签。 2.5 七段LED数码显示电路 (7) 3.系统软件设计 (9) 3.1 编程语言选择 (9) 3.2 主程序的设计 (9) 3.3 温度采集模块设计 (10) 3.4 温度计算模块设计 (10) 3.5 串行总线编程 (11) 4.软硬件调试结果分析 (12) 5.设计总结 (13) 6.参考文献 (14) 附录A 多点温度采集系统电路原理图 (15)

1.方案论证 该系统可以使用方案一:热敏电阻;方案二:数字温度芯片DS1621实现。采用数字温度芯片DS1621 测量温度,输出信号全数字化。便于单片机处理及控制,省去传统的测温方法的很多外围电路。且该芯片的物理化学性很稳定,它能用做工业测温元件,此元件线形较好。在0—100摄氏度时,最大线形偏差小于1摄氏度。DS1621 的最大特点之一采用了单总线的数据传输,由数字温度计DS1621和微控制器AT89C51构成的温度测量装置,它直接输出温度的数字信号,可直接与计算机连接。这样,测温系统的结构就比较简单,体积也不大。采用51 单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,硬件实现简单,安装方便。 控制工作,还可以与PC 机通信上传数据,另外AT89S51 在工业控制上也有着广泛的应用,编程技术及外围功能电路的配合使用都很成熟。 该系统利用AT89C51芯片控制温度传感器DS1621进行实时温度检测并显示,能够实现快速测量环境温度,并可以根据需要设定上下限报警温度。该系统扩展性非常强,它可以在设计中加入时钟芯片DS1302以获取时间数据,在数据处理同时显示时间,并可以利用AT24C16芯片作为存储器件,以此来对某些时间点的温度数据进行存储,利用键盘来进行调时和温度查询,获得的数据可以通过MAX232芯片与计算机的RS232接口进行串口通信,方便的采集和整理时间温度数据。故采用了方案二。 测温电路的总体设计方框图如图1-1所示,控制器采用单片机AT89C51,温度传感器采用DS1621,用5位LED数码管以串口传送数据实现温度显示。 图1-1 测温电路的总体设计方框图

引物退火温度与Tm值的关系-tm退火温度公式

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 退火温度与Tm值 ①在Tm值允许范围内,选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性。复性时间一般为30~60sec,足以使引物与模板之间完全结合。 ②引物的复性温度可通过以下公式帮助选择合适的温度: Tm值(解链温度)=4(G+C)+2(A+T)复性温度=Tm值-(5~10℃) ③Tm对于设定pcr退火温度是必需的。在理想状态下,退火温度足够低,以保证引物同目的序列有效退火,同时还要足够高,以减少非特异性结合。合理的退火温度从55℃到70℃。退火温度一般设定比引物的Tm低5℃。 ④引物退火温度 退火温度决定PCR特异性与产量;温度高特异性强,但过高则引物不能与模板牢固结合,DNA扩增效率下降;温度低产量高,但过低可造成引物与模板错配,非特异性产物增加。一般先由37℃反应条件开始,设置一系列对照反应,以确定某一特定反应的最适退火温度。也可根据引物的(G+C)%含量进行推测,把握试验的起始点,一般试验中退火温度Ta(annealing temperature)比扩增引物的融解温度Tm(melting temperature)低5℃,可按公式进行计算: Ta = Tm - 5℃= 4(G+C)+ 2(A+T) -5℃ 其中A,T,G,C分别表示相应碱基的个数。例如,20个碱基的引物,如果(G+C)%含量为50%时,则Ta的起点可设在55℃。在典型的引物浓度时(如0.2μmol/L),退火反应数秒即可完成,长时间退火没有必要。 创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

简单多点温度测量系统课程设计

课程设计报告(2010 —2011 年度第2学期) 题目:基于DS18B20的多点温度测量系统 院系: 姓名: 学号: 专业: 指导老师: 2011年5 月22 日

目录 1设计要求…………………………………………………………………………2设计的作用、目的………………………………………………………………3设计的具体实现…………………………………………………………………. 3.1系统概述……………………………………………………………………. 3.2单元电路设计与分析……………………………………………………… 3.3电路的安装与调试…………………………………………………………4心得体会及建议………………………………………………………………… 4.1心得体会…………………………………………………………………… 4.2建议…………………………………………………………………………5附录………………………………………………………………………………6参考文献…………………………………………………………………………

基于DS12B20的多点温度测量系统设计报告 1设计要求 运用DS12B20温度测量芯片实现一个多点温度测量系统,要求如下: (1).测量点为两点。 (2).测量的温度为-40~+40°C (3).温度测量的精度为±0.5°C (4).测量系统的响应时间要小于1S。 (5).温度数据的传输方式采用串行数据传送的方式。 2 设计的作用、目的 通过本设计可以进一步了解熟悉单片机的控制原理以及外设与单片机的数据通信方法,尤其是串行通信方法以及单片机与外设间的接口问题。 本设计旨在提高学生的实际应用系统开发能力,增长学生动手实践经验,激起学生学以致用的兴趣。 3设计的具体实现 3.1系统概述 本系统分为温度采集模块、核心处理模块、控制模块和显示模块。温度采集模块由DS18B20温度测量芯片构成,它负责测量温度后将温度量转化为数字信号,传输到数据处理模块;核心处理模块由AT89S52单片机组成,它负责与温度采集模块进行数据通信、对数据进行操作处理已经对各种外设的响应与控制;控制模块由几个按键组成,实现对测量点的选择以及电路复位的操作;显示模块由一块四位的八段译码显示管和驱动芯片组成,它的作用是显示测量的温度值。 系统模块组成图:

引物退火温度与Tm值的关系tm退火温度公式

引物退火温度与T m值 的关系t m退火温度公 式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

退火温度与Tm值 ①在Tm值允许范围内,选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性。复性时间一般为30~60sec,足以使引物与模板之间完全结合。 ②引物的复性温度可通过以下公式帮助选择合适的温度: Tm值(解链温度)=4(G+C)+2(A+T)复性温度=Tm值-(5~10℃) ③Tm对于设定pcr退火温度是必需的。在理想状态下,退火温度足够低,以保证引物同目的序列有效退火,同时还要足够高,以减少非特异性结合。合理的退火温度从55℃到70℃。退火温度一般设定比引物的Tm 低5℃。 ④引物退火温度 退火温度决定PCR特异性与产量;温度高特异性强,但过高则引物不能与模板牢固结合,DNA扩增效率下降;温度低产量高,但过低可造成引物与模板错配,非特异性产物增加。一般先由37℃反应条件开始,设置一系列对照反应,以确定某一特定反应的最适退火温度。也可根据引物的(G+C)%含量进行推测,把握试验的起始点,一般试验中退火温度 Ta(annealing temperature)比扩增引物的融解温度Tm(melting temperature)低5℃,可按公式进行计算: Ta = Tm - 5℃= 4(G+C)+ 2(A+T) -5℃ 其中A,T,G,C分别表示相应碱基的个数。例如,20个碱基的引物,如果(G+C)%含量为50%时,则Ta的起点可设在55℃。在典型的引物浓度时(如μmol/L),退火反应数秒即可完成,长时间退火没有必要。

简易数字温度计的设计与制作

简易数字温度计的设计与制作 来源:21IC中国电子网作者:郇玉龙赵宁 摘要:单片机在日用电子产品中的应用越来越广泛,温度则是人们日常生活中常常需要测量和控制的一个量。本文作者采用AT89C51单片机和温度传感器AD5 90从硬件和软件两方面介绍了一款简易数字温度计的设计过程,并对硬件原理图和程序流程图作了简洁的描述。 关键词:单片机AT89C51;温度传感器AD590;数字温度计;模数转换;数码显示 1.前言 随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,温度传感器AD590具有线性优良、性能稳定、灵敏度高、抗干扰能力强、使用方便等优点,广泛应用于冰箱、空调器、粮仓等日常生活中温度的测量和控制。传统的温度计有反应速度慢、读数麻烦、测量精度不高、误差大等缺点,本文作者利用集成温度传感器AD590设计并制作了一款基于AT89C51的4位数码管显示的数字温度计,其电路简单,软硬件结构模块化,易于实现。 2.系统功能原理及硬件组成 该数字温度计利用AD590集成温度传感器及其接口电路完成温度的测量并转换成模拟电压信号,经由模数转换器ADC0804转换成单片机能够处理的数字信号,然后送到单片机AT89C51中进行处理变换,最后将温度值显示在D4、D3、D 2、D1共4位七段码LED显示器上。 系统以AT89C51单片机为控制核心,加上AD590测温电路、ADC模数转换电路、4位温度数据显示电路以及外围电源、时钟电路等组成。系统组成框图如图1所示。

图1 系统组成框图 2.1 AT89C51单片机 Atmel公司的生产的AT89C51单片机是一种低功耗/低电压、高性能的8位单片机,内部除CPU外,还包括128字节RAM,4个8位并行I/O口,5个中断优先级,2层中断嵌套中断,2个16位可编程定时计数器,片内集成4K字节可改变程序Flash存储器,具有低功耗,速度快,程序擦写方便等优点,完全满足本系统设计需要。 单片机P0口作为ADC0804转换数据的输入端,P2.0接ADC0804的INTR端检测数据转换是否结束。P1.0~P1.3的输出信号接到译码器7447上作为数码管的显示,P1.4~P1.7则作为4个数码管的位选信号控制。P3口有特殊的功能,P3. 6用于控制ADC0804的启动,P3.7用于控制读取ADC0804的转换结果。 2.2 AD590温度传感器 AD590是美国模拟器件公司生产的单片集成两端感温电流源。AD590测温范围为-55℃~+150℃,满足人们日常生产和生活中的温度范围。AD590电源电压可在4V~6V范围变化,可以承受44V正向电压和20V反向电压,因而器件反接也不会被损坏。AD590产生的电流与绝对温度成正比,它有非常好的线性输出性能,温度每增加1℃,其电流增加1μA。 AD590温度与电流的关系如下表所示:

温度计校正简易方法

温度计校正简易方法: 水银温度计是实验室中最常用的液体温度计,水银具有热导率大,比热容小,膨胀系数均匀,在相当大的温度范围内,体积随着温度的变化呈直线关系,同时不润湿玻璃、不透明而便于读数等优点,因而水银温度计是一种结构简单、使用方便、测量较准确并且测量范围大的温度计。 然而,当温度计受热后,水银球体积会有暂时的改变而需要较长时间才能恢复原来体积。由于玻璃毛细管很细,因而水银球体积的微小改变都会引起读数的较大误差。对于长期使用的温度计,玻璃毛细管也会发生变形而导致刻度不准。另外温度计有全浸式和半浸式两种,全浸式温度计的刻度是在温度计的水银柱全部均匀受热的情况下刻出来的,但在测量时,往往是仅有部分水银柱受热,因而露出的水银柱温度就较全部受热时低。这些在准确测量中都应予以校正。 (1)温度计读数的校正 将一支辅助温度计靠在测量温度计的露出部分,其水银球位于露出水银柱的中间,测量露出部分的平均温度,校正值Δt按式下式计算,即: Δt = 0.00016 h (t体- t环) 式中:0.00016一水银对玻璃的相对膨胀系数; h—露出水银柱的高度(以温度差值表示); t体一体系的温度(由测量温度计测出); t环一环境温度,即水银柱露出部分的平均温度(由辅助温度计测出)。 校正后的真实温度为:t真= t体+ Δt 例如测得某液体的t体=183℃,其液面在温度计的29℃上,则h = 183 -29 =154, 而t环= 64℃,则 Δt =0.00016×154×(183℃-64℃)=2.9℃ 故该液体的真实温度为:t(真) = 183℃+ 2.9℃= 185.9℃ 由此可见,体系的温度越高,校正值越大。在300℃时,其校正值可达10℃左右。 半浸式温度计,在水银球上端不远处有一标志线,测量时只要将线下部分放入待测体系中,便无需进行露出部分的校正。 (2)温度计刻度的校正 温度计刻度的校正通常用两种方法: A.以纯的有机化合物的熔点为标准来校正。其步骤为:选用数种已知熔点的纯有机物,用该温度计测定它们的熔点,以实测熔点温度作纵坐标,实测熔点与已知熔点的差值为横坐标,画出校正曲线,这样凡是用这只温度计测得的温度均可在曲线找到校正数值。 B.与标准温度比较来校正。其步骤为:将标准温度计与待校正的温度计平行放在热溶液中,缓慢均匀加热,每隔5℃分别记录两只温度计读数,求出偏差值Δt。 Δt = 待校正的温度计的温度- 标准温度计的温度 以待校正的温度计的温度作纵坐标,Δt为横坐标,画出校正曲线,这样凡是用这只温度计测得的温度均可由曲线找到校正数值。

简易数字式温度计的设计

分数: 单片机技能+电子初级工程师认证培训 设计报告 题目:简易数字式温度计的设计 指导老师:文丽 完成时间: 2012-5-15 华南理工大学广州学院电子信息工程学院

目录 1 引言 2方案设计 3 系统的硬件设计 4 proteus 仿真图 5 系统的软件设计 6 心理体会 7 参考文献

1 引言 在当下,人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S51,测温传感器使用DS18B20,用3位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,本文将介绍智能集成温度传感器DS18B20的结构特征及控制方法,并对以此传感器,89S51单片机为控制器构成的数字温度测量装置的工作原理及程序设计作了详细的介绍。 2方案设计 本设计主要是介绍了单片机控制下的温度检测系统,详细介绍了其硬件和软件设计,并对其各功能模块做了详细介绍,其主要功能和指标如下: ●利用温度传感器(DS18B20)测量某一环境温度 ●测量范围为-55℃~+127℃,精度为±0.5℃ ●如果测量范围超过+127℃或低于-55℃蜂鸣器就会自动进行报警 ●用液晶显示器LCD进行实际温度值显示 采用AT89S52单片机P3.5口控制温度传感器DS18B20的温度测量,以液晶显示器LCD形式输出测量温度。 图2.1原理图

相关主题