搜档网
当前位置:搜档网 › 剖析Android中进程与线程调度之nice

剖析Android中进程与线程调度之nice

剖析Android中进程与线程调度之nice
剖析Android中进程与线程调度之nice

剖析Android中进程与线程调度之nice

在计算机操作系统中,进程是进行资源分配和调度的基本单位,同时每个进程之内也可以存在多个线程。那么在Android系统(Linux Kernel)中,进程是如何去抢占资源,线程又是如何根据优先级切换呢,本文将尝试剖析这个问题,研究nice在Linux以及Android系统中的应用。

一些概念

?进程是计算机系统中,程序运行的实体,也是线程的容器。

?线程是进程中实际执行单位,一个线程是程序执行流的最小单元。在一个进程中可以有多个线程存在。

nice与进程调度

Linux中,使用nice value(以下成为nice值)来设定一个进程的优先级,系统任务调度器根据nice值合理安排调度。

?nice的取值范围为-20到19。

?通常情况下,nice的默认值为0。视具体操作系统而定。

?nice的值越大,进程的优先级就越低,获得CPU调用的机会越少,nice 值越小,进程的优先级则越高,获得CPU调用的机会越多。

?一个nice值为-20的进程优先级最高,nice值为19的进程优先级最低。

?父进程fork出来的子进程nice值与父进程相同。父进程renice,子进程nice值不会随之改变。

词源考究

nice这个命令的来源几乎没有资料提到,于是便尝试自己来推断一下。在诸如词霸,沪江等词典给出的意思均为好的;美好的;可爱的;好心的,友好的。而有道词典则稍微给出了一个其他词典没有的和蔼的。个人认为有道给出的这个比较合理。要想做到和蔼,就需要做到谦让,因此或多或少牺牲自己一点,成全他人。所以nice值越高,越和蔼,但是自己的优先级也会越低。

renice

对于一个新的进程我们可以按照下面的代码为一个进程设定nice值。

1.nice -n 10 adb logcat

对于已经创建的进程,我们可以使用renice来修改nice值

1.sudo renice -n 0 -p 24161

该命令需要使用root权限,-p对应的值为进程id。

注意renice命令在Linux发行版中-n 的值应该为进程的目标优先级。而Mac

下-n,则是代表对当前权限的增加值。比如在Mac下,讲一个进程的nice值由19改成10,可以这样操作sudo renice -n -9 -p 24161,这一点需要注意,避免掉进坑里。

Android中的nice

由于Android基于Linux Kernel,在Android中也存在nice值。但是一般情况下我们无法控制,原因如下:

?Android系统并不像其他Linux发行版那样便捷地使用nice命令操作。

?renice需要root权限,一般应用无法实现。

线程调度

虽然对于进程的优先级,我们无法控制,但是我们可以控制进程中的线程的优先级。在Android中有两种线程的优先级,一种为Android API版本,另一种是 Java 原生版本。

Android API

Android中的线程优先级别目前规定了如下,了解了进程优先级与nice值的关系,那么线程优先级与值之间的关系也就更加容易理解。

?THREAD_PRIORITY_DEFAULT,默认的线程优先级,值为0。

?THREAD_PRIORITY_LOWEST,最低的线程级别,值为19。

?THREAD_PRIORITY_BACKGROUND 后台线程建议设置这个优先级,值为10。

?THREAD_PRIORITY_FOREGROUND 用户正在交互的UI线程,代码中无法设置该优先级,系统会按照情况调整到该优先级,值为-2。

?THREAD_PRIORITY_DISPLAY 也是与UI交互相关的优先级界别,但是要比THREAD_PRIORITY_FOREGROUND优先,代码中无法设置,由系统按照情况

调整,值为-4。

?THREAD_PRIORITY_URGENT_DISPLAY 显示线程的最高级别,用来处理绘制画面和检索输入事件,代码中无法设置成该优先级。值为-8。

?THREAD_PRIORITY_AUDIO 声音线程的标准级别,代码中无法设置为该优先级,值为 -16。

?THREAD_PRIORITY_URGENT_AUDIO 声音线程的最高级别,优先程度较THREAD_PRIORITY_AUDIO要高。代码中无法设置为该优先级。值为-19。

?THREAD_PRIORITY_MORE_FAVORABLE 相对THREAD_PRIORITY_DEFAULT稍微优先,值为-1。

?THREAD_PRIORITY_LESS_FAVORABLE 相对THREAD_PRIORITY_DEFAULT稍微落后一些,值为1。

使用Android API为线程设置优先级也很简单,只需要在线程执行时调用android.os.Process.setThreadPriority方法即可。这种在线程运行时进行修

改优先级,效果类似renice。

1.new Thread () {

2.@Override

3.public void run() {

4.super.run();

5. android.os.Process.setThreadPriority(Process

.THREAD_PRIORITY_BACKGROUND);

6. }

7.}.start();

Java原生API

Java为Thread提供了三个级别的设置,

?MAX_PRIORITY,相当于

android.os.Process.THREAD_PRIORITY_URGENT_DISPLAY,值为10。

?MIN_PRIORITY,相当于android.os.Process.THREAD_PRIORITY_LOWEST,值为0。

?NORM_PRIORITY,相当于android.os.Process.THREAD_PRIORITY_DEFAULT,值为5。

使用setPriority我们可以为某个线程设置优先级,使用getPriority可以获得某个线程的优先级。

在Android系统中,不建议使用Java原生的API,因为Android提供的API划

分的级别更多,更适合在Android系统中进行设定细致的优先级。

注意

Android API的线程优先级和Java原生API的优先级是相对独立的,比如使用android.os.Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROU ND) 后,使用Java原生API,Thread.getPriority()得到的值不会改变。如下面代码:

1.new Thread() {

2.@Override

3.public void run() {

4.super.run();

5. Log.i(LOGTAG, "Java Thread Priority Before="

+ Thread.currentThread().getPriority());

6. Process.setThreadPriority(Process.THREAD_PRI

ORITY_LOWEST);

7. Log.i(LOGTAG, "Java Thread Priority=" + Thre

ad.currentThread().getPriority());

8. }

9.}.start();

上述代码的运行日志为

1.I/MainActivity( 3679): Java Thread Priority Before=5

I/MainActivity( 3679): Java Thread Priority=5

由于上面的这一点缺陷,导致我们在分析ANR trace时需要注意,在下面的ANR 日志信息中,prio=5中proi的值对应的Java原生API的线程优先级。而nice=-6中的nice表示的Android API版本的线程优先级。

1."main" prio=5 tid=1 NATIVE

2. | group="main" sCount=1 dsCount=0 obj=0x41690f18 s

elf=0x4167e650

3. | sysTid=1765 nice=-6 sched=0/0 cgrp=apps handle=1

074196888

4. | state=S schedstat=( 000 ) utm=5764 stm=3654 co

re=2

5. #00 pc 00022624 /system/lib/libc.so (__futex_sys

call3+8)

6. #01 pc 0000f054 /system/lib/libc.so (__pthread_c

ond_timedwait_relative+48)

7. #02 pc 0000f0b4 /system/lib/libc.so (__pthread_c

ond_timedwait+64)

避免ANR

我在之前的文章说说Android中的ANR中提到使用WorkerThread处理耗时IO

操作,同时将WorkerThread的优先级降低,对于耗时IO操作,比如读取数据库,文件等,我们可以设置该workerThread优先级为THREAD_PRIORITY_BACKGROUND,以此降低与主线程竞争的能力。

【编辑推荐】

1.一个优秀的Android应用从建项目开始

2.Android 6.0 中的新技术总结

3.Android M新的运行时权限开发者需要知道的一切

4.Java线程面试题

5.高效开发Android App的10个建议

基于嵌入式Linux多线程聊天系统的设计与实现

基于嵌入式Linux多线程聊天系统的设计与实现 学生姓名王宣达 学号 S2******* 所在系(院)电子信息工程系 专业名称电路与系统年级 2009级 2011年8月3日

中文摘要

外文摘要

目录 1.引言 (1) 2.Linux多线程聊天系统的设计思想 (3) 2.1 聊天系统中服务器的设计思想 (3) 2.2 聊天系统中客户端的设计思想 (3) 3. Linux多线程聊天系统的实现过程 (5) 3.1 多线程聊天系统中服务器端的实现过程 (5) 3.2 多线程聊天系统中客户端的实现过程 (7) 4.Linux多线程系统设计中出现的问题和解决的方法 (12) 4.1 多线程中资源的释放问题 (12) 4.2 (12) 参考文献 (12)

1.引言 在80年代中期,线程技术就应用到了操作系统中,那时在一个进程中只允许有一个线程,这样多线程就意味着多进程,虽然实现了多任务,但是资源消耗还是非常可观的。而到现在,多线程技术已经被许多操作系统所支持,有Windows/NT,还有Linux。 多线程和进程相比有两点优势: 1.它是一种消耗资源非常少的多任务操作方式。在Linux系统下,启动一个新的进程必须分配给它独立的地址空间,建立众多的数据表来维护它的代码段、堆栈段和数据段,这是一种消耗非常大的多任务工作方式。而运行于一个进程中的多个线程,它们彼此之间使用相同的地址空间,共享大部分数据,这样创建一个线程所占用的空间远远小于创建一个进程所花费的空间,而且,线程间彼此切换所需的时间也远远小于进程间切换所需要的时间。当然,随着系统的不同,这个差距也不不同。 2.线程间比进程间的通信机制更为便利。对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种方式不仅费时,而且很不方便。线程则不然,由于同一进程下的线程之间共享数据空间,所以一个线程的数据可以直接为其它线程所用,这不仅快捷,而且方便。当然,数据的共享也带来其他一些问题,有的变量不能同时被两个线程所修改,这时就要用到互斥锁机制来保证线程间的同步。 所以在本文的多线程聊天程序的设计中,采用多线程的方式设计系统更为适宜。其中,系统中用到的操作主要是:线程操作,设置互斥锁。其中,线程操作包括:线程创建,退出,。设置互斥锁包括:创建互斥锁,加锁和解锁。 但是,要实现网络聊天,系统中还要用到linux下的网络编程。 Linux下的网络编程通过socket接口实现。socket 是一种特殊的I/O,可以实现网络上的通信机制。Socket也是一种文件描述符。它具有一个类似于打开文件的函数调用Socket(),该函数返回一个整型的Socket描述符,随后的连接建立、数据传输等操作都是通过该Socket实现的。常用的Socket

基于linux的socket多线程通信

1、网络中进程之间如何通信? 本地的进程间通信(IPC)有很多种方式,但可以总结为下面4类: ?消息传递(管道、FIFO、消息队列) ?同步(互斥量、条件变量、读写锁、文件和写记录 锁、信号量) ?共享内存(匿名的和具名的) ?远程过程调用(Solaris门和Sun RPC) 但这些都不是本文的主题!我们要讨论的是网络中进程之间如何通信?首要解决的问题是如何唯一标识一个进程,否则通信无从谈起!在本地可以通过进程PID来唯一标识一个进程,但是在网络中这是行不通的。其实TCP/IP协议族已经帮我们解决了这个问题,网络层的―ip地址‖可以唯一标识网络中的主机,而传输层的―协议+端口‖可以唯一标识主机中的应用程序(进程)。这样利用三元组(ip地址,协议,端口)就可以标识网络的进程了,网络中的进程通信就可以利用这个标志与其它进程进行交互。 使用TCP/IP协议的应用程序通常采用应用编程接口:UNIX BSD的套接字(socket)和UNIX System V的TLI(已经被淘汰),来实现网络进程之间的通信。就目前而言,几乎所有的应用程序都是采用socket,而现在又是网络时代,网络中进程通信是无处不在,这就是我为什么说―一切皆socket‖。 2、什么是Socket? 上面我们已经知道网络中的进程是通过socket来通信的,那什么是socket呢?socket起源于Unix,而Unix/Linux基本哲学之一就是―一切皆文件‖,都可以用―打开open –> 读写write/read –> 关闭close‖模式来操作。我的理解就是Socket就是该模式的一个实现,socket 即是一种特殊的文件,一些socket函数就是对其进行的操作(读/写IO、打开、关闭),这些函数我们在后面进行介绍。 socket一词的起源 在组网领域的首次使用是在1970年2月12日发布的文献IETF RFC33中发现的,撰写者为Stephen Carr、Steve Crocker和Vint Cerf。根据美国计算机历史博物馆的记载,Croker写道:―命名空间的元素都可称为套接字接口。一个套接字接口构成一个连接的一端,而一个连接可完全由一对套接字接口规定。‖计算机历史博物馆补充道:―这比BSD的套接字接口定义早了大约12年。‖ 3、socket的基本操作 既然socket是―open—write/read—close‖模式的一种实现,那么socket就提供了这些操作对应的函数接口。下面以TCP为例,介绍几个基本的socket接口函数。 3.1、socket()函数 int socket(int domain, int type, int protocol); socket函数对应于普通文件的打开操作。普通文件的打开操作返回一个文件描述字,而socket()用于创建一个socket描述符(socket descriptor),它唯一标识一个socket。这个socket描述字跟文件描述字一样,后续的操作都有用到它,把它作为参数,通过它来进行一些读写操作。 正如可以给fopen的传入不同参数值,以打开不同的文件。创建socket的时候,也可以指定不同的参数创建不同的socket描述符,socket 函数的三个参数分别为:

多线程技术在Android手机开发中的运用

龙源期刊网 https://www.sodocs.net/doc/b02232478.html, 多线程技术在Android手机开发中的运用 作者:谢光刘志惠 来源:《电子技术与软件工程》2017年第24期 摘要 在Android手机开发过程中,一般情况下程序是通过一个线程进行工作的,因此当一个任务耗费过长时间,就会造成主程序无响应并对程序运行的顺畅程度造成影响的问题。基于此,本文通过对多线程组成进行介绍,在Android中多线程技术模块与具体实现方式两方面对多线程技术在安卓手机开发中的运用进行探讨,以为关注此问题的人们提供参考。 【关键词】多线程技术 Android手机进程线程 安卓系统自2007年由谷歌公司开发后,得到了巨大的发展。截至2017年3月,其市场占有率已经达到86.4%,如三星、索尼爱立信、小米、OPPO等手机生产厂商都在使用安卓系统。该系统开源免费、执行效率高,其多线程技术开发应用的研究,对提高手机硬件的利用效率,给用户带来良好试用体验,提高手机厂商的企业竞争力有重要作用。 1 多线程介绍 1.1 进程和线程介绍 一般来说,在一定时间内实现多个程序任务执行的程序都会用到“进程”这一概念。进程,即:一个拥有自身独立的内存空间、系统资源的执行程序,其特征为实现内部状态和内部数据的相互独立。线程与进程相似,线程也是一段有一定功能代码组成的流控制。线程的特征为:同类的多个线程可以对内存空间与系统资源进行共享。因此在对资源的占用方面,可以相互切换的线程比进程小很多。一个进程中可以包含诸多线程,此外,主线程对子线程有控制作用,可对子线程启动、停止等动作进行管理。而本文要重点介绍的多线程,指的是单个程序中一起运行的不同线程,不同线程可以执行不一样的任务。其特征是一个程序的多行语句可在某时间同时执行。 1.2 多线程程序消息处理原理 当人们启动一个程序时,系统将建立main线程,主要管理如:activity等应用组件,并对UI相关的事件进行处理,比如用户想要按键或使用屏幕进行绘图,线程会对以上事件进行处理,这是UI线程。安卓的线程模型,所有组件均在main线程中,因此用户在程序中下达下载文件、使用数据库等具有高耗时特征的操作时,就会造成UI线程的运行不畅,并出现程序无法响应的问题。这就要求程序员使用多线程技术,在进行安卓多线程编写时,技术人员应注意以下两点:

实验二-Linux进程、线程及编程

实验二Linux进程、线程及编程实验 一、实验目的 1、通过编写一个完整的守护进程,掌握守护进程编写和调试的方法 2、进一步熟悉如何编写多进程程序 二、实验环境 硬件:PC机一台,JXARM9-2410教学实验平台。 软件:Windows98/XP/2000系统,虚拟机环境下的Linux系统。 三、预备知识 1、fork() fork()函数用于从已存在的进程中创建一个新进程。新进程称为子进程,而原进程称为父进程。使用fork()函数得到的子进程是父进程的一个复制品,它从父进程处继承了整个进程的地址空间,包括进程上下文、代码段、进程堆栈、存信息、打开的文件描述符、信号控制设定、进程优先级、进程组号、当前工作目录、根目录、资源限制和控制终端等,而子进程所独有的只有它的进程号、资源使用和计时器等 2、exit()和_exit()的区别 _exit()函数的作用最为简单:直接使进程停止运行,清除其使用的存空间,并销毁其在核中的各种数据结构; exit()函数则在这些基础上作了一些包装,在执行退出之前加了若干道工序。 exit()函数在调用exit系统调用之前要检查文件的打开情况,把文件缓冲区中的容写回文件,就是图中的"清理I/O缓冲"一项。 3、wait()和waitpid() wait()函数是用于使父进程(也就是调用wait()的进程)阻塞,直到一个子进程结束或者该进程接到了一个指定的信号为止。如果该父进程没有子进程或者他的子进程已经结束,则wait()就会立即返回。 四、实验容 在该实验中,读者首先创建一个子进程1(守护进程),然后在该子进程中新建一个子进程2,该子进程2暂停10s,然后自动退出,并由子进程1收集子线程退出的消息。在这里,子进程1和子进程2的消息都在系统日志文件(例如“/var/log/messages”,日志文件的全路径名因版本的不同可能会有所不同)中输出。在向日志文件写入消息之后,守护进程(子进程1)循环暂停,其间隔时间为10s。 五、实验步骤

Android下使用Http协议实现多线程断点续传下载

0.使用多线程下载会提升文件下载的速度,那么多线程下载文件的过程是: (1)首先获得下载文件的长度,然后设置本地文件的长度 HttpURLConnection.getContentLength(); RandomAccessFile file = new RandomAccessFile("QQWubiSetup.exe","rwd"); file.setLength(filesize);//设置本地文件的长度 (2)根据文件长度和线程数计算每条线程下载的数据长度和下载位置。 如:文件的长度为6M,线程数为3,那么,每条线程下载的数据长度为2M,每条线程开始下载的位置如下图所示。 例如10M大小,使用3个线程来下载, 线程下载的数据长度 (10%3 == 0 ? 10/3:10/3+1) ,第1,2个线程下载长度是4M,第三个线程下载长度为2M 下载开始位置:线程id*每条线程下载的数据长度 = ? 下载结束位置:(线程id+1)*每条线程下载的数据长度-1=? (3)使用Http的Range头字段指定每条线程从文件的什么位置开始下载,下载到什么位置为止, 如:指定从文件的2M位置开始下载,下载到位置(4M-1byte)为止 代码如下:HttpURLConnection.setRequestProperty("Range", "bytes=2097152-4194303"); (4)保存文件,使用RandomAccessFile类指定每条线程从本地文件的什么位置开始写入数据。 RandomAccessFile threadfile = new RandomAccessFile("QQWubiSetup.exe ","rwd"); threadfile.seek(2097152);//从文件的什么位置开始写入数据

Linux下查看进程和线程

在Linux中查看线程数的三种方法 1、top -H 手册中说:-H : Threads toggle 加上这个选项启动top,top一行显示一个线程。否则,它一行显示一个进程。 2、ps xH 手册中说:H Show threads as if they were processes 这样可以查看所有存在的线程。 3、ps -mp 手册中说:m Show threads after processes 这样可以查看一个进程起的线程数。 查看进程 1. top 命令 top命令查看系统的资源状况 load average表示在过去的一段时间内有多少个进程企图独占CPU zombie 进程:不是异常情况。一个进程从创建到结束在最后那一段时间遍是僵尸。留在内存中等待父进程取的东西便是僵尸。任何程序都有僵尸状态,它占用一点内存资源,仅仅是表象而已不必害怕。如果程序有问题有机会遇见,解决大批量僵尸简单有效的办法是重起。kill是无任何效果的stop模式:与sleep进程应区别,sleep会主动放弃cpu,而stop 是被动放弃cpu ,例单步跟踪,stop(暂停)的进程是无法自己回到运行状态的。 cpu states: nice:让出百分比irq:中断处理占用 idle:空间占用百分比iowait:输入输出等待(如果它很大说明外存有瓶颈,需要升级硬盘(SCSI)) Mem:内存情况 设计思想:把资源省下来不用便是浪费,如添加内存后free值会不变,buff值会增大。判断物理内存够不够,看交换分区的使用状态。 交互命令: [Space]立即刷新显示 [h]显示帮助屏幕

linux进程线程管理实验报告

linux进程线程管理实验报告

————————————————————————————————作者:————————————————————————————————日期:

西安郵電學院 操作系统LINUX实验报告 题目1:进程______ 题目2:线程管理__ 题目3:互斥_____系部名称:计算机学院 专业名称:软件工程 班级:0802 学号:04085048 学生姓名:郭爽乐 时间:2010-10-31

实验一: 进程管理 一.实验目的 通过观察、分析实验现象,深入理解进程及进程在调度执行和内存空间等方面的特点, 掌握在POSIX 规范中fork和kill系统调用的功能和使用。 二.实验要求 2.1 实验环境要求 1. 硬件 (1) 主机:Pentium III 以上; (2) 内存:128MB 以上; (3) 显示器:VGA 或更高; (4) 硬盘空间:至少100MB 以上剩余空间。 2. 软件 Linux 操作系统,内核2.4.26 以上,预装有X-Window 、vi、gcc、gdb 和任意web 浏览器。 2.2 实验前的准备工作 学习man 命令的用法,通过它查看fork 和kill 系统调用的在线帮助,并阅读参 考资料,学会fork 与kill 的用法。 复习C 语言的相关内容。 三、实验内容 3.1 补充POSIX 下进程控制的残缺版实验程序 3.2回答下列问题: 1. 你最初认为运行结果会怎么样? 2. 实际的结果什么样?有什么特点?试对产生该现象的原因进行分析。 3. proc_number 这个全局变量在各个子进程里的值相同吗?为什么? 4. kill 命令在程序中使用了几次?每次的作用是什么?执行后的现象是什么? 5. 使用kill 命令可以在进程的外部杀死进程。进程怎样能主动退出?这两种退出方式哪种更好一些? 四、实验结果 4.1 补充完全的源程序 #include #include #include

AndroidUI之线程与进度对话框

//创建一个进度条对话框 final ProgressDialog progressdialog=new ProgressDialog(MainActivity.this); progressdialog.setTitle("测试"); progressdialog.setMessage("正在对话框与线程"); progressdialog.show();//显示对话框 //创建线程 new Thread(){ public void run(){ try{ sleep(1000);//时间间隔1秒 }catch(Exception e){ e.printStackTrace(); }finally{ progressdialog.dismiss();//卸载对话框对象 } } }.start(); 菜单的创建于事件监听 public boolean onCreateOptionsMenu(Menu menu) { int a=Menu.NONE;//声明菜单顺序ID int b=Menu.NONE+1; int c=Menu.NONE+2; int d=Menu.NONE+3; menu.add(0, 1, a, "a");//第一个参数:分组,第二个参数:菜单的Id, 第三个参数:菜单的顺序,第四个参数:显示菜单的文字 menu.add(1, 2, b, "b"); menu.add(2, 3, b, "c"); menu.add(2, 4, d, "d"); return true; } @Override public boolean onOptionsItemSelected(MenuItem item) { switch (item.getItemId()) { case 1: Toast.makeText(MainActivity.this,"a", 1).show(); break; case 2: Toast.makeText(MainActivity.this,"b", 1).show(); break;

Android Handle Thread

有关Android线程的学习 1. Android进程 会尽量保留一个正在运行进程,只在内存资源出现不足时,Android会尝试停止一些进程从而释放足够的资源给其他新的进程使用,也能保证用户正在访问的当前进程有足够的资源去及时地响应用户的事件。Android会根据进程中运行的组件类别以及组件的状态来判断该进程的重要性,Android会首先停止那些不重要的进程。按照重要性从高到低一共有五个级别: ?前台进程 前台进程是用户当前正在使用的进程。只有一些前台进程可以在任何时候都存在。他们是最后一个被结束的,当内存低到根本连他们都不能运行的时候。一般来说,在这种情况下,设备会进行内存调度,中止一些前台进程来保持对用户交互的响应。 ?可见进程 可见进程不包含前台的组件但是会在屏幕上显示一个可见的进程是的重要程度很高,除非前台进程需要获取它的资源,不然不会被中止。 ?服务进程 运行着一个通过startService() 方法启动的service,这个service不属于上面提到的2种更高重要性的。service所在的进程虽然对用户不是直接可见的,但是他们执行了用户非常关注的任务(比如播放mp3,从网络下载数据)。只要前台进程和可见进程有足够的内存,系统不会回收他们。 ?后台进程 运行着一个对用户不可见的activity(调用过 onStop() 方法).这些进程对用户体验没有直接的影响,可以在服务进程、可见进程、前台进程需要内存的时候回收。通常,系统中会有很多不可见进程在运行,他们被保存在LRU (least recently used) 列表中,以便内存不足的时候被第一时间回收。如果一个activity正确的执行了它的生命周期,关闭这个进程对于用户体验没有太大的影响。 ?空进程 未运行任何程序组件。运行这些进程的唯一原因是作为一个缓存,缩短下次程序需要重新使用的启动时间。系统经常中止这些进程,这样可以调节程序缓存和系统缓存的平衡。

操作系统实验报告(包括线程,进程,文件系统管理,linux+shell简单命令)

操作系统实验报告 班级:030613 学号:03061331 姓名:裴帅帅

实验一:进程的建立 一、实验内容 创建进程及子进程,在父子进程间实现进程通信,创建进程并显示标识等进 程控制块的属性信息,显示父子进程的通信信息和相应的应答信息。 使用匿名管道实现父子进程之间的通信。 二、源程序 1、创建匿名管道 SECURITY_ATTRIBUTES sa; sa.bInheritHandle=true; sa.lpSecurityDescriptor=NULL; sa.nLength=sizeof(SECURITY_ATTRIBUTES); if(!CreatePipe(&m_hRead,&m_hWrite,&sa,0)) { MessageBox("创建匿名管道失败"); return false; } 2、创建子进程 STARTUPINFO si; ZeroMemory(&si,sizeof(STARTUPINFO)); si.cb=sizeof(STARTUPINFO); si.dwFlags=STARTF_USESTDHANDLES; si.hStdInput=m_hRead; si.hStdOutput=m_hWrite; si.hStdError=GetStdHandle(STD_ERROR_HANDLE); if(!CreateProcess(NULL,"子 进.exe",NULL,NULL,true,0,NULL,NULL,&si,&pi)) { MessageBox("创建子进程失败"); CloseHandle(m_hRead); CloseHandle(m_hWrite); m_hRead=NULL; m_hWrite=NULL; return; } 3、销毁子进程 if(m_hRead) CloseHandle(m_hRead);

Android应用程序开发完整训练:从零起步通过23个动手实战案例精通App开发

从零起步,24小时内通过23个动手实战案例,循序渐进的对Android商业级别的应用程序开发要点各个击破,依托于在多年的Android(6款完整的硬件产品和超过20款应用软件)开发和企业级培训经验(超过150期的次Android的企业内训和公开课),旨在在实务的基础之上帮助你完成任何复杂程序的高质量Android应用程序开发,让Android开发跟上想象的速度。最后,通过ActivityManagerService揭秘Android应用程序一切行为背后的核心根源,让你从此开发应用程序居高零下、举重若轻。 课程要点: 1,抽取Android应用开发中用到的最精华的Java技术加以剖析; 2,从零起步构建Android开发环境和编写并彻底剖析第一个Android程序; 3,彻底剖析不同Activity之间所有的交互模式; 4,根据商业化场景彻底剖析Android的生命周期及其使用的最佳时间; 5,使用JUnit测试Android业务代码; 6,掌握Android基本和核心的UI开发技术; 7,”Android商业化高级UI实战”是根据过去20多款商业级别Android应用程序开发尤其是类似CRM系统中最经典、最经常使用的技术抽取而成,掌握之后基本上不会在遇到UI 方面的难点; 8,细致剖析并实战Android性能测试,找出性能瓶颈,并进行代码优化,分享代码优化的最佳实践; 9,对数据的处理时Android绝大多数应用程序的核心,尤其是对CRM系统而言,这一天,我们会对Android中的本地数据处理方式及其商业使用场景进行彻底剖析和实战; 10,从SharedPreferences到内部文件系统,从SDCard操作到SQLite数据库,从XML 和JSON的解析于生成到数据共享统一接口ContentProvider,对Android本地的数据处理方式进行地毯式轰炸; 11,通讯录的操作的原理、流程和场景等进行了情景再现性的代码实战; 12,通过Android手机卫士商业级别的代码案例实战Android中BroadcastReceiver和Service; 13,根据过去20多款程序的商业实战总结出了能够解决基于HTTP协议的任意文件类型、任意大小文件的网络上传和下载,Android网络开发从此一劳永逸; 14,实战WiFi数据交换; 15,尤其是额外提到异步http框架,具备很强的商业价值; 16,Android横竖屏切换的经典场景、生命周期和解决方案; 17,实战构建多语言国际化的Android应用程序; 18,如何编译APK来提高应用的安全性; 19,如何反编译Android应用 20,通过Android中WebView的特性洞悉Android中JavaScript与Java相互沟通的密码,追寻浏览器和HTML5开发的架构和技术实现根源; 21,使用NDK等技术利用C/C++的高效性来提高应用程序的性能; 22,实现Android中以Looper、Handler、Message、MessageQueue为核心的线程间通信方式; 23,实战并剖析AsyncTask框架实现的源代码,并提出对AsyncTask缺陷的解决方案;

Linux 线程实现机制分析

Linux 线程实现机制分析 杨沙洲 国防科技大学计算机学院 2003 年 5 月 19 日 自从多线程编程的概念出现在 Linux 中以来,Linux 多线应用的发展总是与两个问题脱不开干系:兼容性、 效率。本文从线程模型入手,通过分析目前 Linux 平台上最流行的 LinuxThreads 线程库的实现及其不足,描述了 Linux 社区是如何看待和解决兼容性和效率这两个问题的。 一 .基础知识:线程和进程 按照教科书上的定义,进程是资源管理的最小单位,线程是程序执行的最小单位。在操作系统设计上,从进程演化出线程,最主要的目的就是更好的支持 SMP 以及减小(进程/线程)上下文切换开销。 无论按照怎样的分法,一个进程至少需要一个线程作为它的指令执行体,进程管理着资源(比如cpu 、内存、 文件等等),而将线程分配到某个cpu 上执行。一个进程当然可以拥有多个线程,此时,如果进程运行在SMP 机器上,它就可以同时使用多个cpu 来执行各个线程,达到最大程度的并行,以提高效率;同时,即使是在单cpu 的机器上,采用多线程模型来设计程序,正如当年采用多进程模型代替单进程模型一样,使设计更简 洁、功能更完备,程序的执行效率也更高,例如采用多个线程响应多个输入,而此时多线程模型所实现的功能实际上也可以用多进程模型来实现,而与后者相比,线程的上下文切换开销就比进程要小多了,从语义上 来说,同时响应多个输入这样的功能,实际上就是共享了除cpu 以外的所有资源的。 针对线程模型的两大意义,分别开发出了核心级线程和用户级线程两种线程模型,分类的标准主要是线程的调度者在核内还是在核外。前者更利于并发使用多处理器的资源,而后者则更多考虑的是上下文切换开销。在目前的商用系统中,通常都将两者结合起来使用,既提供核心线程以满足smp 系统的需要,也支持用线程 库的方式在用户态实现另一套线程机制,此时一个核心线程同时成为多个用户态线程的调度者。正如很多技 术一样,"混合"通常都能带来更高的效率,但同时也带来更大的实现难度,出于"简单"的设计思路,Linux 从 一开始就没有实现混合模型的计划,但它在实现上采用了另一种思路的"混合"。 在线程机制的具体实现上,可以在操作系统内核上实现线程,也可以在核外实现,后者显然要求核内至少实现了进程,而前者则一般要求在核内同时也支持进程。核心级线程模型显然要求前者的支持,而用户级线程模型则不一定基于后者实现。这种差异,正如前所述,是两种分类方式的标准不同带来的。 当核内既支持进程也支持线程时,就可以实现线程-进程的"多对多"模型,即一个进程的某个线程由核内调度,而同时它也可以作为用户级线程池的调度者,选择合适的用户级线程在其空间中运行。这就是前面提到的"混合"线程模型,既可满足多处理机系统的需要,也可以最大限度的减小调度开销。绝大多数商业操作系统(如Digital Unix 、Solaris 、Irix )都采用的这种能够完全实现POSIX1003.1c 标准的线程模型。在核外实现的线程又可以分为"一对一"、"多对一"两种模型,前者用一个核心进程(也许是轻量进程)对应一个线程,将线程调度等同于进程调度,交给核心完成,而后者则完全在核外实现多线程,调度也在用户态完成。后者就是前面提到的单纯的用户级线程模型的实现方式,显然,这种核外的线程调度器实际上只需要完成线程运行栈的切换,调度开销非常小,但同时因为核心信号(无论是同步的还是异步的)都是以进程为单位的,因而无法定位到线程,所以这种实现方式不能用于多处理器系统,而这个需求正变得越来 内容: 一.基础知识:线程和进程 二.Linux 2.4内核中的轻量进程实现 三.LinuxThread 的线程机制 四.其他的线程实现机制 参考资料 关于作者 对本文的评价 订阅: developerWorks 时事通讯

linux进程间通讯

linux进程间通讯 管道(FIFO): 管道可分为命名管道和非命名管道(匿名管道),匿名管道只能用于父、子进程间通讯,命名管道可用于非父子进程。命名管道就是FIFO,管道是先进先出的通讯方式。 消息队列: 消息队列用于2个进程间通讯,首先在1个进程中创建1个消息队列,然后可向消息队列中写数据,而另一进程可从该消息队列中读取数据。 注意,消息队列是以创建文件的方式建立的,若1个进程向某消息队列中写入数据后,另一进程并未读取这些数据,则即使向消息队列中写数据的进程已退出,但保存在消息队列中的数据并未消失,也就是说下次再从这个消息队列中读数据时,还是会读出已退出进程所写入的数据。 信号量: linux中的信号量类似于windows中的信号量。 共享内存: 共享内存,类似于windows中dll的共享变量,但linux下的共享内存区不需要象DLL这样的东西,只要先创建1个共享内存区,其它进程按照一定步骤就能访问到这个共享内存区中的数据(可读可写)。 信号——signal 套接字——socket 各种ipc机制比较: 1.匿名管道:速度较慢,容量有限,且只有父、子进程间能通讯; 2.命名管道(FIFO):任何进程间都能通讯,但速度较慢; 3.消息队列:容量受系统限制,且要对读出的消息进行测试(读出的是新写入的消息,还是以前写入的, 尚未被读取的消息); 4.信号量:不能传递复杂信息,只能用来同步; 5.共享内存:容量大小可控,速度快,但共享内存区不包含同步保护,对共享内存区的访问需由用户实 现同步保护。 另外,共享内存同样可用于线程间通讯,不过没必要,线程间本来就已共享了同一进程内的一块内存。 线程间同步方法: 1.临界区:使多线程间串行访问公共资源或1段代码,速度较快,适合控制数据访问; 2.互斥量:为同步对共享资源的单独访问而设计的; 3.信号量:为控制1个具有有限数量用户资源而设计; 4.事件对象:用来通知线程有一些事件已发生,从而启动后继任务。

Android UI线程分析

理解UI线程——swt, Android, 和Swing的UI机理 线程 在做GUI的时候, 无论是SWT, AWT, Swing 还是Android, 都需要面对UI线程的问题, UI线程往往会被单独的提出来单独对待, 试着问自己, 当GUI启动的时候, 后台会运行几个线程? 比如 1. SWT 从Main函数启动 2. Swing 从Main函数启动 3. Android 界面启动 常常我们被告知, 主线程, UI线程, 因此这里很多会回答, 有两个线程, 一个线程是Main, 另外一个是UI. 如果答案是这样, 这篇文章就是写给你的。 OK, 我们以SWT为例, 设计以下方案寻找答案, 第一步, 我们看能否找到两个线程: 1. 从Main中启动SWT的界面, 在启动界面前, 将Main所在的线程打印出来这里设计为Shell中嵌入一个Button 2. 点击Button, 运行一个耗时很长的操作, 反复修改Button的文字, 在该线程中打印该线程的名称 代码是这样的: 1.public static void main(String[] args) { 2.final Display display = Display.getDefault(); 3.final Shell shell = new Shell();

4. shell.setSize(500, 375); 5. shell.setText("SWT Application"); 6. shell.setLayout(new FillLayout()); 7. btn = new Button(shell, SWT.NULL); 8. btn.setText("shit"); 9. registerAction(); 10. shell.open(); 11. https://www.sodocs.net/doc/b02232478.html,yout(); 12.while (!shell.isDisposed()) { 13.if (!display.readAndDispatch()) 14. display.sleep(); 15. } 16. shell.dispose(); 17. display.dispose(); 18.} 19.private static void registerAction() { 20. btn.addMouseListener(new MouseListener() { 21. @Override 22.public void mouseDoubleClick(MouseEvent e) { 23. // TODO Auto-generated method stub 24. } 25. @Override 26.public void mouseDown(MouseEvent e) { 27. methodA(); 28. } 29. @Override 30.public void mouseUp(MouseEvent e) { 31. } 32. }); 33.} 34./**

Android复习题

Android复习题及答案 一、选择题 1. 下列哪些语句关于内存回收的说明是正确的?( ) A、程序员必须创建一个线程来释放内存 B、内存回收程序负责释放无用内存 C、内存回收程序允许程序员直接释放内存 D、内存回收程序可以在指定的时间释放内存对象 2. Android 中下列属于Intent的作用的是( ) A、实现应用程序间的数据共享 B、是一段长的生命周期,没有用户界面的程序,可以保持应用在后台运行,而不会因为切换页面而消失 C、可以实现界面间的切换,可以包含动作和动作数据,连接四大组件的纽带 D、处理一个应用程序整体性的工作 3. 下面的对自定style的方式正确的是( ) A、 B、 C、 fill_parent D、 fill_parent 4. 在Android中使用Menu时可能需要重写的方法有( )。 A、onCreateOptionsMenu() B、onCreateMenu() C、onOptionsItemSelected() D、onItemSelected() 5. 在Android中使用SQLiteOpenHelper这个辅助类时,可以生成一个数据库,并可以对数据库 版本进行管理的方法可以是( )

操作系统实验报告理解Linux下进程和线程的创建并发执行过程。

操作系统上机实验报告 实验名称: 进程和线程 实验目的: 理解unix/Linux下进程和线程的创建、并发执行过程。 实验内容: 1.进程的创建 2.多线程应用 实验步骤及分析: 一、进程的创建 下面这个C程序展示了UNIX系统中父进程创建子进程及各自分开活动的情况。 fork( ) 创建一个新进程。 系统调用格式: pid=fork( ) 参数定义: int fork( ) fork( )返回值意义如下: 0:在子进程中,pid变量保存的fork( )返回值为0,表示当前进程是子进程。 >0:在父进程中,pid变量保存的fork( )返回值为子进程的id值(进程唯一标识符)。 -1:创建失败。 如果fork( )调用成功,它向父进程返回子进程的PID,并向子进程返回0,即fork( )被调用了一次,但返回了两次。此时OS在内存中建立一个新进程,所建的新进程是调用fork( )父进程(parent process)的副本,称为子进程(child process)。子进程继承了父进程的许多特性,并具有与父进程完全相同的用户级上下文。父进程与子进程并发执行。 2、参考程序代码 /*process.c*/ #include #include main(int argc,char *argv[]) { int pid; /* fork another process */ pid = fork(); if (pid < 0) { /* error occurred */ fprintf(stderr, "Fork Failed"); exit(-1);

Android的线程使用来更新UI----Thread、Handler、Looper、TimerTask等

方法一:(java习惯,在android不推荐使用) 刚刚开始接触android线程编程的时候,习惯好像java一样,试图用下面的代码解决问题new Thread( new Runnable() { public void run() { myView.invalidate(); } }).start(); 可以实现功能,刷新UI界面。但是这样是不行的,因为它违背了单线程模型:Android UI操作并不是线程安全的并且这些操作必须在UI线程中执行。 方法二:(Thread+Handler) 查阅了文档和apidemo后,发觉常用的方法是利用Handler来实现UI线程的更新的。Handler来根据接收的消息,处理UI更新。Thread线程发出Handler消息,通知更新UI。Handler myHandler = new Handler() { public void handleMessage(Message msg) { switch (msg.what) { case TestHandler.GUIUPDATEIDENTIFIER: myBounceView.invalidate(); break; } super.handleMessage(msg); } }; class myThread implements Runnable { public void run() { while (!Thread.currentThread().isInterrupted()) { Message message = new Message(); message.what = TestHandler.GUIUPDATEIDENTIFIER; TestHandler.this.myHandler.sendMessage(message); try { Thread.sleep(100); } catch (InterruptedException e) { Thread.currentThread().interrupt(); } } } } 以上方法demo看:https://www.sodocs.net/doc/b02232478.html,/blog/411860 方法三:(java习惯,不推荐) 在Android平台中需要反复按周期执行方法可以使用Java上自带的TimerTask类, Tim erTask相对于Thread来说对于资源消耗的更低,除了使用Android自带的

android多线程下载技术详解

Android 多线程、断点续传下载技术 1.为什么使用该技术? 答:(1)之所以采用多线程下载是因为考虑到手机,及移动设备的cup处理能力,让下载任务多抢占cup资源,从而加快了下载的速度,提高了用户体验 (2)断点续传技术,就是在下载过程中如果网络出现问题,导致文件没有下载完,那么下次下载时,接着上次终端位置继续下载,从而减轻了服务器的负担。 2.下面我们就开始建一个多线程下载的项目,来体验多线程下载的优势,项目的结构如下 2.1设计UI

main.xml 代码如下:

android:text="@string/path" />