搜档网
当前位置:搜档网 › 常用电力载波芯片比较表

常用电力载波芯片比较表

常用电力载波芯片比较表
常用电力载波芯片比较表

常用电力载波芯片比较

Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

电力载波芯片

电力载波芯片ST7538及其应用 摘要:介绍一种最新推出的电力载波调制解调器芯片ST7538的基本原理,给出ST7538的主要控制电路和接口电路,讨论应用该芯片后些注意事项。 关键词:电力载波通信 ST7538 家庭网络工业网络 利用电力线作为通信介质的电力载波通信,具有极大的方便性、免维护性、即插即用等优点,在很多情况下是人们首选的通信方式。ST7538是最近SGSTHOMSON公司在电力载波芯片ST7536、ST7537基础上推出的又一款半双工、同步/异步FSK(调频)调制解调器芯片。该芯片是为家庭和工业领域电力线网络通信而设计的,与ST7536和ST7537相比,主要具有以下特点: *有8个工作频段,即:60kHz、66kHz、72kHz、76kHz、82.05kHz、86kHz、110k Hz和132.5kHz; *内部集成电力线驱动接口,并且提供电压控制和电流控制; *内部集成+5V线性电源,可对外提供100mA电流; *可编程通信速率高达4800bps; *提供过零检测功能; *具有看门狗功能; *集成了一个片内运算放大器; *内部含有一个具有可校验和的、24位可编程控制寄存器; *采用TQFP44封装。 可以看出,ST7538是一款功能强大的、单芯片电力线调制解调器。 图1 1 ST7538工作原理

ST7538是采用FSK调制技术的高集成度电力载波芯片。内部集成了发送和接收数据的所有功能,通过串行通信,可以方便地与微处理器相连接。内部具有电压自动控制和电流自动控制,只要通过耦合变压器等少量外部器件即可连接到电力网中。ST7538还提供了看门狗、过零检测、运算放大器、时钟输出、超时溢出输出、+5V电源和+5V电源状态输出等,大大减少了ST7538应用电路的外围器件数量。此外,该芯片符合欧洲CENELEC(E N50065-1)和美国FCC标准。图1为ST7538内部原理框图。 1.1 发送数据 当RxTx为低时,ST7538处于发送数据状态。待发数据从TxD脚进入ST7538,时钟上升沿时被采样,并送入FSK调制器调制。调制频率由控制寄存器bit0~bit2决定,速率由控制寄存器bit3~bit4决定。调制信号经D/A变化、滤波和自动电平控制电路(ALC),再通过差分放大器输同到电力线。当打开时间溢出功能,且发送数据时间超过1s或3s时,TOUT变为高电平,同时发送状态自动转为接收状态。这样可以避免信道长时间被某一节点(ST7538)点用。 1.2 接收数据 当RxTx为高时,ST7538处于接收数据状态。信号由模拟输入端RAI脚进入ST7538,经过一个带宽±10kHz的带通滤波器,送入一个带有自动增益AGC的放大器。该滤波器可以通过控制寄存器bit23置零取消滤波功能。自动增益放大器可以根据电力线的信号强度自动调整。为提高信噪比,经过放大器的信号送入一个以通信频率为中心点、带宽为±6kHz 的窄带滤波器。此信号再经过解调、滤波和锁相,变成串行数字信号,输出给出ST7538 相连的微处理器。

PLC电力载波通信技术优势介绍V

P L C电力载波通信技术优势介绍非原创 PLC电力载波通信原理介绍 电力线通信(Power Line Communication,简称PLC)技术是指利用电力线传输数据和媒体信号的一种通信方式。该技术是通过调制把原有信号变成高频信号加载到电力线进行传输,在接收端通过滤波器将调制信号取出解调,得到原有信号,实现信息传递。目标标准主要有: ?Home-Plug(家庭插电联盟),美国发起,已逐步成为国际标准。 ?OPERA—开放式PLC欧州研究联盟(The?Open?PLC?European?Research?Alliance) 电力线是一个极其不稳定的高躁声、强衰减的传输通道,要实现可靠的电力线高速数据通信,必须解决低压配电网上各种因素如:噪声、阻抗波动、配电网结构、电磁兼容性以及线路阻抗和容性负载引起的信号衰减等主要因素对数据传输的影响。为了解决以上低压配电网中各因素对数据传输的影响,在电力线上传输高速数据信号一般采用两种技术: ?电力线数字扩频(Spread Spectrum Communication ,SSC),窄带PLC技术 ?正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM),即宽带PLC 技术 窄带PLC和宽带PLC比较 电力线数字扩频技术(Spread Spectrum Communication ,SSC): 用伪随机编码将待传送的信息数据进行调制,实现频谱扩展后再传输,在接收端则采用同样的编码进行解调及相关处理。香农公式 C=Wlog2(1+S/N)(其中:C为信道容量,W为频带宽度,S/N为信噪比) 主要优点如下: 1)抗干扰能力强,适合在低压电力线这样的恶劣通信环境下实现可靠的数据信息。 2)可以实现码分多址技术,在低压配电网上实现不同用户的同时通信。 3)信号的功率谱密度很低,具有良好的隐蔽性,不易被截获。 缺点: 扩频通信虽然抗干扰能力较强,但受其原理制约,传输速率最高只能达到1?Mbit /s左右。采用SSC技术的PLC通常称为窄带PLC。 正交频分复用技术(OFDM): OFDM技术把所传输的高速数据流分解成若干个子比特流。每个子比特流具有低得多的传输速率,并且用这些低速数据流调制若干个子载波。 相比SSC技术,OFDM具有以下的优点:?

电力线载波通信---有线通信

抄表系统及其方法 本发明公开了一种抄表系统包括电力线宽带载波通信单元、无线通信单元、时钟单元、控制单元以及存储单元;所述电力线宽带载波通信单元用于收发通过电力线载波方式传送的抄表信号;所述无线通信单元用于收发通过无线通信方式传送的抄表信号;控制单元用于信道状况的侦测,根据侦测结果控制抄表系统在电力线宽带载波通信以及无线通信之间的信道自动切换,切换信道后进行自动组网,并将从电力线宽带载波通信单元以及无线通信单元接收到的抄表信号进行格式转换生成电表数据。本抄表系统利用宽带载波通信可靠性高、数据传输率高、数据容量大、双向传输等特点,将无线通信方式以及电力线通信方式相互结合,使抄表布线等现场施工工作变得简便灵活。 电力线载波Power Line Carrier - PLC通信是利用高压电力线在电力载波领域通常指 35kV及以上电压等级中压电力线指10kV电压等级或低压配电线380/220V用户线作为信息传输媒介进行语音或数据传输的一种特殊通信方式 PLC = Power Line Carrier,电力线载波 电力线载波(PLC)是电力系统特有的通信方式,电力线载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。最大特点是不需要重新架设网络,只要有电线,就能进行数据传递。 近年来电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代,并且随着电力线载波技术的不断发展和社会的需要中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面。电力线载波通信这座被国外传媒喻为未被挖掘的金山正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。 但是电力线载波通讯因为有以下缺点,导致PLC主要应用--“电力上网”未能大规模应用: 1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送; 2、三相电力线间有很大信号损失(10 dB -30dB)。通讯距离很近时,不同相间可能会收到信号。一般电力载波信号只能在单相电力线上传输; 3、不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用; 4、电力线存在本身因有的脉冲干扰。目前使用的交流电有50HZ和 60HZ,则周期为20ms和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,

电力线载波通信技术的发展及特点

电力线载波通信技术的发展及特点 摘要 本文介绍了电力线载波通信的发展及特点,文中主要就高压电力线载波通信、中压配电网电力线载波数据通信和低压用户配电网电力线载波通信,以及与其相关的关键技术问题进行了讨论。 0 引言 电力线载波(Power Line Carrier - PLC)通信是利用高压电力线(在电力载波领域通常指35kV及以上电压等级)、中压电力线(指10kV电压等级)或低压配电线(380/220V用户线)作为信息传输媒介进行语音或数据传输的一种特殊通信方式。近年来,高压电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代。并且,随着电力线载波技术的不断发展和社会的需要,中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面,电力线载波通信这座被国外传媒喻为“未被挖掘的金山”正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。在这种形势下,本文旨在通过对电力线载波通信技术的发展及所涉及的一些技术问题的讨论,阐明电力线载波通信的发展历程、特点及技术关键。 2 电力线载波通信的特点 2.1 高压载波路由合理,通道建设投资相对较低高压电力线路的路由走向沿着终端站到枢纽站,再到调度所,正是电力调度通信所要求的合理路由,并且载波通道建设只需结合加工设备的投入而无须考虑线路投资,因此当之无愧成为电力通信的基本通信方式,尤其在

边远地区更是这样。电力线载波通道往往先于变电站完成建设,对于新建电站的通信开通十分有利。为此,只要妥善解决电力线载波信道的容量问题,载波通信的优势就会显现出来。在中压配电网载波和低压用户电网载波中,节省线路建设费用,无须考虑破坏家庭已装修环境,也仍然是载波通信的优势。 2.2 传输频带受限,传输容量相对较小 在高压电网中,一般考虑到工频谐波及无线电发射干扰电力线载波的通信频带限制于40~500kHz之内,按照单方向占用4kHz带宽计算,理想情况下一条线路可安排115条高频载波通道。但由于电力线路各相之间及变电站之间的跨越衰减有限(13~43dB),不可能理想地按照频谱紧邻的方式安排载波通道,因此,真正组成电力线载波通信网所实现的载波通道是有限的,在当今通信业务已大大开拓的情况下,载波通道的信道容量已成为其进一步应用的“瓶颈”问题。尽管我们在载波频谱的分配上研究了随机插空法、分小区法、分组分段法、频率阻塞法及地图色法和计算机频率分配软件,并且规定不同电压等级的电力线路之间不得搭建高频桥路,使载波频率尽量得以重复使用,但还是不能满足需要。近来随着光纤通信的发展和全数字电力线载波机的出现,稍微缓解了载波频谱的紧张程度。在10kV中压配电网和低压用户配电网中,除了新上的载波信号之外,不存在其它高频信号,并且一般为多址传输,因此通道容量问题并不突出。 2.5 线路阻抗变化大此主题相关图片如下:

基于LonWorks电力线载波通信的

基于LonWorks电力线载波通信的 【摘要】设计出一种基于lonworks现场总线和组态王的微电网监控系统。通过将神经元芯片植入微型电源控制器、储能单元控制器和负载开关,使它们成为智能节点,构成基于电力线载波通信的lonworks控制网络。基于lns dde server,利用组态王设计出微电网监控画面,以实时显示系统运行状态,支持操作人员完成微电源负荷分配、负荷启停等功能,并提供相关报表。实验结果表明,该监控系统操作界面友好,性能可靠,扩展能力强。 【关键词】 lonworks; 组态王; 微电网; 监控系统 【 abstract 】 this paper introduces a design in developing of supervising system based on the lonworks technology and kingview. at first, the system combines neuron chip with micro-power controllers, power-saving controllers and switches as intelligent nodes to establish the network based on power line of lonworks. in addition, through the software of lns dde server, the system designs monitoring pictures with kingview to show operation condition with real-time digital data for relevant operators to analysis and makes decisions. according to the results, it shows that the proposed monitor has the friendly manipulating interface, reliable performance, and high ability of expansibility.

电力线载波通信系统解读

摘要 电力线载波通信是以输电线路为载波信号的传输媒介的电力系统通信。由于输电线路具备十分牢固的支撑结构,并架设3条以上的导体(一般有三相良导体及一或两根架空地线),所以输电线输送工频电流的同时,用之传送载波信号,既经济又十分可靠。这种综合利用早已成为世界上所有电力部门优先采用的特有通信手段。这次的课程设计通过电力线在波芯片设计一个电力线载波通信系统。 电力线载波通信具有广阔的应用前景但由于电力线的噪声和干扰对信道的污染很大,严重影响了低压电线载波通信的质量。本文就电力线载波通信的优点缺点及发展现状进行了讨论,并分析了电力信道的噪声分类,特性及对我们信号的影响。以及我们对噪声的滤波耦合等。并且详细的介绍了电力线载波通信的具体实现形式方法和步骤最终形成一个系统达到我们的要求。 课程设计选用青岛东软的SSC1641的电力线载波芯片该芯片具有调制解条,a/d,d/a通信的功能,该芯片直接对信号数字信号处理,极大地提高了通信的可靠性。文中包括了他的外围电路,信号放大,耦合,滤波等最终实现功能。 实现了接收电力线的含有噪声的信号,然后对这个信号滤波模数转换等处理后通过串行通信的方式发送到过单片机,单片机经过数据处理后通过LCD1602显示出来,并且也通过串行通信发送到PC机显示出来。PC机或开关电路输入信号经过SSC1641处理后通过电力线发送。这样一个系统阶完成了接收与发送信号,形成了一个通信系统。 关键字:电力线载波通信系统SSC1641 调制解调 1、绪论 1.1设计任务及要求 电力线载波通信系统设计基本要求:下图一个电力线载波通信模块的结构组成,请看懂,并查阅资料了解电力线载波通信的原理和电力线载波芯片的技术资料。根据系统结构,完成载波芯片外的其他器件选型、配套硬件电路设计(包括原理图、PCB图)、软件设计和仿真调试。系统至少具备以下特性: 1)开关量输入和输出各5路; 2)系统24V供电; 3)具有通信状态指示功能; 4)有232、485或USB有线通信接口; 5)断电继续工作能力; 6)其他自己发挥的功能。

PL电力载波通信技术优势介绍V完整版

P L电力载波通信技术 优势介绍V HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

P L C电力载波通信技术优势介绍非原创 PLC电力载波通信原理介绍 电力线通信(Power Line Communication,简称PLC)技术是指利用电力线传输数据和媒体信号的一种通信方式。该技术是通过调制把原有信号变成高频信号加载到电力线进行传输,在接收端通过滤波器将调制信号取出解调,得到原有信号,实现信息传递。目标标准主要有: Home-Plug(家庭插电联盟),美国发起,已逐步成为国际标准。 OPERA—开放式PLC欧州研究联盟 (The?Open?PLC?European?Research?Alliance) 电力线是一个极其不稳定的高躁声、强衰减的传输通道,要实现可靠的电力线高速数据通信,必须解决低压配电网上各种因素如:噪声、阻抗波动、配电网结构、电磁兼容性以及线路阻抗和容性负载引起的信号衰减等主要因素对数据传输的影响。为了解决以上低压配电网中各因素对数据传输的影响,在电力线上传输高速数据信号一般采用两种技术: 电力线数字扩频(Spread Spectrum Communication ,SSC),窄带PLC技术 正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM),即宽 带PLC技术 窄带PLC和宽带PLC比较 电力线数字扩频技术(Spread Spectrum Communication ,SSC): 用伪随机编码将待传送的信息数据进行调制,实现频谱扩展后再传输,在接收端则采用同样的编码进行解调及相关处理。香农公式 C=Wlog2(1+S/N)(其中:C为信道容量,W为频带宽度,S/N为信噪比)主要优点如下: 1)抗干扰能力强,适合在低压电力线这样的恶劣通信环境下实现可靠的数据信 息。 2)可以实现码分多址技术,在低压配电网上实现不同用户的同时通信。 3)信号的功率谱密度很低,具有良好的隐蔽性,不易被截获。 缺点: 扩频通信虽然抗干扰能力较强,但受其原理制约,传输速率最高只能达到 1?Mbit/s左右。采用SSC技术的PLC通常称为窄带PLC。 正交频分复用技术(OFDM): OFDM技术把所传输的高速数据流分解成若干个子比特流。每个子比特流具有低得多的传输速率,并且用这些低速数据流调制若干个子载波。 相比SSC技术,OFDM具有以下的优点:?

国内电力载波通信芯片技术及市场

国内电力载波通信芯片技术及市场 一、电力线载波芯片市场前景 电力线载波通信(PLC)芯片作为改造传统电网的主要手段,并且作为物联网通信的有力补充,将随智能电网和物联网的全面建设引来爆发增长。中国半导体行业协会CSIA预计至2014年,总需求将达到5*万片,未来5年复合年增速(CAGR)将达到61%,国内电力线载波芯片销量预测见图1。需求增长来自三方面:首先受益于智能电网建设。电力线载波通信以电力线作为传输媒介,不需再次投资,将成为智能电网通信的主要手段,因此智能电网建设将直接带来PLC 芯片的需求增长,如电能表需求增长在9%左右。其次来自渗透率提升。目前处于智能电网建设初期,PLC芯片利用率还很低,但作为未来智能电网通信的主要技术,其渗透率必将大幅提升。如目前载波电能表的市场占比仅为5.2%,但未来有望达到40%。最后还将受益于物联网建设。电力线通信也将成为物联网通信的主要补充,未来PLC应用中除智能电网的电能管理外,物联网的工业控制应用将占16.8%,智能家居应用将占8.0%,安防监控将占1%。 图1 国内电力载波芯片销量预测 二、电力线载波芯片的市场需求空间 预计到2014年,我国电力线载波芯片的市场应用份额中(见图2),除了应用于智能电网的电能管理外,工业控制应用将占16.8%,智能家居应用将占8.0%,安防监控将占1%。 图2 2014 年我国电力线载波芯片应用市场预测 1、智能电网市场需求 配合中国的用电制度改革,以计算机为基础的自动抄表系统成为电力部门响应国家这一政策的解决方法。自动抄表系统目前主要有有线通信技术和电力载波通信技术两种。有线通信技术作为传统方法,以其稳定性占有优势。但有线通信铺线工程浩大,而且容易被人为损坏;同时居民楼已建成,再在墙壁表面拉线,不能让居民接受。电力载波通信技术能有效解决上述问题,它利用现有交流电源线作为通信线路,省去了不切实际的铺线工程,优势明显。自动抄表系统还适用于水表、煤气表等家用生活表。 目前主要通信方式有电力线载波、无线通信、

电力线载波通讯驱动芯片

GM3533电力线载波通信线驱动芯片 1、产品简介 GM3533是一款应用于电力线载波的线驱动器,内部包含了2个电流反馈型放大器。芯片具有极低的失真,可以确保在电力载波通信频段范围内发送功率谱带外信号符合规范,并且具有高达1A的电流输出能力,可以应对强烈的电力载波信道阻抗变化,在重载情况下仍然能保证信号的发送质量。工作电流可以用外接电阻进行设置,同时可以用数字控制端口按照设定值的1/2、3/4静态电流进行工作,可以根据信道状况通过软件调节,使芯片的驱动性能得到进一步的优化。芯片工作电压范围可以高达28V。 芯片内部集成了过流保护、温度补偿等单元模块,确保了芯片在各种条件下性能稳定可靠,使芯片在电力载波应用中具有优越的性能。2、应用范围 ■电力载波通信 3、特色 ■工作电压:6V至28V ■大信号带宽:>20MHz ■3次谐波抑制: >40dBc@10M/10Vpp/50Ω负载 >50dBc@5M/10Vpp/50Ω负载 >60dBc@2M/10Vpp/50Ω负载 >76dBc@500K/10Vpp/50Ω负载■2次谐波抑制: >55dBc@10M/10Vpp/50Ω负载 >60dBc@5M/10Vpp/50Ω负载 >70dBc@2M/10Vpp/50Ω负载 >80dBc@500K/10Vpp/50Ω负载■工作电流外部设定,可数字控制■摆率:500V/us ■最大差分输出:2倍工作电压-6V@50Ω负载 ■TTL/CMOS兼容 ■温度范围-40℃to+85℃ 4、封装类型 ■QFN4×4-16L

5、功能引脚定义 图1、GM3533Top View 序号名称说明 1INP2OP2输入正端 2INN2OP2输入负端 3INN1OP1输入负端 4INP1OP1输入正端 5EN1使能端1 6EN2使能端2 7GND接地端 8GND接地端 9OUTP OP2输出 10OUTP OP2输出 11OUTN OP1输出 12OUTN OP1输出 13VDD供电端 14VDD供电端 15VCM共模电平,外接电容16REXT电流设定端,外接电阻17EP散热底盘,接地 注意:EP必须在PCB设计时接露铜散热区

电力线载波通信---有线通信

电力线载波通信---有线通信

电力线载波通信---有线通信

抄表系统及其方法 本发明公开了一种抄表系统包括电力线宽带载 波通信单元、无线通信单元、时钟单元、控制单元以及存储单元;所述电力线宽带载波通信单元用于收发通过电力线载波方式传送的抄表信号;所述无线通信单元用于收发通过无线通信方式 传送的抄表信号;控制单元用于信道状况的侦测,根据侦测结果控制抄表系统在电力线宽带载波通信以及无线通信之间的信道自动切换,切换信道后进行自动组网,并将从电力线宽带载波通信单元以及无线通信单元接收到的抄表信号进 行格式转换生成电表数据。本抄表系统利用宽带载波通信可靠性高、数据传输率高、数据容量大、双向传输等特点,将无线通信方式以及电力线通信方式相互结合,使抄表布线等现场施工工作变得简便灵活。 电力线载波Power Line Carrier - PLC通信是利用高压电力线在电力载波领域通常指35kV及

以上电压等级中压电力线指10kV电压等级或低压配电线380/220V用户线作为信息传输媒介进行语音或数据传输的一种特殊通信方式 PLC = Power Line Carrier,电力线载波 电力线载波(PLC)是电力系统特有的通信方式,电力线载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。最大特点是不需要重新架设网络,只要有电线,就能进行数据传递。 近年来电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代,并且随着电力线载波技术的不断发展和社会的需要中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面。电力线载波通信这座被国外传媒喻为未被挖掘的金山正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。 但是电力线载波通讯因为有以下缺点,导致PLC主要应用--“电力上网”未能大规模应用: 1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送; 2、三相电力线间有很大信号损失(10 dB -30dB)。通讯距离很近时,不同相间可能会收到信号。一般电力载波信号只能在单相电力线上传输; 3、不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用; 4、电力线存在本身因有的脉冲干扰。目前使用的交流电有50HZ和 60HZ,则周期为20ms和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,干扰时间约2ms,因定干扰必须加以处理。有一种利用波形过0点的短时间内进行数据传输的方法,但由于过0点时间短,实际应用与交流波形同步不好控制,现代通讯数据帧又比较长,所以难以应用; 5、电力线对载波信号造成高削减。当电力线上负荷很重时,线路阻抗可达1欧姆以下,造成对载波信号的高削减。实际应用中,当电力线空载时,点对点载波信号可传输到几公里。但当电力线上负荷很重时,只能传输几十米。

PLC电力载波通信技术优势介绍V

PLC电力载波通信技术优势介绍 非原创 1PLC电力载波通信原理介绍 电力线通信(Power Line Communication,简称PLC)技术是指利用电力线传输数据和媒体信号的一种通信方式。该技术是通过调制把原有信号变成高频信号加载到电力线进行传输,在接收端通过滤波器将调制信号取出解调,得到原有信号,实现信息传递。目标标准主要有: ?Home-Plug(家庭插电联盟),美国发起,已逐步成为国际标准。 ?OPERA—开放式PLC欧州研究联盟(The Open PLC European Research Alliance) 电力线是一个极其不稳定的高躁声、强衰减的传输通道,要实现可靠的电力线高速数据通信,必须解决低压配电网上各种因素如:噪声、阻抗波动、配电网结构、电磁兼容性以及线路阻抗和容性负载引起的信号衰减等主要因素对数据传输的影响。为了解决以上低压配电网中各因素对数据传输的影响,在电力线上传输高速数据信号一般采用两种技术: ?电力线数字扩频(Spread Spectrum Communication ,SSC),窄带PLC技术 ?正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM),即宽带PLC 技术 1.1窄带PLC和宽带PLC比较 电力线数字扩频技术(Spread Spectrum Communication ,SSC): 用伪随机编码将待传送的信息数据进行调制,实现频谱扩展后再传输,在接收端则采用同样的编码进行解调及相关处理。香农公式 C=Wlog2(1+S/N)(其中:C为信道容量,W为频带宽度,S/N为信噪比) 主要优点如下: 1)抗干扰能力强,适合在低压电力线这样的恶劣通信环境下实现可靠的数据信息。

低压电力线载波通信传输线参数测试与分析

SPWMcontrolbasedoncompensationfunctionformatrixconverter WANGRutian,WANGJianze,JIYanchao,ZENGFanpeng (SchoolofElectricalEngineeringandAutomation,HarbinInstituteofTechnology,Harbin150001,China) Abstract:Non-controlledrectificationandSPWM(SinePulseWidthModulation)areappliedtothevirtualrectifierandvirtualinverterofmatrixconverterequivalentAC/DC/ACmodelrespectively.VirtualrectifiergeneratesfluctuantDCvoltagewhensymmetricorunsymmetricthree-phasevoltagesaresupplied.InordertoeliminatetheeffectofthefluctuantDCvoltageontheSPWMoutputvoltageandcurrentofvirtualinverter,thecompensationfunctionisdeducedformodulationwavebasedontheconceptofswitchingfunction.Theprincipleisthat,asinewave,whichfollowsthefluctuantDCvoltagewithreversedpolarity,isinjectedtothemodulationwavetoeliminatethelowharmonicsofoutputvoltage.Thismethodisalsoapplicabletounsymmetricinputvoltageconditionanditsrealizationisverysimple.SimulationswithMatlab/Simulinkshowthat,highqualityoutputvoltagesareobtainedunderbothsymmetricandunsymmetricthree-phaseinputvoltageconditions,whichverifiesthevalidityandeffectivenessoftheproposedcontrolmethod. Keywords:matrixconverter;indirectconversion;switchingfunction;compensationfunction 0引言 低压配电网电力线通信是一个日益看好的数字 通信网络,逐步在工业和民用系统中得到应用。但是,低压配电网电力线通信稳定性有待于进一步提高。电力线信道特性的分析是当前电力线载波通信研究的一个重要内容,也是作为提高稳定性研究的非常重要的组成部分。国内外一些专家学者在信道估计与选择、信道编码、滤波设计、功率分配等方面作了 较为深入的研究[1-12]。在进行信道估算时的一个主要问题在于低压配电网负载复杂,存在输入阻抗不匹配问题,信号衰减严重。所以,有必要对电力线通信传输线的阻抗特性参数进行理论分析、总结和实际测试。在文献[2]中对在40kHz ̄1.5MHz频率范围内的10kV中压电力线信道传输特性进行了测试,并根据测量结果,结合传输线的基本模型,对信道的传输特性作了深入分析。该文对于中压电力线通信的传输特性研究具有研究方法上的指导意义,同样,对于研究低压电力线的传输特性也有参考意义。现从传输线阻抗特性出发,分别对基于理想均匀传输线理论、集肤效应传输线理论条件下的电力线传输特 低压电力线载波通信传输线 参数测试与分析 黄文焕1,戚佳金2,黄南天3,李 琰2 (1.吉林化工学院化工与材料工程学院,吉林吉林132022; 2.哈尔滨工业大学电气工程及自动化学院,黑龙江哈尔滨150001; 3.吉林化工学院信息与控制工程学院,吉林吉林132022) 摘要:为给低压配电网电力线载波通信信道估算提供参考依据,有必要对电力线通信传输线的阻抗特性参数进行理论分析和实际测试研究。在简述配电网电力线载波通信传输线理论和传输线方程的基础上,总结了理想均匀传输线理论下和考虑集肤效应的电力线参数模型。使用HP4194阻抗相位增益分析仪对3+1芯交联聚乙烯绝缘聚氯乙烯护套钢带铠装电力电缆线进行实际测试,并根据测试结果使用Matlab计算出单位长度导线的电阻、电感以及两导线间的电容和电导,验证了电力线物理参数模型公式的准确性和其实际可使用性。同时,这些实测参数也为电力线通信信道特性分析和估算提供了一定的参考依据。 关键词:电力线通信;传输线方程;阻抗特性中图分类号:TN913.6;TM934 文献标识码:A 文章编号:1006-6047(2008)04-0041-04收稿日期:2007-07-16;修回日期:2007-09-13基金项目:黑龙江省自然科学基金资助(F200508) 电力自动化设备 ElectricPowerAutomationEquipment Vol.28No.4Apr.2008 第28卷第4期2008年4月 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 41

电力线载波通讯芯片市场与应用前景

电力线载波通讯芯片市场与应用前景 市场需求 ---- 作为通讯技术的一个应用领域,电力载波通讯技术近几年才在中国真正出现。由于它的实用性以及在中国巨大的市场前景,迅速被各家公司争相采用。 ---- 一户一表,取消用电中间层,降低居民用电价格,消除用电过程腐败现象。配合中国的用电制度改革,以计算机为基础的自动抄表系统成为电力部门响应国家这一政策的解决方法。自动抄表系统目前主要有有线通讯技术和电力载波通讯技术。有线通讯技术作为传统方法,以其稳定性占有优势。但有线通讯铺线工程浩大,而且容易被人为损坏;同时居民楼已建成,再在墙壁表面拉线,难以让居民接受。电力载波通讯技术能有效解决上述问题,它利用现有交流电源线作为通讯线路,省去了不切实际的铺线工程,优势明显。自动抄表系统还适用于水表、煤气表等家用生活表。 ---- 智能大厦、智能小区已成为市场热点,各公司纷纷加入这一新兴领域。智能大厦、智能小区是一个综合性的系统工程,包含许多小系统。各家各户、每一房间也存在铺设通讯线路问题,例如消防报警系统、防盗报警系统等,把各报警点集中起来统一处理,采用电力载波通讯有其无法比拟的优越性。因此对智能大厦、智能小区底层通讯方式的选取,各公司不约而同把电力载波通讯作为首选。 ---- 在有些干扰大、布线困难的工业自动化控制系统,采用电力载波通讯方式能达到事半功倍的效果。电力载波通讯技术适用范围相当广泛,电力线在现代生活中已无处不在,只要能满足通讯要求,而又不便布线,都可采用电力载波通讯技术。 电力线通讯特点 ---- 电力线是给用电设备传送电能的,而不是用来传送数据的,所以电力线对数据传输有许多限制。 ---- 1.配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送。 ---- 2.三相电力线间有很大信号损失(10dB-30dB)。通讯距离很近时,不同相间可能会收到信号。一般电力载波信号只能在单相电力线上传输。 ---- 3.不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用。 ---- 4.电力线存在本身固有的脉冲干扰。目前使用的交流电有50Hz和60Hz,则周期为20ms和16.7ms。在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100Hz或120Hz 脉冲干扰,干扰时间约2 ms,固定干扰必须加以处理。有一种利用波形过0点的短时间内进行数据传输的方法,但由于过0点时间短,实际应用与交流波形同步不好控制,现代通讯数据帧又比较长,所以难以应用。 ---- 5.电力线对载波信号造成高削减。当电力线上负荷很重时,线路阻抗可达1欧姆以下,造成对载波信号的高削减。实际应用中,当电力线空载时,点对点载波信号可传输到几公里。但当电力线上负荷很重时,只能传输几十米。因此,只有进一步提高载波信号功率来满足数据传输的要求,提高载波信号功率会增加产品成本和体积。而且,单一提高载波信号功率往往并不是有效的方法。 ---- 6.电力线上存在高噪声。电力线上接有各种各样的用电设备,阻性的、感性的、容性的,有大功率的、小功率的。各种用电设备经常频繁开闭,就会给电力线上带来各种噪声干扰,而且幅度比较大。用藕合电

全国常用电力载波芯片比较表

编厂家类物SOC网解竞争优势竞争劣势 号型理芯络决 层片协方 芯议案 片 1东软窄●●●●多年经营形成的市场份额;与客户形成技术支持、售后带长期合作关系;系统解决方案提供能力;服务不到位 载系统性能目前处于国内先进水平。 波 2福星晓程窄●●●●多年经营形成的市场份额;与客户形成技术支持、售后带长期的合作关系;系统解决方案提供能服务不到位 ;其 载力;目前系统性能处于国内较好水平。通讯频率在国 波外市场不在许 可频段内。 3长沙新竹 数码 XZ386 4瑞斯康 5鼎信 6ST 7536 7537 7538 7ECHELON PLT-22 8亚微电子 Mi200E 窄●●●●具有多年提供电表方案累积的经验;具属于该公司根带有系统解决方案提供能力;在东软等厂据市场需求推载家产品基础上开发,系统性能处于国内出的新品,目前波先进水平。市场占有率不 高。 窄●●●系统芯片加网络协议,采取与电力公司产品性能一般,带下属企业项目合作(资助)形式,参与芯片设计复杂,载了一些地方项目的试验。产品化难,市场波占有率不高。窄●●●●有系统解决方案提供能力,系统性能处产品推出较晚,带于国内较好水平。目前市场占有载率不高,载波功波率较大,对电网 干扰较大。 窄●国外应用较多,效果也不错,有一定的国内测试性能带知名度, ST7538 速率最高 4800bps,频评价一般,适应载率软件可调 .不了中国电力波线环境。 窄●●●国际主流品牌,主要针对工业控制成套绑定销售,方案带方案而设计,完善的 Lonworks 网络协议,价格很高,国内载国外市场已有几百万片的成熟应用。技术支持不到波位,过高的价格 难以在民用市 场大规模推广。 国内电力线通 讯性能一般。窄●●●高性能高集成度物理层通讯芯片,性价性能一般,市场带比较高,芯片设计符合欧洲标准,便于占有率不高。载出口,完善的系统方案和网络通讯协议,

单相智能电表之力线载波通信

单相智能电表之电力线载波通信 1、研究设计背景 1.1综述 低压电力线载波PLC(Power Line Carrier)通信是以低压配电线(380 V/220 V电力线)作为信息传输媒介进行数据或语音等传输的一种特殊通信方式。电力线网络是目前覆盖范围最广的网络,有着巨大的潜在利用价值。国外对此研究已有近百年的历史,在理论和技术上有着绝对的优势。我国电力网比较独特,直接利用国外先进技术和产品并不能取得令人满意的效果。目前国内参与低压电力载波通信研究的公司、高校及研究机构日益增多,已经在通信信道的特性分析和建模、关键的调制技术的研究、通信芯片及相应产品的研制和应用、市场化运营及相关法规制定等方面取得了一定的成果。 1.2发展历程及现状 1.2.1 国外发展情况 电力线是最普及、覆盖范围最为广阔的一种物理介质,因此,电力线载波通信作为上一世纪20年代的产物,现在利用电力线高速数据通信技术仍然是国内外许多大公司的热点。 97年英国的Norweb通讯公司和加拿大Nortel(北电网络)利用丌发的数字电力线载波技术,实现了在低压配电网上进行的1Mbit/s的速率数据传输的远程通信,并进行了该技术市场推广。 随后,许多国家研究机构纷纷开展了高速电力线通信技术的研究和开发,产品的传输速率也从1Mbit/s发展到2、14、24Mbit/s甚至更高。 国际各大公司纷纷推出PLC调制解调芯片,其中主要有美国Intellon公司的14、54、85和200Mbit/s芯片,西班牙DS2公司45和200Mbit/s芯片等等。其中以美国Intellon公司的14 Mbit/s芯片应用最为普遍,大部分电力线载波系统都是基于该芯片开发的。 目前,电力线载波通信在欧洲发展比较快,欧盟为促进电力线载波技术发展,在2004年启动了OPERA(Open PLC European Research Alliance)的计划,致力于制定欧洲统一的PLC技术标准,推动大规模的商业化应用,并将PLC作为实现信息化欧洲的重要技术手段。 美国也不甘示弱,在它倡导下成立了“家庭插电联盟”,致力于标准研究,

电力线载波通信的特点

电力线载波通信的特点 一、高压载波路由合理,通道建设投资相对较低 高压电力线路的路由走向沿着终端站到枢纽站,再到调度所,正是电力调度通信所要求的合理路由,并且载波通道建设只需结合加工设备的投入而无须考虑线路投资,因此当之无愧成为电力通信的基本通信方式,尤其在边远地区更是这样。电力线载波通道往往先于变电站完成建设,对于新建电站的通信开通十分有利。为此,只要妥善解决电力线载波信道的容量问题,载波通信的优势就会显现出来。在中压配电网载波和低压用户电网载波中,节省线路建设费用,无须考虑破坏家庭已装修环境,也仍然是载波通信的优势。 二、传输频带受限,传输容量相对较小 在高压电网中,一般考虑到工频谐波及无线电发射干扰电力线载波的通信频带限制于40~500kHz之内,按照单方向占用4kHz带宽计算,理想情况下一条线路可安排115条高频载波通道。但由于电力线路各相之间及变电站之间的跨越衰减有限(13~43dB),不可能理想地按照频谱紧邻的方式安排载波通道,因此,真正组成电力线载波通信网所实现的载波通道是有限的,在当今通信业务已大大开拓的情况下,载波通道的信道容量已成为其进一步应用的“瓶颈”问题。尽管我们在载波频谱的分配上研究了随机插空法、分小区法、分组分段法、频率阻塞法及地图色法和计算机频率分配软件,并且规定不同电压等级的电力线路之间不得搭建高频桥路,使载波频率尽量得以重复使用,但还是不能满足需要。近来随着光纤通信的发展和全数字电力线载波机的出现,稍微缓解了载波频谱的紧张程度。 在10kV中压配电网和低压用户配电网中,除了新上的载波信号之外,不存在其它高频信号,并且一般为多址传输,因此通道容量问题并不突出。 三、可靠性要求高 有两个原因要求电力线载波机具有较高的可靠性,一是在电力系统中传输重要调度信息的需要;另一是电压隔离的人身安全需要。为此,电力线载波机在出厂前必须进行高温老化处理,最终检验必须包含安全性检验项目。为此,国家质检总局从八十年代开始即对电力线载波机(类)产品实行了强制性生产许可证管理[4]。随着时代的进步,目前管理的范围已包括各种电压等级的载波机、继电保护收发信机、载波数据传输装置(如配网自动化和抄表系统的载波部分)和电线上网调制解调器。目前大多数高压及中压电力线载波机生产企业已按照生产许可证的要求建立了较为完善的质量体系。 四、线路噪声大 电力线路作为通信媒介带来的噪声干扰远比电信线路大得多(见图1),在高压电力线路上,游离放电电晕、绝缘子污闪放电、开关操作等产生的噪声比较大,尤其是突发噪声具有较高的电平(见图1)。根据国外资料描述,电力线的噪声特性可分为四种类型: 1、具有平滑功率谱的背景噪声,这种类型噪声的功率谱密度是频率的减函数,如电晕噪声。这种噪声特性可以用带干扰的时变线性滤波模型来描述。 2、脉冲噪声,由开关操作引起,这种噪声与电站操作活动的关系较大。 3、电网频率同步的噪声,主要由整流设备产生。 4、与电网频率无关的窄带干扰,主要由其它电力设备的电磁辐射引起。 一般电晕噪声电平大致为:220kV -25dB;110kV -35dB(带宽为5kHz),在工业区、沿海地区、高海拔地区、新线路、升压线路和绝缘设备存在微小放电的线路上噪声电平还将增

相关主题