搜档网
当前位置:搜档网 › 钢板断裂分析

钢板断裂分析

钢板断裂分析
钢板断裂分析

摘要:文章针对斯太尔991车发生的进口板簧断裂事故,在分析失效件的基础上,采取有关材料失效分析技术,得出该板簧的早期失效原因,为有效控制产品质量提供了依据。

1 概述

重汽公司技术中心质检所在总后试车场进行斯太尔991车3万km 道路试验中,汽车在行驶至17491km时,车上装用的进口板簧左前板簧第一片断裂,行驶至19696km时后板簧第一片、第二片断裂。为查明失效原因,特对断裂件进行了分析。

2 断口宏观观察

前簧断在离骑马螺栓中心孔350mm处,在板簧受拉面有两个裂纹源,裂纹源产生在直径约3mm的小坑内;断口具有典型早期疲劳失效特征:具有贝壳纹特征的疲劳裂纹扩展区占整个断面的10%左右,瞬断区占90%左右,如图1所示。

后簧第二片断在包耳开卷处,断口为早期疲劳失效特征,断口附近有多处疲劳裂纹源(如图2所示),且在断口附近有多条与断口同向深度在0.2mm左右的裂纹。

图1 前簧宏观断口(箭头指裂纹源)

图2 后簧第二片宏观断口(箭头指裂纹源)

3 化学成分

化学成分检测结果见表1,符合DIN17222中58CrV4的成分要求。

4 硬度检查

前后簧布氏硬度测量结果为:前簧HB417,后簧HB411。

5 金相检查

(1)前簧

在断裂处附近取样,基体为回火屈氏体组织,表面脱碳层深度为0.21mm。显微硬度检查脱碳层如表2。

在裂纹源小坑处取样,表层为白亮层,白亮层厚度约为0.2mm;对试样进一步腐蚀,经观察得知白亮层为马氏体组织,如图3所示;白亮层显微硬度HV0.2=743,心部基体显微硬度HV0.2=396。

图3 白亮层组织400×

(2)后簧

在裂纹附近取样,心部为回火屈氏体组织,表面脱碳层为0.28mm。显微硬度检验脱碳层,结果见表3。

齿轮断裂原因分析

齿轮轴断齿原因分析 概况描述:生产上的齿轮轴在使用两个星期后,突然发生断齿,给生产造成了很大的损失。为了弄清楚产生断裂的原因, 1、化学成份分析 C Si Mn S P Cr Mo Al 大0.39 0.31 0.52 0.002 0.06 1.5 0.17 0.85 小0.15 0.25 0.55 0.016 0.013 0.75 0.15 从成份上看,大有材料为38CrMoAl,小的材料为20CrMnMo 2、宏观形貌 大:断口处晶粒粗大稍发亮,为脆性断裂。小:断口处晶粒细小,瓷性灰色断口,为韧性断裂。(如图示)

3、金相组织分析 (1)大的金相组织 100X 40X 0.30m m

200X 齿轮表面的渗氮层厚:0.30mm,渗层组织不均匀,渗层硬度801HV1,表面有数条垂直于表面的微裂纹,裂纹周围组织无脱碳,裂纹长度稍长于渗层。 200X 断裂处的显微组织形貌 200X 中心组织:回火索氏体加屈氏体加条状及半网状铁素体。

(2)小的金相组织 200X 40X 渗层深1.5mm 齿轮渗碳层厚1.5mm,有效硬化层厚0.8mm,表面有数条细小的裂纹沿晶向里延伸,渗层硬度637HV1。 200X 表面渗碳和过渡区组织,表面为高碳马氏体和细小的颗粒状碳化物,

往里为马氏体组织。500X 中心组织:低碳板条马氏体组织。 4、原因分析 (1)大的材料为氮化钢,小的材料为渗碳钢,符合材料的牌号。(2)从金相组织上分析 大的心部组织为回火索氏体加屈氏体加条状、半网状的铁素体,为非正常的调质组织,这是因为淬火时,由于加热温度太低或保温时间太短,使铁素体未能完全溶解,经过淬火、回火后,仍存在于基体中。调质后出现这种组织,属于不良的显微组织。齿轮表面有数条微小的细裂纹,这些裂纹的产生是氮化时,由于氮在铁素体中的扩散速度较大,氮化后铁素体中的氮浓度较高,易形成须状氮化物从而从使氮化层脆性较大。因此渗层组织不均匀(?),致使在使用过程中齿根部受到拉应力的作用而导致脆性断裂。 小的渗碳淬火后心部组织为粗大(?)的板条马氏体组织,综合性能比较好,(为热处理过程中温度失控?),渗碳后表面的碳含量很高,在淬火过程中由于应力过大(是有可能)产生裂纹或微裂纹。出现在粗针马氏体针叶上,与马氏体的惯析面成一定的角度,且相互平行。这种淬火后出现的小裂纹在没有及时回火的情况下,就没法弥补,使疲劳强度和使用寿命降低。表面的这些微小的细裂纹的缺陷的存在致使齿轮在使用的过程中受到拉应力的作用而导致断裂。 5、结论 大:预处理组织不合格导致后序的氮化处理过程中组织应力的作用而产生的裂纹是崩齿的主要原因。

建筑工程质量事故分析报告.doc

一、工程实例分析 济南某五层砌体结构住宅楼位于小清河旁,平面呈“一”字形,东西长37m,南北宽9m,建筑面积1721m,采用无埋深筏板基础。在建筑场地平整后,先铺C10素混凝土垫层,厚100mm、在其上浇筑C20的钢筋混凝土筏板基础,筏板厚300mm,在筏板基础上砌砖墙。当主体工程施工至第五层时,发现东起第五开间中部筏板基础南北向整块横向断裂。经检查,从勘察报告、设计(依据勘察报告)和施工中均找不到原因,而是未处理好地基勘察、基础处理和建筑总平面的关系。对该楼地基土层重新进行勘察,新查明的地基土层和历史变迁如下: (1)表层为杂填土,西半部厚度1.1~2.4m,东半部厚度2.4~5.5m。 (2)第二层为稻壳灰及淤泥层土,其中稻壳灰占70%~80%。淤泥极为弱:孔隙比高达e =2.12~2.60; 液性指数IL=1.57~2.47;天然重度很小,仅为γ=14.3~15.2kN/m3,标准压缩系数a1-2=2.05MPa-1,属于超高压缩性土,厚度2.0~2.9m,分布在场地西半部,杂填土下面。(3)第三层为淤泥层.厚度为1.3~1.5m。此淤泥层也分布在场地西半部,场地东半部无此淤泥软弱土层。 (4)第四层为份土及粉细砂层,场地内普遍分布,层厚4~5m,土质良好。 (5)经深入调查得知该场地原为一南北长70m、东西宽40~50m的水塘。附近餐饮业用户用稻壳作燃料后将稻灰倾倒在塘内,不久塘被填平,还曾用作烧砖窑场。该工程开工前半年多方平整场地修建住宅楼。由于该楼西半部置于原水塘内,东半部位于塘外岸上,塘内外土质突变是造成钢筋混凝土筏板基础受力不合理断裂,从而导致上部结构破坏的主要原因。本人参与下曾提供四个处理方案进行比较: 方案一,将住宅楼五层全部拆至四层,并在四层顶部,加设钢筋混凝土封闭圈梁。 方案二,在方案一的基础上,东半部场地土质较好,东部四间仍修复至五层。 方案三,保留住宅楼为五层,自上至下拆除基础开裂这一开间,将一幢楼房分成东、西两幢楼。这样处理后,减小了建筑物的长高比.相对增加建筑物的刚度;并使东西两幢楼可以自由沉降。 方案四,暂缓处理,待进一步沉降观测后,再分析处理。 上述四个方案各有利弊。经多次研究讨论,最后采用卸荷处理方案,即将原设计建造的五层住宅楼,全部拆至四层,即采用方案一。后又进一步卸荷,将住宅楼全部拆成至三层。在该住宅楼已使用多年,观察到该按原来筏板基础断裂的裂缝已经稳定,没有再继续发展。住户已放心,消除了忧虑。但由于这一事故处理,拆除两层楼房,损失建筑面积40%。如不用卸荷处理方案,改用锚杆静压桩加固场地西半部软弱地基,则可在保证住宅楼安全的前提下,保持住宅楼五层不变。 地基与基础质量,对建筑物的安全使用和耐久性影响甚大。基础或地基的质量事故,常常带来地面的塌陷、各种梁的拉裂、墙体开裂、柱子倾斜等。轻则使人对建筑有不安全感,重则影响建筑物的使用,甚至于危及人们的生命。 据有关单位对43起房屋过大不均匀沉降原因调查分析得知,属于设计不周者占21%,属于施工问题者占70%,属于使用单位管理不善者占9%。由此可见,尽管事故产生的原因是多方面的,而注意施工质量,则是避免事故发生的重要措施。 现浇钢筋混凝土结构由于多方面原因往往会出现一些裂缝,因此,鉴别裂缝、分析裂缝、控制裂缝的产生和发展,并对裂缝的产生进行有效的防治,对保证混凝土结构的整体性及正常使用具有重要的意义。 外荷载引起的裂缝:外荷载作用下产生的结构裂缝一般具有很强的规律性,通过计算分析就可以读出正确的结论。如:矩形楼板板面裂缝成环状,沿框架梁分布,板底裂缝成十字或

植入患者体内的钢板断裂,医院的赔偿责任

植入患者体内的钢板断裂,医院的赔偿责任 案例: 陈某于2011年12月28日因摔伤致左上臂肿痛、畸形就诊于A 医院处,诊断其为左肱骨中下段粉碎性骨折,全身多发性外伤,行切复内固定术+人工骨折植入术。病例显示:A医院为陈某左侧肱骨干骨折使用的金属接骨板为无锡市某医疗器械有限公司生产,规格为8孔。陈某于2012年1月14日出院,复查X线片示左肱骨骨折术后,对位对线良好。病例记载“术后两月之间复查显示内固定位置良好,后一直未予复查”。2013年6月12日陈某因“左侧肱骨骨干骨折术后内固定断裂”就诊于安徽省立医院,2013年6月13日X线片提示左肱骨中段陈旧性骨折,内固定10孔钢板在位,钢板断裂,左肱骨骨干骨折术后骨不连。2013年6月28日,陈某出院,共计花费医疗费31083.05元。 2014年5月22日,安徽某司法鉴定所作出医学鉴定意见:患者陈某左肱骨骨折内固定钢板断裂,与A医院医疗行为有关,为患者陈某使用内固定钢板无合格证,使用医疗器械存在缺陷,A医院医疗行为违法相关规定,存在医疗过错;2015年1月28日,经某司法鉴定中心重新鉴定,作出医学鉴定意见:难以排除A医院在为陈某的诊疗过程中,采用内固定不确切,未进行有效的内固定,履行注意义务不充分,未尽到与其医疗水平相应的诊疗义务,其诊疗行为存在过错。该诊疗过程行为与陈某左侧肱骨干骨折术后骨不连,内固定断裂的损

害后果之间存在因果关系,参与度建议在56%—70%之间为宜;A医院的病例记载与实际情况不符,存在过错。2015年6月10日,经鉴定:被鉴定人陈某因摔伤致左肱骨中段骨折,现遗有左肩、左肘关节活动受限,造成左上肢功能丧失程度达百分之十以上,属X(十)级伤残。 律师分析: A医院在治疗过程中,不但要保证自身诊疗行为没有过错,还要证明其提供的医疗器械不存在质量缺陷。而是否属于缺陷产品,不仅取决于产品是否符号国家标准、行业标准等强制性规定,还要看是否存在潜在的不合格危险。本案中,A医院提供的钢板在植入陈某体内发生断裂,使用期限远未达到A医院医院在出院遗嘱上载明的时间,且A医院提供的钢板合格证标明的是八孔而植入陈某体内的钢板是十孔,两者不符,A医院显然存在过错。作为植入患者体内的钢板,其质量要求远要高于其他产品的质量安全要求。 A医院未提供因陈某自己过错而造成钢板断裂的相关证据,应视为其提供的钢板质量存在质量缺陷,依法应承担相应的赔偿责任。医学鉴定意见书认定:A医院诊疗过错行为与陈某左侧肱骨干骨折术后骨不连,内固定断裂的损害后果之间存在因果关系,参与度建议在56%—70%之间为宜。根据鉴定意见及本案查明的事实,法院可以酌定医疗过错行为与陈某损害后果之参与度。并计算陈某因医疗损害的各项损失,根据确定的医疗过错行为与陈某损害后果之参与度,判定

齿轮断裂原因分析

概况描述:生产上的齿轮轴在使用两个星期后,突然发生断齿,给生产造成了很大的损失。为了弄清楚产生断裂的原因, 1、化学成份分析 从成份上看,大有材料为38 Cr Mo Al ,小的材料为20 Cr MnMo 2、宏观形貌 大:断口处晶粒粗大稍发亮,为脆性断裂。小:断口处晶粒细小,瓷性灰色断口,为韧性断裂。(如图示) 3、金相组织分析 (1)大的金相组织 100X 40X 200X 齿轮表面的渗氮层厚:0.30mm ,渗层硬度801HV 1,表面有数条垂直于表面的微裂纹,裂纹周围组织无脱碳,裂纹长度稍长于渗层。 200X 断裂处的显微组织形貌

200X 中心组织:回火索氏体加屈氏体加条状及半网状铁素体。 (2)小的金相组织 200X 40X 齿轮渗碳层厚1.5 mm,有效硬化层厚0.8 mm,表面有数条细小的裂纹沿晶向里延伸,渗层硬度637HV1。 200X 表面渗碳和过渡区组织,表面为高碳马氏体和细小的颗粒状碳化物,往里为马氏体组织。500X 中心组织:低碳板条马氏体组织。 4、原因分析 (1)大的材料为氮化钢,小的材料为渗碳钢,符合材料的牌号。(2)从金相组织上分析 大的心部组织为回火索氏体加屈氏体加条状、半网状的铁素体,为非正常的调质组织,这是因为淬火时,由于加热温度太低或保温时间太短,使铁素体未能完全溶解,经过淬火、回火后,仍存在于基体中。调质后出现这种组织,属于不良的显微组织。齿轮表面有数条微小的细裂纹,这些裂纹的产生是氮化时,由于氮在铁素体中的扩散速度较大,氮化后铁素体中的氮浓度较高,易形成须状氮化物从而从使氮化层脆性较大。因此渗层组织不均匀(?),致使在使用过程中齿根部受到拉应力的作用而导致脆性断裂。

质量事故调查报告内容

质量事故调查报告内容 篇一:质量事故调查报告 质量事故(转载于: 小龙文档网:质量事故调查报告内容)调查报告 篇二:工程质量事故调查报告的主要内容有( )。 A.质量事故发生的地点B.质 一、整体解读 试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。 1.回归教材,注重基础 试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。 2.适当设置题目难度与区分度 选择题第12题和填空题第16题以及解答题的第21题,

都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。 3.布局合理,考查全面,着重数学方法和数学思想的考察 在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。 篇三:质量事故调查报告 NPR 仪征工厂工程 基础质量事故调查、分析、处理报告 中国核工业华兴建设公司NPR仪征工程项目部 二00五年三月二十三日 一、质量问题发生时间: XX年3月19日、23日 二、质量问题发生部位及情况: NPR仪征工厂主厂房Ⅰ区XX年3月16日第一次浇筑的1-B1-C、1-D/1-2~1-7轴、XX年3月20日第二次浇筑的

石油钻采设备用阀杆断裂失效分析_刘国永

櫡櫡櫡櫡櫡櫡櫡櫡 测试与分析櫡櫡櫡櫡櫡櫡櫡櫡 收稿日期:2014-07-17 基金项目:本项目研究得到上海市科学技术委员会的资助,资助课题编号为12DZ2291700。 作者简介:刘国永(1985-),男,河北人,助理工程师,主要从事失效分析及金属材料理化检测工作。联系电 话:021-********?744,E-mail :lgy040005@163.com 石油钻采设备用阀杆断裂失效分析 刘国永 1,2 (1.上海市机械制造工艺研究所有限公司,上海 200070;2.上海金属材料改性技术研究中心,上海200070) 摘 要:石油钻采设备中的1Cr13阀杆在使用过程中出现卡死、断裂现象。对阀杆的断口及螺纹卡死区域进行了宏观、微观及化学成分分析。结果表明,阀杆的化学成分基本符合要求,阀杆断裂与其强度 不高及局部严重腐蚀有关。 关键词:阀杆;断裂;腐蚀中图分类号:TG115.2文献标识码:A 文章编号:1008-1690(2014)05-0077-04 Analysis on Fracture of Valve Stem of Oil Drilling Equipment LIU Guoyong (1.Shanghai Institute of Machine Building Technology Co.,Ltd.,Shanghai 200070,China ;2.Shanghai Engineering Research Center of Metal Materials Modification ,Shanghai 200070,China ) Abstract :1Cr13steel valve stem of oil drilling equipment deadlocked and fractured in service.The fracture of valve stem and the deadlock zone of thread were subjected to macroscopic ,microscopic and chemical composition analysises.The results show that the chemical composition of valve stem come up to the standard on the whole ,and that the fracture of valve stem arises from its insufficient strength and being locally seriously corroed.Key words :valve stem ;fracture ;corrosion 某厂生产的石油钻采系统用阀杆的闸阀装配情况如图1所示。阀杆最大外径约31.8mm ,总长为325mm ,材质为1Cr13。阀杆螺纹区域经表面氮碳共渗处理,要求厚度0.01 0.025mm ,表面硬度≥900HV 。该阀杆在使用过程中卡死,并在外力扭转下出现断裂。本文通过系统的理化检测分析了阀杆的断裂原因。 1宏观分析 阀杆断裂位置如图1所示。可见断裂发生于阀 杆氮碳共渗部位截面突变区域的根部,阀杆近断口区域表面基本呈黑色,并可见局部有黄褐色的锈蚀状斑点。阀杆近端部配有一直径约12.4mm 的销轴,为阀杆的安全销,销轴一方面与杆套起到连接作用,另一方面在阀杆卡死、过载时其会优先断裂,而断裂阀杆的销轴并未出现断裂现象。 阀杆断口宏观形貌如图2所示,断口直径约24mm ,基本呈横向分布。断面近边缘环周内可见 多个小块状塑变平滑区,呈棘轮状分布,拟为切应力下多源启动的切断所致;断面心部区域较粗糙,可见有扭转流变的条纹分布,断口中心沿扭转方向呈向上凸起状,拟为扭转断裂后期瞬间正应力作用所致。断口整体呈过载性扭转断裂特征,近边缘拟为起始区,心部为终断区。断口附近阀杆表面可见多处黄褐色锈蚀斑区分布,表明阀杆曾受腐蚀性介质影响 。 图1闸阀装配情况及阀杆断裂位置 Fig.1 The gate valve assembly and break point of the valve stem

弹簧失效的原因分析

弹簧失效的原因分析 弹簧失效的原因分析 一、佛山弹簧分解弹簧永久变形及其影响因素 弹簧的永久变形是弹簧失效的主要原因之一 弹簧的永久变形,会使弹簧的变形或负荷超出公差范围,而影响机器设备的正常工作。 检查弹簧永久变形的方法 1.快速高温强压处理检查弹簧永久变形:是把弹簧压缩到一定高度或全部并紧,然后放在开水中或温箱保持10~60分钟,再拿出来卸载,检查其自由高度和给定工作高度下的工作载荷。 2.长时间的室温强压处理检查弹簧永久变形:是在室温下,将弹簧压缩或压并若干天,然后卸载,检查其自由高度和给定工作高度下的工作载荷。 二、弹簧断裂及其影响因素 弹簧的断裂破坏也是弹簧的主要失效形式之一 弹簧断裂形式可分为;疲劳断裂,环境破坏(氢脆或应力腐蚀断裂)及过载断裂。 弹簧的疲劳断裂: 弹簧的疲劳断裂原因:属于设计错误,材料缺陷,制造不当及工作环境恶劣等因素。 疲劳裂纹往往起源于弹簧的高应力区,如拉伸弹簧的钩环、压缩弹簧的内表面、压缩弹簧(两端面加工的压缩弹簧)的两端面。 受力状态对疲劳寿命的影响 (a)恒定载荷状态下工作的弹簧比恒定位移条件下工作的弹簧,其疲劳寿命短得多。 (b)受单向载荷的弹簧比受双向载荷的弹簧的疲劳寿命要长得多。 (c)载荷振幅较大的弹簧比载荷振幅较少的弹簧的疲劳寿命要短得多。 腐蚀疲劳和摩擦疲劳 腐蚀疲劳:在腐蚀条件下,弹簧材料的疲劳强度显著降低,弹簧的疲劳寿命也大大缩短。 摩擦疲劳:由于摩擦磨损产生细微的裂纹而导致破坏的现象叫摩擦疲劳。 弹簧过载断裂 弹簧的外加载荷超过弹簧危险截面所有承受的极限应力时,弹簧将发生断裂,这种断裂称为过载断裂。 过载断裂的形式 (a)强裂弯曲引起的断裂; (b)冲击载荷引起的断裂; (c)偏心载荷引起的断裂 佛山弹簧后处理的缺陷原因及防止措施 缺陷一:脱碳 对弹簧性能影响:疲劳寿命低 缺陷产生原因:1、空气炉加热淬火未保护气2、盐浴脱氧不彻底 防止措施:1、空气炉加热淬火应通保护气或滴有机溶液保护:盐浴炉加热时,盐浴应脱氧,杂质BAO质量分数小于0.2%。2、加强对原材料表面质量检查 缺陷二:淬火后硬度不足

钢丝断裂原因分析

钢丝断裂原因分析

一、夹杂物引起断裂 线材中非金属夹杂物的存在,破坏了组织的连续性,起到了一个显微裂纹的作用。当受到外力作用时,在夹杂物的顶端首先产生附加的应力集中。尤其在原奥氏体晶粒交界处出现的大块状、条状或片状碳化物,这些异常碳化物在材料冷变形时,严重地阻塞了位错的移动,致使该处产生应力集中。当应力集中达到一定大小时便会使碳化物开裂,或在碳化物与基体交界处产生裂纹。当裂纹达到失稳状态尺寸,地瞬时产生断裂。 非金属夹杂物的多少是衡量帘线钢质量高低的一个重要因素。在用SEM对断口进行分析的过程中,经常发现非金属夹杂物。在典型的杯锥状断口上有时候就能发现夹杂物,SEM表明大多为三氧化二铝夹杂或其它高熔点脆性夹杂物。其避免主要是通过精炼,使夹杂物变为塑性低熔点夹杂物。 脆性夹杂物是引起钢丝断裂的重要原因之一,而夹杂物引起断裂分为以下几种形势: 1、夹杂物与钢基体之间界面脱开 拉伸过程中,在夹杂物周围的局部加剧了应力集中;裂纹优先在与拉应力垂直的夹杂物与基体的界面产生并沿着夹杂物与钢基体界面扩展,致使夹杂物与基体界面脱开。 2、夹杂物本身开裂

由于脆性较矮杂物本身具有缺陷,在拉伸过程中,在缺陷处产生严重的应力集中,由于局部应力升高而导致夹杂物本身开裂。; 3、混合开裂 钢中非金属夹杂物的形状、分布是没有规律的,因此夹杂物在钢中引起裂纹也是随机性的,取决于夹杂物的性质、尺寸、形状及分布,对于同类型的夹杂物,由于形状、分布和受力方向不同,往往产生断裂的情况也不尽相同,有时两种断裂方式同时存在,有时两种断裂方式交替进行。4、沿两种不同类型夹杂物的相界开裂 钢中经常出现几种夹杂物相共生在一起的复合夹杂物,由于各类夹杂物之间的力学性能和物理性质不同,相界结合力较弱,在拉应力作用下容易从相界开裂。 二、偏析引起的钢丝断裂 在一定程度上,中心偏析对钢丝拉断的危害必脆性夹杂物。因为偏析在更大程度上影响了钢丝的延伸性,从而使塑性变形不能在存在偏析的地方产生。在钢丝最初的拉拔过程中偏析导致小的裂纹的出现,等进入了最终拉拔时就导致了人字形断口(chevroncracks) 在连铸过程中减少中心偏析的途径有以下几个: 1、中心偏析随着中包过热度的降低而降低,因此中包的钢液温度应该尽可能的低;

质量事故反思心得体会_质量事故分析报告范文

质量事故反思心得体会_质量事故分析报告范文 几年前,我在一家制药公司担任质量负责人。对公司发生的一起药品生产质量事故, 我至今记忆犹新。 当时,公司生产部为加快生产进度,在洁净厂房和生产设备清洁消毒不彻底、尚未拿 到质量部出具的环境卫生监测报告且未取得QA清场合格放行的情况下投料生产,导致产 出的一批头孢拉丁颗粒微生物限度超标。 事故发生后,公司召集相关部门人员商讨对策。我提出,由于头孢拉丁受光照、温度、湿度、水分等影响极易遭到破坏,采取任何灭菌措施都无济于事。但为了减少损失,公司 还是决定把这批物料运到北京进行辐射灭菌。事与愿违,经辐射灭菌后,这批物料颗粒外 观发生显著变化,公司质量部在进行稳定性考察后得出结论——物料必须销毁。这次事故 给公司造成直接经济损失数十万元。 如今,我仍在药品生产企业从事质量管理工作,也经常会反思当年那起药品生产质量 事故的教训。 由于各种各样的原因,现在国内部分药品生产企业把GMP文件只当作一种形式,一旦 通过认证,便将文件束之高阁,GMP执行不力,直接导致岗位操作的随意,给药品质量控 制带来了较大隐患。 “药品质量是生产出来的,而不是检验出来的”。这就是说,在药品生产过程中,单 靠事后把关必然会增加质量风险,给企业造成不可挽回的经济损失,甚至影响到公众用药 安全。因此,GMP管理的重心应由产品最终检验转移到“预防为主”上来。在此,我想提 醒同行们,在实施GMP过程中一定要加强各种操作规程和管理规程的培训,严格执行各种GMP文件。尤其是影响药品质量的关键物料、关键工序,必须严格执行相应的放行规程, 决不能为加快生产进度而违反规定。要做到不合格的物料不得进厂;不合格的中间产品不 得流入下道工序;清场或清洁不彻底的生产设备不得投入使用;待验或监测不合格的生产环 境区域不得投料生产;未经QA放行的任何工序不得继续;不合格成品不得出厂。 新修订的药品GMP今年就要发布施行了,其内容与原版相比有较大变化,对药品生产 企业的硬件、软件都提出了更高要求。作为企业,要始终如一地严格执行。只有这样,才 能从根本上控制药品质量风险,对公众健康负责、对企业自身负责,生产出质量合格的药品。 在当今这个资讯高度发达的社会,不论是制造业企业还是商业企业,要想在日益激烈 的市场竞争中 立于不败之地,就必须高度重视提高产品服务质量,否则,将会被市场无情淘汰。因此,注重提高产品质量是一个现代成功企业发展的必由之路。

阀门泄露原因分析及处理方法大全

阀门常见问题及处理方法大全 阀门泄露的处理方法 在日常生活中,受到环境和各种因素的影响,阀门在使用过程中会出现泄漏的现象。 一、阀体和阀盖的泄漏: 原因: 1.铸铁件铸造质量不高,阀体和阀盖体上有砂眼、松散组织、夹渣等缺陷 2.天冷冻裂; 3.焊接不良,存在着夹渣、未焊接,应力裂纹等缺陷; 4.铸铁阀门被重物撞击后损坏。 维护方法: 1.提高铸造质量,安装前严格按规定进行强度试验; 2.对气温在0°和0°以下的阀门,应进行保温或拌热,停止使用的阀门应排除积水 3.由焊接组成的阀体和阀盖的焊缝,应按有关焊接操作规程进行,焊后还应进行探伤和强度试验; 4.阀门上禁止推放重物,不允许用手锤撞击铸铁和非金属阀门,大口径阀门的安装应有支架。 二、填料处的泄露(阀门的外漏,填料处占的比例为最大) 原因: 1.填料选用不对,不耐介质的腐蚀,不耐阀门高压或真空、高温或低温的使用; 2.填料安装不对,存在着以小代大、螺旋盘绕接头不良、上紧下松等缺陷; 3.填料超过使用期,已老化,丧失弹性 4.阀杆精度不高,有弯曲、腐蚀、磨损等缺陷 5.填料圈数不足,压盖未压紧; 6.压盖、螺栓、和其他部件损坏,使压盖无法压紧; 7.操作不当,用力过猛等; 8.压盖歪斜,压盖与阀杆间空隙过小或过大,致使阀杆磨损,填料损坏。 维护方法: 1.应按工况条件选用填料的材料和型式;

2.按有关规定正确的安装填料,盘根应逐圈安放压紧,接头应成30℃或45℃; 3.使用期过长、老化、损坏的填料应及时更换; 4.阀杆弯曲、磨损后应进矫直、修复,对损坏严重的应及时更换; 5.填料应按规定的圈数安装,压盖应对称均匀地把紧,压套应有5mm以上的预紧间隙;6.损坏的压盖、螺栓及其他部件,应及时修复或更换; 7.应遵守操作规程,除撞击式手轮外,以匀速正常力量操作; 8.应均匀对称拧紧压盖螺栓,压盖与阀杆间隙过小,应适当增大其间隙;压盖与阀杆间隙 过大,应予更换。 三、密封面的泄漏 原因: 1、密封面研磨不平,不能形成密合线; 2、阀杆与关闭件的连接处顶心悬空、不正或磨损; 3、阀杆弯曲或装配不正,使关闭件歪斜或不逢中; 4、密封面材质量选用不当或没有按工况条件选用阀 维护方法: 1、按工况条件正确选用颠垫片的材料和型式; 2、精心调节,平稳操作; 3、应均匀对称地拧螺栓,必要时应使用扭力扳手,预紧力应符合要求,不可过大或小。法兰和螺纹连接处应有一定的预紧间隙; 4、垫片装配应逢中对正,受力均匀,垫片不允许搭接和使用双垫片; 5、静密封面腐蚀、损坏加工、加工质量不高,应进行修理、研磨,进行着色检查,使静密封面符合有关要求; 6、安装垫片时应注意清洁,密封面应用煤油清,垫片不应落地。 四、密封圈连结处的泄漏 原因: 1、密封圈辗压不严

螺栓断裂原因分析

螺栓断裂原因分析 螺栓的抗拉强度比想象中强得多,以一只M20×80的8.8级高强螺栓为例,它的重量只有0.2公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固几十公斤的部件,只使用它最大能力的千分之一。即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺栓的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。 很多螺栓断裂的最终分析认为是超过螺栓的疲劳强度而损坏,但是螺栓在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次才会损坏。换句话说,螺栓在使用其疲劳强度的万分之一时即松动了,我们只使用了螺栓能力的万分之一,所以说螺栓的损坏也不是因为螺栓疲劳强度。 静态紧固用螺栓很少会自行松动,也很少出现断裂情况。但是在冲击,振动,变载荷情况下使用的螺栓就会出现松动和断裂的情况。 所以我认为螺栓损坏的真正原因是松动。螺栓松动后,螺纹和连接件之间产生微小间隙,冲击和振动会产生巨大的动能mv^2,这种巨大的动能直接作用于螺栓,受轴向力作用的螺栓可能会被拉断。受径向力作用的螺栓可能会被剪断。 因此设计时,对于关键的运动部位的连接紧固要注意防松设计。 自锁螺母尼龙锁紧螺母以上为两种形式的锁紧螺母。 对于弹簧垫片的放松效果,一直存在争议。 弹簧垫圈的放松原理是在把弹簧垫圈压平后,弹簧垫圈会产生一个持续的弹力,使螺母和螺栓连接副持续保持一个摩擦力,产生阻力矩,从而防止螺母松动。同时弹簧垫圈开口处的尖角分别嵌入螺栓和被连接件的表面,从而防止螺栓相对于被连接件回转。

以M16螺栓连接为例,实验显示用约10N.m的螺栓预紧力矩就可以将16弹簧垫圈完全压平。弹簧垫圈只能提供10N.m的弹力,而10N.m的弹力对于280N.m的螺栓预紧力矩来说可以忽略,其次,这么小的力,不足以使弹簧垫圈切口处的尖角嵌入螺栓和被连接件表面。折卸后观察,螺栓和被连接件表面都没有明显的嵌痕。所以,弹簧垫圈对螺栓的防松作用可以忽略。另外,在螺栓与被连接件之间增加一个垫圈,如果垫圈质量有问题,相当于给螺栓连接又增加了一个安全隐患。

重卡钢板弹簧断裂分析

重卡钢板弹簧断裂失效分析 白培谦 泮战侠 慕松 赵鹏英 杜飞 (陕西汽车集团有限责任公司质量管理部,陕西西安,710200) 摘 要:通过宏观检查、化学成分分析、硬度测试以及微观组织检查等结果分析,确定了重型卡车用钢板弹簧断裂原因。分析结果表明:因超载使钢板弹簧出现过度反弓,造成板簧卡中的螺栓与钢板弹簧动态接触,发生磨损腐蚀现象,在过大的交变应力下出现疲劳断裂。并提出了防止其发生断裂事故的预防措施。 关键词:钢板弹簧;磨损腐蚀;交变应力;疲劳断裂 Fracture Failure Analysis of Heavy Truck Leaf Spring Bai Pei-qian, PAN Zhan-xia, Mu Song, Zhao Peng-ying, Du Fei, (1.Shaanxi Automobile Group Co., Ltd. Quality Management Department, Xi ’an 710200, China ) Abstract:The fracture cause of heavy truck leafspring is researched by macrography, chemical composition analysis, hardness test and microstructure test. The research shows that leaf spring excessive inverse arch-shaped for overload causes Frictional Contact between plate spring bolt and leaf spring and erosion corrosion and the leaf spring is broken for fatigue fracture Under alternating stress. In the paper the measures of preventing leaf spring fracture accident is put forward. Key words: leaf spring; erosion corrosion; alternating stress; fatigue fracture. 钢板弹簧是汽车悬架中重要的弹性元件,主要影响汽车行驶的平顺性和操纵的稳定性,在车辆行驶过程中起到缓冲减振的作用。 同批次某矿山用短途重载卡车行驶约六千公里后发生四起钢板弹簧断裂事故。断裂钢板弹簧材料为50CrV A ,其生产工艺为:下料→钻孔→卷耳→淬火→回火→喷丸→装配→预压→喷漆。为了查明钢板弹簧断裂原因,对断裂失效件进行检查分析。 1 检查与结果 1.1 宏观检查 断裂发生在前钢板弹簧组第一片后侧板簧卡附近,见图1(a )箭头所示位置,距吊耳孔中心约26cm 处,断口侧表面可见明显磨损腐蚀痕迹,见图1(b )所示。在体视显微镜下观察钢板弹簧侧表面磨损腐蚀区域发现:断口侧表面磨损腐蚀区域呈现红褐色,仔细观察存在大量裂纹,且出现腐蚀坑,见图2。 (a ) (b) 图1 断裂位置及外观 Fig.1 the fracture position and appearance 收稿日期:

质量事故调查报告范文

质量事故调查报告范文 质量事故就是一个物体不能满足使用要求和使用程度,而造成经济损失,人员伤亡,或者其他损失的意外情况,那么质量事故调查报告要怎么写呢?下面是为大家带来的质量事故调查报告范文,仅供参考。 质量事故调查报告范文1: PO# 发生数量C154344 60 产品代号缺陷描述46118-03 桶头榫槽加工反事故发生工序事故定级柜桶线一级立即纠正措施:将右中闸板导轨垫板B 拆掉,改装在由侧旁上(参照首检样板) 事故发生原因:10 月22 日46118-03 的桶头主板在柜桶线打法式燕尾榫槽时榫槽加工反。原因为1、因榫槽不是左右对称,车间员工未能区分主板的木皮纹理方向所要求对应的榫槽,导致加工反。2、2、首检责任人武稿生也未看清图纸,导致错误未能发现。3、PE 巡检漏验。 事故处理结果 直接责任人:处理办法:请责任单位酌情考核。 管理责任人:

间接责任人: 预防措施:落实首检跟踪责任制,降低看图失误率。提高巡检的频率,杜绝漏检现象 品管QA: 主管确认: 品管经理: 质量事故调查报告范文2: 公司调查报告 事故 发生部门:发生时间:事故级别: 事故调查报告 事故类别发生时间涉及产品涉及人员 □质量 □安全 □生产 时分) 事故级别发生地点涉及设备

□一般 □严重 □重大 年月日( 1-2-14 原则:1 指 1 个工作日完成D1-D2 内容;2 是指 2 个工作日内完成D3;14 是指14 个工作日内完成D4-D5 内容。事故/问题描述: D1 情况说明 负责人:组长(负责人): 日期: D2 调查小组 小组成员:主管: 部门: 日期:措施内容: D3 临时措施 实施日期:发生过程描述: 负责人:

气门断裂的原因

一、船舶柴油机排气阀故障的原因分析 1、排气阀的工作条件 船舶柴油机中排气阀的工作条件十分恶劣,气阀底面与高温燃烧产物直接接触,在气阀开启期间还承受着高温(900~1000°C)和具有腐蚀性气体的高速(达600m/s)冲刷,气阀中心温度高达700~800°C,在阀盘与阀杆过渡圆弧中段,温度也有600~700°C,排气阀工作温度分布如图1-1所示。过高的温度会使金属材料的机械性能降低,材料发生热变形。当阀面密封不严时,就会引起高温燃气对阀面的烧损。气阀落座时,阀与阀座的惯性力和弹簧作用力的共同作用下,还承受着相当大的冲击性交变载荷,在气阀出现跳动或气阀间隙增大时,这种载荷会明显增加。阀与阀座的撞击,容易形成密封面的变形和严重的磨损。因船用柴油机绝大部分多为增压柴油机,由于进气道内的新鲜空气压力阻止了从气阀导管中获得滑油的可能,因此,金属之间易发生干摩擦。但在一般柴油机的气阀以及增压柴油机的排气阀座合金面间总会布有一层滑油或烟油等润滑物。此外,阀杆与导管间也会发生磨损,阀杆顶端受摇臂的撞击与磨损。 图1

2、附加因素的影响 由于燃油价格不断上涨,航运市场竞争激烈,船东为了降低成本来达到提高竞争能力、获得更多利润的目的,均使用低价、劣质的燃油。这些燃油的粘度高,滞燃期长,而且钒、钠和硫的含量比较高。这种燃油在柴油机中燃烧时,渣油中所含的排放物(燃料灰份)仅仅有一部分与排出的气体一起离开机器,而剩余部分仍然留在发动机内一些高温(497?797°C)的零件上。例如,排气阔和活塞顶,形成沉积,造成所谓的“高温腐蚀”。到目前为止,还没有经济上合理的工艺过程能从渣油中除去腐蚀元素,连高级合金钢和堆焊排气阀钢也受到燃油的腐蚀。 在柴油机运行中违反用车保养规定,低温启动柴油机,低温强迫加载,柴油机气缸燃烧温度急剧变化,在柴油机负载状态下,急剧变换手柄位,使柴油机气缸燃烧状态恶化,大量雾化不良的粗大重油粒子喷入气缸,造成严重的后燃及不完个燃烧,严重积炭使排气阀的阀线表面也被积炭污染,甚至造成主机的起动困难,这就成为下次主机开车不久后的油头及排气阀故障的隐患,因此这些操纵、保养柴油机的不良习惯也是引发柴油机气阀故障的因素。 二、排气阀常见故障分析 1、排气阀烧损 排气阀烧损是排气阀最常见故障。主要原因是排气阀密封不严,造成高温燃气泄漏,使该处严重过热,甚至熔穿金属材料。造成排气阀密封不良的原因主要有以下几点:⑴由于阀盘不同部位的形状、厚度不同,受热、散热条件不同,阀盘圆周上的温度分布不均匀,中心温度高于周边温度,造成气阀阀盘径向上的温度差,过大的温差将造成阀盘的变形从而导致漏气的产生。⑵船用燃油中含有的杂质在经过燃烧室内的各种复杂热过程后在排气阀阀盘及阀座密封锥面沉积成一层混有碳粒的玻璃状较硬较脆物质,其内混有硫酸钠、硫酸钙、氧化铁等物质。当此层玻璃状沉积物沉积厚度过大时,在闭阀时的撞击力下会发生裂纹,反复撞击后进而发展成剥落,从而形成高温燃气喷出通道使气阀烧损。⑶普通排气阀密封锥面在工作温度下硬度并不是很高,沉积的硬质燃烧产物颗粒在闭阀的撞击下,可使密封面出现凹坑,从而形成漏气。 2、排气阀高温腐蚀 目前在航运市场上普遍使用的劣质燃油中含有大量钒、钠和硫等元素。在燃烧过程中.硫、钒和钠等元素形成氧化硫、五氧化二钒和氧化钠等(这些氧化物的化学成份取决于过量氧气和燃烧温度)。氧化物之间要发生反应,而且还要与滑油中的钙反应,形成低熔点的盐类,有硫酸钠,硫酸钙和不同成份的钒酸钠等。这些盐类混合物熔点一般为535°C 左右,同时具有较强的腐蚀性。当零件温度在550°C 以上时,足以使钒、钠化台物处于熔化状态,附着于零件表面。当排气阀在工作中时,由于排气原因(气阀温度可达650?800°C 以上),使它以液态形成沉积在阀盘及阀座以及阀杆与阀面的过渡表面上。这时即使是非常耐腐蚀的硬质合金钢也会受到腐蚀,腐蚀结果在密封锥面上形成麻点、凹坑.凹坑相连就可能造成漏气。由于上述腐蚀是高温条件下产生的,所以称之为“高温腐蚀”。 在上述高温腐蚀的有害元素中以钒的危害性为最大。 3、气阀密封锥面磨损过快 在燃烧室内的爆发压力作用下阀座与阀盘都发生弹性变形,气阀落座撞击也会造成阀座及阀盘的弹性变形,这样会使阀盘锥面反复楔入时,密封锥面产生相对运动,造成密封锥面磨损。气阀间隙过大,阀盘与阀座刚度不足,气阀与阀座材料性能达不到要求或不匹配,重油中含有较多的钒、钠、硫等有害元素,高负荷运行或燃烧恶化,冷却不良,阀杆与导管间隙过大,气阀机构振动使气阀落座速度过大等,都能使磨损速率增大。 4、阀盘与阀杆断裂 在阀盘与阀杆的过渡圆角处和阀杆装设卡块的凹槽处,由于这些部位应力容易集中,当应力集中到一定程度,就会发生疲劳断裂破坏。造成断裂的原因有:阀杆与导管的间隙过大;阀盘与阀座的变形使局部受力过大;气阀间隙过大,敲击严重疲劳破坏;气阀机构的振动。阀杆装设卡块的凹槽处是气阀的最薄弱部位,若该处凹槽加工工艺不良或闭阀冲击力较重也会产生疲劳断裂。 5、气阀卡死 气阀卡死主要是因为气阀阀杆和导管之间间隙过小,当受热膨胀后二者间隙过盈发生卡死现象。另一方面,当阀杆发生弯曲变形时也会使阀杆卡死在导管中。 6、气阀弹簧断裂

骨折手术钢板为什么会断裂

骨折手术钢板为什么会断裂 骨折手术有时候需要用钢板来固定,对于骨折患者来说,考虑骨折手术钢板的安全性是必须的,有些朋友会发生钢板断裂的情况,那么骨折手术钢板为什么会断裂呢?接下来,本文就为大家介绍骨折手术钢板为什么会断裂的相关内容,想要了解这些知识的朋友可以接着往下看哦! 骨折以后出现骨折移位,如果不稳定骨折断端,就有骨折再移位的趋势、需要固定维持断端位置。钢板、髓内钉等内固定物起连接、稳定骨折断端作用。目的是早期活动,预防肢体不动引发的各种并发症,如关节僵硬、废用骨质疏松、肌肉萎缩等。 稳定骨折断端的方法很多,石膏、支具等外固定有固定不确实的缺点,也就是说骨折可能再移位。 钢板的作用是连接骨折断端、稳定骨折断端、允许肢体在非

负重条件下运动,也就是说早期肢体运动时力的传导是靠钢板传递的;内固定物是刚体,再硬的刚体也有疲劳断裂的时候,就像小时候,家里没有钳子,想把钢丝折断的方法就是反复的折弯钢丝。 既然钢板会断裂为什么还用钢板固定呢? 原因是骨折经过固定以后会逐渐愈合、产生骨痂,肢体力的传导逐渐由早期的经内固定物传导、逐渐过渡到内固定物和骨痂共同传导、最后只通过骨骼传导,这时钢板就没有力传导的作用了。所以留在体内已经没有任何作用。 骨折手术钢板需要取出来吗?这些内置物在置入体内以前 均经过生物相容性的检测,也就是说,可以留在体内终生不取;如果取出内固定物,就需要手术,其实取出的过程和置入的过程一样,也是一次创伤。这样看来就没有必要经历这次损伤。 为什么有些人一定要取出来呢?钢板有些固定的位置位于

皮下,刺激皮肤引起疼痛;接近神经干,刺激神经;有些人还有金属过敏。所以并不是所有人都有不舒适的感觉,而且有些不舒适与内植物无关,是和创伤有关,也就是说即使取出内植物,这种不舒适还是存在的。 以上就是关于骨折手术钢板为什么会断裂的相关介绍,相信大家看了上面的介绍之后,对骨折手术钢板为什么会断裂这个问题已经找到答案了。其实当钢板断裂时,骨折处已经早就愈合了。因此,钢板断裂也没什么关系的。希望通过本文的介绍,对想要了解骨折手术钢板为什么会断裂的朋友有所帮助。

断裂分析报告

M10-45H 内六角紧定螺钉 断裂分析 据客户反映,由本公司供应的M10-45H 紧定螺钉,安装过程中发生故障。 现状:M10-45H 内六角紧定螺钉,在密封锁紧螺母安装过程中发生断裂; 安装过程:在部件上指定部位使用43~48N.m 扭矩旋入紧定螺钉(作为限位螺钉使用),然后,在紧定螺钉露出端使用43~48N.m 的终拧扭矩旋入密封锁紧螺母并拧紧,防止螺钉与基体之间的间隙造成介质渗漏。 一,失效件检测分析: 1,断口形貌宏观观察: 断面基本与轴线垂直,颜色灰色,颗粒细小均匀;放大10倍进行观测,未见目测可见原始裂纹。 2,机械性能检测: 3,金相检测分析: 沿轴线使用线切割方式制样,检测了纵向剖面的金相组织。如下图图1和图2。 图1 芯部金相x500 芯部金相组织:回火马氏体+回火屈氏体 图2 螺纹金相x200 螺纹部位金相:无脱碳层或渗碳层 4,化学成分分析: 合金钢SCM435: 0.35%C, 0.21%Si, 0.70%Mn, 0.013%P, 0.007%S, 1.04%Cr, 0.185%Mo 符合GB3098.3对45H 级螺钉的材质要求。 失效件检测分析表明,该产品机械性能和使用材料完全符合GB3098.3标准要求 二,断裂原因分析: 对失效件的机械性能检测、金相组织检测、化学成分检测结果表明,产品完全符合标准规范。 对照标准GB/T 3098.3-2000,在标准条文内第一章,标准范围,对该产品的描述,第一段有明确:本标 准 规 定了由碳钢或合金钢制造的、在环境温度为10-35℃条件下进行试验时,螺纹公称直径为1.6- 24m m 的紧定螺钉及类似的不受拉应力的紧固件机械性能。如下截图:

相关主题