搜档网
当前位置:搜档网 › 高中物理的解题的方法 高中物理48个解题模型

高中物理的解题的方法 高中物理48个解题模型

高中物理的解题的方法 高中物理48个解题模型
高中物理的解题的方法 高中物理48个解题模型

高中物理的解题的方法高中物理48个解题模型【导语】在物理的答题中,学生总会因为种种的原因答错题,下面大将为大家带来高中物理常见错题的原因介绍,希望能够帮助到大家。

不要“题海”,要有题量

谈到解题必然会联系到题量。因为,同一个问题可从不同方面给予辨析理解,或者同一个问题设置不同的陷阱,这样就得有较多的题目。从不同角度、不同层次来体现教与学的测试要求,因而有一定的题目必是习以为常,我们也只有解答多方面的题,才得以消化和巩固基础。那做多了题就一定会陷入“题海”吗?我们的回答是否定的。

对于缺乏基本要求,思维跳跃性大,质量低劣,几乎类同题目重复出现,造成学生机械模仿,思维僵化,用定势思维解题,这才是误入“题海”。至于富有启发性、思考性、灵活性的题,百解不厌,真是一种享受。这样的题解得越多,收获越大。解题多了,并不就一定加重学生负担,只有那些脱离学习对象实际,超过学生的承受能力的,才会加重他们的负担。虽然题目不多,但积重难返,犹如陷入题海。所以,为了提高学习成绩和质量,离不开解题,而且要有一定的题量给予保证,并以真正理解熟练掌握为题量的下限。

不求模型,要求思考

有法,教无定法。同样的道理,解题有法,但无定法。所以,我们不能用通用模型的方法解多种不同的题。首先,文理科的思维特点有差异,文科侧重理性思维,而理科侧重逻辑思维。数学偏重图文与函数关系的分析推导,而物理突出具体问题高度概括,抽象出物理模型。

我们不能盲目地迷信某种模型解题,它会束缚你发散探索的思路,只能让你走进机械模仿,死记硬背的死胡同。提倡独立思考,重在方法的迁移和变通,具体问题具体分析。是什么就什么,该用什么就用什么的理念解每道题,以不变应万变。提高解题的应变能力,使自己的脑子真正活起来,通过解题获得成就感。

不贪难题,要抓“双基”

题目有难易度之分。我们解怎样的题更有助于理解知识,掌握方法,提高能力?应该以解中档题为主,这种题含有基础性要求,同时又有能力提升的。也就是说解这类题能驾驭自如,那么,面对有难度的题也不会一筹莫展,或胆怯退缩。现在,相当一部分学生好高骛远,热衷于做难题。贪大求难,但往往受挫,久而久之消磨了意志,望题生威。究其原因,底气不足,还未到火候。要知道,所谓的难题

就是综合的知识点多,需要统筹的多,设置的情景新颖,问题的过程复杂,实际应用强。

不唯结果,要重过程

我们只有计较解题过程,才会认真分析问题的发生,发展和变化过程,细心思考每个过程该选什么规律解决、规律之间有什么联系、通过怎样的环节联系起来的,促成解题周密严谨。同时,我们也可反哺解题过程,检查思路和方法是否正确,公式书写和运用是否有笔误。只有这样,保证过程与结果无缝对接,解题更趋规范,既有满意放心的过程,又有正确无误的结果。

内容仅供参考

高中物理解题模型详解(2)

高考物理解题模型11[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群特恰恫哺 萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 目录11[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群特恰恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛 墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 11[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群特恰恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执 揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 第一章运动和力111[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群特恰恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 一、追及、相遇模型111[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、 追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周 运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群 特恰恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 二、先加速后减速模型711[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1 一、追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆 周运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸 群特恰恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 三、斜面模型1111[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、追及、 相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周运动 20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群特恰 恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 四、挂件模型1911[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、追及、 相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周运动 20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群特恰 恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 五、弹簧模型(动力学)3111[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和 力1一、追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第 二章圆周运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔 蔑饥评呸群特恰恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票 红铣肚 第二章圆周运动3511[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群特恰恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚

高中物理解题技巧:图像法

高物理解题技巧:图像法1 物理规律可以用文字描述,也可以用数函数式表示,还可以用图象描述。图象作为表示物理规律的方法之一,可以直观地反映某一物理量随另一物理量变化的函数关系,形象地描述物理规律。在进行抽象思维的同时,利用图象视觉感知,有助于对物理知识的理解和记忆,准确把握物理量之间的定性和定量关系,深刻理解问题的物理意义。应用图象不仅可以直接求或读某些待求物理量,还可以用探究某些物理规律,测定某些物理量,分析或解决某些复杂的物理过程。 图象的物理意义主要通过“点”、“线”、“面”、“形”四个方面体现,应从这四方面入手,予以明确。 1、物理图象“点”的物理意义:“点”是认识图象的基础。物理图象上的“点”代表某一物理状态,它包含着该物理状态的特征和特性。从“点”着手分析时应注意从以下几个特殊“点”入手分析其物理意义。 (1)截距点。它反映了当一个物理量为零时,另一个物理的值是多少,也就是说明确表明了研究对象的一个状态。如图1,图象与纵轴的交点反映当I=0时,U=E即电的 电动势;而图象与横轴的交点反映电的短路电流。这可通过图象的数表达式 得。 (2)交点。即图线与图线相交的点,它反映了两个不同的研究对象此时有相同的物理量。如图2的P点表示电阻A接在电B两端时的A两端的电压和通过A的电流。

(3)极值点。它可表明该点附近物理量的变化趋势。如图3的D点表明当电流等于时,电有最大的输功率。 (4) 拐 点。通常反映物理过程在该点发生突变,物理量由量变到质变的转折点。拐点分明拐点和暗拐点,对明拐点,生能一眼看其物理量发生了突变。如图4的P点反映了加速度方向发生了变化而不是速度方向发生了变化。而暗拐点,生往往察觉不到物理量的突变。如图5P点看起是一条直线,实际上在该点速度方向发生了变化而加速度没有发生变化。 2、物理图象“线”的物理意义:“线”:主要指图象的直线或曲线的切线,其斜率通常 具有明确的物理意义。物理图象的斜率代表两个物理量增量之比值,其大小往往 代表另一物理量值。如-t图象的斜率为速度,v-t图象的斜率为加速度,Φ-t图象的斜率为感应电动势(n=1的情况下),电U-I图象(如图1)的斜率 为电的内阻(从图象的数表达式也一目了然)等。 3、物理图象“面”的物理意义:“面”:是指图线与坐标轴所围的面积。有些物理图象的图线与横轴所围的面积的值常代表另一个物理量的大小.习图象时,有意识地利用求面积的方法,计算有关问题,可使有些物理问题的解答变得简便,如v-t图象所围面积 代表位移,F-图象所围面积为力做的功,P-V图象所围面积为 气体压强做的功等。 4、物理图象“形”的物理意义:“形”:指图象的形状。由图线的形状结合其斜率找其隐含的物理意义。例如在v-t图象,如果是一条与时间轴平行的直线,说明物体做匀速直线运动;若是一条斜的直线,说明物体做匀变速直线运动;若是一条曲线,则可根据其斜率变化情况,判断加速度的变化情况。在波的图象,可通过微小的平移能够判断各质点在该时刻的振动方向;在研究小电珠两端的电压U与电流I关系时,通过实验测在

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

(完整版)高中物理模型解题

高中物理模型解题 模型解题归类 一、刹车类问题 匀减速到速度为零即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间。如果问题涉及到最后阶段(到速度为零)的运动,可把这个阶段看成反向、初速度为零、加速度不变的匀加速直线运动。 【题1】汽车刹车后,停止转动的轮胎在地面上发生滑动,可以明显地看出滑动的痕迹,即常说的刹车线。由刹车线长短可以得知汽车刹车前的速度的大小,因此刹车线的长度是分析交通事故的一个重要依据。若汽车轮胎跟地面的动摩擦因数是0.7,刹车线长是14m,汽车在紧急刹车前的速度是否超过事故路段的最高限速50km/h? 【题2】一辆汽车以72km/h速率行驶,现因故紧急刹车并最终终止运动,已知汽车刹车过程加速度的大小为5m/s2,则从开始刹车经过5秒汽车通过的位移是多大 二、类竖直上抛运动问题 物体先做匀加速运动,到速度为零后,反向做匀加速运动,加速过程的加速度与减速运动过程的加速度相同。此类问题要注意到过程的对称性,解题时可以分为上升过程和下落过程,也可以取整个过程求解。 【题1】一滑块以20m/s滑上一足够长的斜面,已知滑块加速度的大小为5m/s2,则经过5秒滑块通过的位移是多大? 【题2】物体沿光滑斜面匀减速上滑,加速度大小为4m/s2,6s后又返回原点。那么下述结论正确的是() A物体开始沿斜面上滑时的速度为12m/s B物体开始沿斜面上滑时的速度为10m/s C物体沿斜面上滑的最大位移是18m D物体沿斜面上滑的最大位移是15m 三、追及相遇问题 两物体在同一直线上同向运动时,由于二者速度关系的变化,会导致二者之间的距离的变化,出现追及相撞的现象。两物体在同一直线上相向运动时,会出现相遇的现象。解决此类问题的关键是两者的位移关系,即抓住:“两物体同时出现在空间上的同一点。分析方法有:物理分析法、极值法、图像法。常见追及模型有两个:速度大者(减速)追速度小者(匀速)、速度小者(初速度为零的匀加速直线运动)追速度大者(匀速)、 1、速度大者(减速)追速度小者(匀速):(有三种情况)

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

高中物理解题方法整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两 环再次 A O B P Q

高考物理复习高中物理解题方法归类总结高中物理例题解析,原来还有这么巧妙的方法!

高考物理复习高中物理解题方法归类总结 (高中物理例题解析) 方法一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义

在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______ Ω. 【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A当作短路电流,而得出r=E/I 短=2.5Ω的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω 3.挖掘交点的潜在含意

一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车? 【解析】依题意在同一坐标系中作出分别从A、B站由不同时刻开出的汽车做匀速运动的s一t图像,如图所示. 从图中可一目了然地看出:(1)当B站汽车与A站第一辆汽车同时相向开出时,B站汽车的s一t图线CD与A站汽车的s-t图线有6个交点(不包括在t轴上的交点),这表明B站汽车在途中(不包括在站上)能遇到6辆从A站开出的汽车.(2)要使B站汽车在途中遇到的车最多,它至少应在A站第一辆车开出50 min后出发,即应与A站第6辆车同时开出此时对应B站汽车的s—t图线MN与A 站汽车的s一t图线共有11个交点(不包括t轴上的交点),所以B站汽车在途中(不包括在站上)最多能遇到1l辆从A站开出的车.(3)如果B站汽车与A站汽

高中常用物理模型及解题思路

高中常用物理模型及解题思路 ◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。 平面、斜面、竖直都一样。只要两物体保持相对静止 记住:N= 211212 m F m F m m ++ (N 为两物体间相互作用力), 一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用?F 2 12m m m N += 讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m a N= 2 12 m F m m + ② F 1≠0;F 2≠0 N= 211212 m F m m m F ++ (20F =就是上面的情 况) F=211221m m g)(m m g)(m m ++ F=122112 m (m )m (m gsin )m m g θ++ F=A B B 12 m (m )m F m m g ++ F 1>F 2 m 1>m 2 N 1

高中物理知识点总结和常用解题方法(带例题)

一、静力学: 1.几个力平衡,则一个力是与其它力合力平衡的力。 2.两个力的合力:F(max)-F(min)≤F合≤F(max)+F(min)。三个大小相等的共面共点力平衡,力之间的夹角为120°。 3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。 4.三力共点且平衡,则:F1/sinα1=F2/sinα2=F3/sinα3(拉密定理,对比一下正弦定理) 文字表述:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比5.物体沿斜面匀速下滑,则u=tanα6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。此时速度、加速度相等,此后不等。 7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。 8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。 9.轻杆能承受纵向拉力、压力,还能承受横向力。力可以发生突变,“没有记忆力”。 10、轻杆一端连绞链,另一端受合力方向:沿杆方向。 11、“二力杆”(轻质硬杆)平衡时二力必沿杆方向。 12、绳上的张力一定沿着绳子指向绳子收缩的方向。13、支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。14、两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。 15、已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。

高中物理解题模型详解总结

高考物理解题模型 目录 第一章运动和力................................................. 一、追及、相遇模型............................................ 二、先加速后减速模型.......................................... 三、斜面模型................................................. 四、挂件模型................................................. 五、弹簧模型(动力学)........................................ 第二章圆周运动................................................. 一、水平方向的圆盘模型........................................ 二、行星模型................................................. 第三章功和能 ................................................... 一、水平方向的弹性碰撞........................................ 二、水平方向的非弹性碰撞...................................... 三、人船模型................................................. 四、爆炸反冲模型 ............................................. 第四章力学综合................................................. 一、解题模型: ............................................... 二、滑轮模型................................................. 三、渡河模型................................................. 第五章电路...................................................... 一、电路的动态变化............................................ 二、交变电流................................................. 第六章电磁场 ................................................... 一、电磁场中的单杆模型........................................ 二、电磁流量计模型............................................ 三、回旋加速模型 ............................................. 四、磁偏转模型 ...............................................

高中物理解题方法大全

高中物理解题方法大全物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白?不可能都不明白,不懂之处是哪?哪个关键之处不懂?这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 一、静力学问题解题的思路和方法 1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ①力的合成和分解规律的运用。 ②共点力的平衡及变化。 ③固定转动轴的物体平衡及变化。 认识物体的平衡及平衡条件 对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度α为零,则称为平衡,欲使质点平衡须有∑F=0。若将各力正交分解则有:∑F X=0,∑F Y=0 。 对于刚体而言,平衡意味着,没有平动加速度即α=0,也没有转动加速度即β=0(静

高考物理解题模型总结(完整资料).doc

【最新整理,下载后即可编辑】 高考物理模型

目录 第一章运动和力 (1) 一、追及、相遇模型 (1) 二、先加速后减速模型 (3) 三、斜面模型 (6) 四、挂件模型 (10) 五、弹簧模型(动力学) (17) 第二章圆周运动 (19) 一、水平方向的圆盘模型 (19) 二、行星模型 (21) 第三章功和能 (1) 一、水平方向的弹性碰撞 (1) 二、水平方向的非弹性碰撞 (5) 三、人船模型 (8) 四、爆炸反冲模型 (11) 第四章力学综合 (13) 一、解题模型: (13) 二、滑轮模型 (18) 三、渡河模型 (21) 第五章电路 (1) 一、电路的动态变化 (1) 二、交变电流 (6) 第六章电磁场 (1) 一、电磁场中的单杆模型 (1) 二、电磁流量计模型 (7) 三、回旋加速模型 (9)

四、磁偏转模型 .......................................................................................

一、追及、相遇模型 模型讲解: 1. 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火 车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件? 解析:设以火车乙为参照物,则甲相对乙做初速为)(21v v -、加速度为a 的匀减速运动。若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d 。 即:d v v a ad v v 2)(2)(02 212 21-= -=--,, 故不相撞的条件为d v v a 2)(2 21-≥ 2.甲、乙两物体相距s ,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。甲物体在前,初速度为v 1,加速度大小为a 1。乙物体在后,初速度为v 2,加速度大小为a 2且知v 1

高中物理总复习 15种快速解题技巧

技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin θ (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F 与系统的重力(M+m )g 满足关系式:F >(M+m )g ,正确答案为D. 【方法链接】对于超、失重现象大致可分为以下几种情况: θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

高中物理40个解题模型

高中物理知识点总结必知的高中物理40个解题模型 1、'皮带'模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题. 2、'斜面'模型:运动规律,三大定律,数理问题. 3、'运动关联'模型:一物体运动的同时性,独立性,等效性,多物体参与的独立性和时空联系. 4、'人船'模型:动量守恒定律,能量守恒定律,数理问题. 5、'子弹打木块'模型:三大定律,摩擦生热,临界问题,数理问题. 6、'爆炸'模型:动量守恒定律,能量守恒定律. 7、'单摆'模型:简谐运动,圆周运动中的力和能问题,对称法,图象法. 8.电磁场中的'双电源'模型:顺接与反接,力学中的三大定律,闭合电路的欧姆定律.电磁感应定律. 9.交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题. 10、'平抛'模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动). 11、'行星'模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心.半径.临界问题). 12、'全过程'模型:匀变速运动的整体性,保守力与耗散力,动量守恒定律.动能定理.全过程整体法. 13、'质心'模型:质心(多种体育运动),集中典型运动规律,力能角度. 14、'绳件.弹簧.杆件'三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题. 15、'挂件'模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法. 16、'追碰'模型:运动规律,碰撞规律,临界问题,数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等. 17.'能级'模型:能级图,跃迁规律,光电效应等光的本质综合问题. 18.远距离输电升压降压的变压器模型. 19、'限流与分压器'模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用. 20、'电路的动态变化'模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题. 21、'磁流发电机'模型:平衡与偏转,力和能问题. 22、'回旋加速器'模型:加速模型(力能规律),回旋模型(圆周运动),数理问题. 23、'对称'模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性. 24、电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。 25、传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。 26、追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。图像法等) 27、挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。 28、斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。 29、“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。 30、行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。半径。临界问题)。 3、抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。 31、“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。 32、“磁流发电机”模型:平衡与偏转,力和能问题。 33、“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题。 34、“限流与分压器”模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用。 35、电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。 36、交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题。 37、“对称”模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性。 38、“单摆”模型:简谐运动,圆周运动中的力和能问题,对称法,图象法。 39、“爆炸”模型:动量守恒定律,能量守恒定律。 40、“能级”模型:能级图,跃迁规律,光电效应等光的本质综合问题。

高中物理模型24 活塞封闭气缸模型(解析版)

高中物理模型24 活塞封闭气缸(原卷版) 1.常见类型 (1)气体系统处于平衡状态,需综合应用气体实验定律和物体的平衡条件解题。 (2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题。 (3)封闭气体的容器(如汽缸、活塞)与气体发生相互作用的过程中,如果满足守恒定律的适用条件,可根据相应的守恒定律解题。 (4)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解。 2.解题思路 (1)弄清题意,确定研究对象,一般地说,研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统)。 (2)分析清楚题目所述的物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程。 (3)注意挖掘题目的隐含条件,如几何关系等,列出辅助方程。 (4)多个方程联立求解。对求解的结果应注意检验它们的合理性。 多个系统相互联系的一定质量气体问题,往往以压强建立起系统间的关系,各系统独立进行状态分析,要确定每个研究对象的变化性质,分别应用相应的实验定律,并充分应用各研究对象之间的压强、体积、温度等量的有效关联,若活塞可自由移动,一般要根据活塞平衡确定两部分气体的压强关系。 【典例1】如图所示,足够长的圆柱形汽缸竖直放置,其横截面积为1×10-3m2,汽缸内有质量m=2 kg的活塞,活塞与汽缸壁封闭良好,不计摩擦。开始时活塞被销子K销于如图所示位置,离缸底12 cm,此时汽缸内被封闭气体的压强为1.5×105 Pa,温度为300 K。外界大气压强p0=1.0×105 Pa,g=10 m/s2。 (1)现对密闭气体加热,当温度升到400 K时,其压强为多大? (2)若在(1)的条件下拔去销子K,活塞开始向上运动,当它最后静止在某一位置时,汽缸内气体的温度为360 K,则这时活塞离缸底的距离为多少? 【变式训练1】如图,柱形容器内用不漏气的轻质绝热活塞封闭一定量的理想气体,容器外包裹保温材料。开始时活塞至容器底部的高度为H1,容器内气体温度与外界温度相等。在活塞上逐步加上多个砝码后,活塞下降到距容器底部H2处,气体温度升高了△T;然后取走容器外的保温材料,活塞位置继续下降,最后静止于距容器底部H3处:已知大气压强为p0。求:气体最后的压强与温度。 【典例2】如图,在水平放置的刚性气缸内用活塞封闭两部分气体A和B,质量一定的两活塞用杆连接。气缸内两活塞之间保持真空,活塞与气缸璧之间无摩擦,左侧活塞面积较大,A、B的初始温度相同。略抬高气缸左端使之倾斜,再使A、B升高相同温度,气体最终达到稳定状态。若始末状态A、B的压强变化量△p A、△p B均大于零,对活塞压力的变化量为△F A、△F B,则 (A)A体积增大(B)A体积减小(C) △F A △F B(D)△p A<△p B 【变式训练2】如图,绝热气缸A与导热气缸B均固定于地面,由刚性杆连接的绝热活塞与两气缸间均无摩擦。两气 缸内装有处于平衡状态的理想气体,开始时体积均为 V、温度均为 T。缓慢加热A中气体,停止加热达到稳定后, A中气体压强为原来的1.2倍。设环境温度始终保持不变,求气缸A中气体的体积 A V和温度 A T。 【典例3】(2019南昌二中1月质检)如图所示,两个截面积均为S的圆柱形容器,左右两边容器的高均为H,右边容器上端封闭,左边容器上端是一个可以在容器内无摩擦滑动的轻活塞(重力不计),两容器由装有阀门的极细管道(体积忽略不计)相连通。开始时阀门关闭,左边容器中装有热力学温度为T0的理想气体,平衡时活塞到容器底的距离为H,右边容器内为真空。现将阀门缓慢打开,活塞便缓慢下降,直至系统达到平衡,此时被封闭气体的热力学温度为T,且T>T0。求此过程中外界对气体所做的功。已知大气压强为p0。 【变式训练3】汽缸由两个横截面不同的圆筒连接而成,活塞A、B被轻质刚性细杆连接在一起,活塞可无摩擦移动,活塞A、B的质量分别为m1=24 kg、m2=16 kg,横截面积分别为S1=6.0×10-2 m2,S2=4.0×10-2 m2,一定质量的理想气体被封

相关主题