搜档网
当前位置:搜档网 › 离心泵汽蚀现象及防止措施

离心泵汽蚀现象及防止措施

离心泵汽蚀现象及防止措施
离心泵汽蚀现象及防止措施

延安职业技术学院

毕业论文

题目:离心泵的汽蚀现象及预防措施

所属系部:石油工程系

专业:钻井技术

年级/班级: 07(五)钻井班

作者:马飞

学号: 071395002023056 指导教师:高瑶

评阅人:

二〇一二年五月十四日

摘要

离心泵的应用是很广泛的,在国民经济的许多部门要用到它。它的使用涉

及到各个领域,有工业,农业和能源方面,甚至在军事方面都用到它的很多原理。在现实的工作中,我们大家都知道,由于泵工作的动力较大,它的震动幅度相对也很大,会因为各种各样的原因造成离心泵不能正常工作。其中,离心泵汽蚀是一种常见的现象,这种现象会引发多种事故,例如损坏离心泵的过流部件。本课题就针对这一问题进行讨论。

关键词:离心泵汽蚀现象预防

目录

绪论 (1)

第一章概述 (2)

1.1 离心泵 (2)

1.2 离心泵的组成结构 (3)

1.3 离心泵的工作原理 (5)

第二章离心泵的汽蚀现象分析 (6)

2.1 离心泵的汽蚀现象 (6)

2.2 离心泵汽蚀的类型 (6)

2.3 离心泵汽蚀的原因 (6)

2.4 离心泵汽蚀原理 (7)

第三章离心泵汽蚀的危害及预防措施 (9)

3.1 汽蚀现象对离心泵工作的影响 (9)

3.1.1 损坏过流部件 (9)

3.1.2 降低离心泵的性能 (10)

3.1.3 产生噪音与振动 (10)

3.1.4 制约离心泵的发展 (10)

3.2 影响离心泵汽蚀的因素 (11)

3.2.1 吸上真空高度 (11)

3.2.2 汽蚀余量 (13)

3.2.3 离心泵运行的最小流量 (11)

3.3 离心泵汽蚀的预防措施 (13)

3.3.1 改进泵的结构设计 (14)

3.3.2 提高装置有效汽蚀余量 (15)

3.3.3 使用抗汽蚀材料 (15)

3.3.4 加强操作管理 (15)

第四章结论 (16)

致谢 (17)

参考文献 (17)

绪论

随着科技的发达,泵的应用越来越多,只要需要把液体从地位送往高位就必须用到泵。泵的种类很多,由于分类的方式不同,也就有不同的叫法。

离心泵应该按照所输送的液体进行选择,并校核需要的性能,分析抽吸,排出条件,是间歇运行还是连续运行等。离心泵通常应在或接近制造厂家设计规定的压力和流量条件下运行。

离心泵的效率是衡量泵工作能效的一项重要的经济技术指标。目前我国离心泵行业由于设计、生产和使用过程中的诸多不科学、不合理性导致大量电能浪费和资源损失。在能源日趋紧张的今天,正确地进行离心泵选型,及时调节离心泵的工况点,使水泵运行在高效区,认真做好离心泵巡回检查,提高设备的检修质量,对于节约电耗,降低成本,提高企业经济效益具有很大的经济意义。特别是大流量低扬程高比转速的双吸单级离心循环冷却离心泵在工业上的广泛应用,对其进行节能技术分析与选型,有着显著的经济和社会效益。

离心泵的种类也有很多种,有立式、卧式、单级、多级、单吸、双吸、自吸式等多种形式。其主要的工作原理有:离心是物体惯性的表现。比如雨伞上的水滴,当雨伞缓慢转动时,水滴会跟随雨伞转动,这是因为雨伞与水滴的摩擦力做为给水滴的向心力使然。但是如果雨伞转动加快,这个摩擦力不足以使水滴在做圆周运动,那么水滴将脱离雨伞向外缘运动。就象用一根绳子拉着石块做圆周运动,如果速度太快,绳子将会断开,石块将会飞出。这个就是所谓的离心,离心泵就是根据这个原理设计的。高速旋转的叶轮叶片带动水转动,将水甩出,从而达到输送的目的。

目前,离心泵被广泛应用于石化、电力、冶金、水利等工业领域,在各种生产装置中对液体介质进行动力输送,其性能可靠性对于装置的正常运行有着非常重要的作用。和其他旋转式液体输送机械一样,离心泵在使用的过程中也会出现各种各样的故障或者影响离心泵正常运转的现象。其中,汽蚀就是是离心泵运行中的一个重要现象,是影响离心泵运行可靠性和使用寿命最为常见的问题,同时也是影响其向大功率高转速方向发展的一个突出障碍,因此成为目前泵类研究中的一个突出课题。

本课题就离心泵汽蚀现象展开讨论。

第一章概述

1.1 离心泵

离心泵,顾名思义就是,依靠离心力将液体从地处送往高处的设备。离心泵有立式、卧式、单级、多级、单吸、双吸、自吸式等多种形式(如图 1.1~1.4为几种类型的离心泵)。

图1.1 单级卧式离心泵

图1.2 单级立式离心泵

图1.3 多级卧式离泵

1.4 多级立式离心泵

1.2 离心泵的组成结构

离心泵的基本构造是由六部分组成的分别是叶轮,泵体,泵轴,轴承,密封环,填料函。(图1.5为离心泵的结构图)

(1)叶轮是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。

(2)泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承

的托架相连接。

(3)泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。

(4)轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。滚动轴承使用牛油作为润滑剂,加油要适当,一般为2/3~3/4的体积,太多会发热,太少又有响声并发热。滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多了,油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏,造成事故。在水泵运行过程中轴承的温度最高在85度,一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理。

(5)密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低;间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。

(6)填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流到外面来也不让外面的空气进入到泵内,始终保持水泵内的真空。当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内,使填料冷却,保持水泵的正常运行。所以在水泵的运行巡回检查过程中对填料函的检查是特别要需要注意的,在运行600个小时左右就要对填料进行更换。

图1.5 离心泵结构图

1.3 离心泵的工作原理

离心泵的主要过流部件有吸水室、叶轮和压水室。吸水室位于叶轮的进水口前面,起到把液体引向叶轮的作用;压水室主要有螺旋形压水室(蜗壳式)、导叶和空间导叶三种形式;叶轮是泵的最重要的工作元件,是过流部件的心脏,叶轮由盖板和中间的叶片组成。

离心泵工作前,先将泵内充满液体,然后启动离心泵,叶轮快速转动,叶轮的叶片驱使液体转动,液体转动时依靠惯性向叶轮外缘流去,同时叶轮从吸入室吸进液体,在这一过程中,叶轮中的液体绕流叶片,在绕流运动中液体作用一升力于叶片,反过来叶片以一个与此升力大小相等、方向相反的力作用于液体,这个力对液体做功,使液体得到能量而流出叶轮,这时液体的动能与压能均增大。

离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。由于离心泵的作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸水池中的液体在液面压力(大气压)的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。

第二章离心泵的汽蚀现象分析

2.1 离心泵的汽蚀现象

液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。离心泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。

2.2 离心泵汽蚀的类型

根据上述泵内发生汽蚀的原因,离心泵汽蚀可以分为叶面、间隙和粗糙三种类型。水泵安装过高,或流量偏离设计流量时所产生的汽蚀现象,其汽泡的形成和溃灭基本上发生在叶片的正面和反面,我们称之为叶面汽蚀。叶面汽蚀是水泵常见的汽蚀现象。在离心泵密封环与叶轮外缘的间隙处,由于叶轮进出水侧的压力差很大,导致高速回流,造成局部压降,引起间隙汽蚀。轴流泵叶片外缘与泵壳之间很小的间隙内,在叶片正反面压力差的作用下,也因间隙中的反向流速大,压力降低,在泵壳对应叶片外缘部位引起间隙汽蚀。水流经过泵内粗糙凸凹不平的内壁面和过流部件表面时,在凸出物下游发生的汽蚀,称为粗糙汽蚀。

2.3 离心泵汽蚀的原因

水的饱和蒸汽压力与水温有关。如果泵内的最低压力高于该温度的饱和蒸汽压力,水就不会在泵内汽化生成汽泡,水泵就不会发生汽蚀。所以,汽蚀是由水的汽化引起的。离心泵的汽蚀原因主要有以下几个方面:

1)在水泵中,如果吸入系统中某一局部区域的绝对压力等于或低于被吸送液体温度相应的汽化压力,液体便发生汽化,从而发生汽蚀现象,从而造成泵叶轮、叶片表面的损坏。另外,溶解氧析出后对汽蚀区金属部件有氧化腐蚀作用。而汽蚀区液流发生猛烈撞击后,由液流撞击的机械能转化来的热能和汽泡凝结时放出的热能也助长了氧化腐蚀作用。

2)几何安装高度过高,或倒灌高度过低。由于水泵安装过高,在设计工况下运行,叶片进口背面出现低压区,当低于饱和蒸汽压力时,导致叶片背面发生汽蚀。

3)所输送的液体温度过高,则对应的饱和压力高,只要泵内最低点处的压力小于或等于该饱和压力,泵的汽蚀就会发生。

4)运行方式不当。当水泵流量大于设计流量时,叶轮进口相对速度的方向偏离设计方向,共夹角增大,叶片前缘正面发生脱流和漩涡,产生负压,可能出现汽化而引起叶片正面发生汽蚀。当流量小于设计流量时,叶轮进口水流相对速度向相反方向偏离,夹角减小,叶片进口背面产生脱流和漩涡,出现低压区,是导致叶片背面汽蚀的原因之一。

5)泵安装地点大气压力低。对于凝结水泵汽化,具体原因有很多种。如:泵内零、部件磨损、泵内空气未排尽、进口滤网堵塞、凝汽器水位低、循环水管路堵塞等,还要考虑凝结水温、凝结水含氧量等。

2.4 离心泵汽蚀原理

汽蚀现象从机理上来说是个非常复杂的过程,包括了介质在汽液两相变化时所引起的物理、化学、电学、力学以及声学等诸多现象。了解汽蚀产生的机理有助于离心泵设计、制造及使用。根据物理知识可以知道,对于某种液相介质,在一定温度下对应着一定饱和蒸汽压P v,当介质压力小于P v时就会发生汽化。(如图1为离心泵运转时,泵内介质的压力变化曲线)

图1.1 离心泵内的压力曲线

从图上可以看出,介质进入泵入口后压力首先逐渐降低,在叶轮入口附近的K点压力降至最低为P k,若P k

第三章离心泵汽蚀的危害及预防措施

离心泵汽蚀是离心泵的一种常见故障,它会引发多种事故或不良现象,影响泵或工作人员的正常作业。下面就讨论一下离心泵汽蚀现象以及它的危害和预防措施。

3.1 汽蚀现象对离心泵工作的影响

汽蚀会影响离心泵的正常运行,引发许多严重后果。

3.1.1 损坏过流部件

由于汽蚀过程中伴随着机械点蚀和电化学腐蚀,在离心泵的过流部件如叶轮、蜗壳等的金属材料表面逐渐产生许多小麻点,继而麻点不断发展扩大呈沟槽状或蜂窝状,严重时就会形成空洞,甚至造成叶轮的断裂,如图2.1所示为某离心泵产生汽蚀一段时间后的照片,可以看出汽蚀造成叶片表面的金属材料产生了剥落。因此,汽蚀会损坏离心泵的过流部件,甚至影响泵的使用寿命。

图3.1 汽蚀造成离心泵叶片材料的损坏

3.1.2 产生噪音与振动

由汽蚀产生的气泡在破裂时,高频的液击会产生各种噪音,同时诱发泵体振动,而泵体的振动又会加速气泡的产生与破裂。当液击的频率与泵体的固有频率相同时,就会发生共振,使振幅迅速增大,若要保护离心泵不会发生振动破坏就必须停泵进行检查。

3.1.3 降低离心泵的性能

离心泵是通过叶轮的旋转将能量传递给介质,转化为介质的压力能,但汽蚀会对叶轮和液体之间的能量传递造成严重影响。由于汽蚀发生,时会在介质中产生大量的气泡,使得介质的通流面积大为减少,并在局部产生旋涡,这些会破坏泵内介质的连续流动,增大流动损失,使泵的流量、扬程和效率均有所下降。由于离心泵叶轮的形状通常长且窄,汽蚀严重时,大量气泡很快就会堵塞整个流道,造成断流,使离心泵无法正常工作。从图2.2离心泵的性能曲线上来看,在汽蚀比较严重时,性能曲线发生陡降。

图3.2 离心泵的性能曲线

3.1.4 制约离心泵的发展

随着现代工业的高速,要求泵送介质的流量也越来越大,扬程越来越高。对离心泵而言要增大流量和扬程,就需要提高液体介质的流速;根据流体力学,液体流速越高,入口压力损失越大,就更加容易产生汽蚀。因此,提高泵抗汽蚀性能,研究汽蚀机理,是离心泵发展中的重要研究课题。

3.2 影响离心泵汽蚀的因素

3.2.1 吸上真空高度

泵的吸上真空高度的高、低,对于泵是否发生汽蚀是一个重要的因素。有些泵由于吸上高度较大,以至于泵内发生汽蚀,甚至吸上高度过大造成吸不上液体,使泵无法工作。所以,恰如其分地确定泵的吸上真空高度和吸上高度是必需的。其公式是:

(2-1)

泵吸上真空高度H s,与泵几何安装高度H g、泵吸入口流速C s、吸入管路阻力损失h As及吸入液面压力有关。倘若吸入液面压力不变,吸上真空高度H s,随着几何安装高度H g、泵进口流速C s、吸入管路内液体流动阻力的增大而降低。为保证泵的安全运行,需要规定泵的最大吸上真空高度H smax。为使泵运转时不产生气泡,同时又有尽可能大的吸上真空高度,一般规定留有一定的安全裕量K,即

(2-2)

式中[H s]——允许吸上真空高度,m。

K——安全裕量,机械工业部门规定安全裕量K=0.3~0.5 m。

允许吸上真空高度[Hs]也是泵的重要性能参数,用来说明离心泵吸入性能的好坏。泵在安装时的吸上真空高度,不能超过允许吸上真空高度[Hs]。最大吸上真空高度H smax。由制造厂试验求得,它是发生断裂工况时的吸上真空高度。泵安装时,根据制造厂样本规定的[H s]值,计算泵允许几何安装高度[H g]。

(2-3)

为了获得足够的允许几何安装高度,吸入管路内液体的流速不能太高,吸入管路阻力损失不能太大,管路内产生局部阻力的装置尽可能保持最少。

3.2.2 离心泵运行的最小流量

以上分析有效汽蚀余量NPSH a与必需汽蚀余量NPSH r的关系中,若NPSH a =NPSH r,则所对应的流量Q,是泵运行的最大流量,泵在等于或超过最大流量时运行,必定会产生汽蚀。所以泵的工作点一定要限制在最大流量以内。但是,泵在小流量工况下工作,泵的运转亦会产生不稳定,乃至于汽蚀。如当泵工作的流量减小到大约额定流量的2/3以下时,叶轮的入口将产生二次回流,随着流量继续下降,回流范围迅速扩大。这股回流在主流的冲刷下,又重回叶轮内时往往

引起泵体和管路的振动。有时还会在吸入侧引起强烈的液柱喘振。同样,此时在叶轮出口亦会产生二次流,形成出口不稳定的压力脉动,从而引起泵体与管路振动。

泵在小流量工况下运转,由于流量低,c0与w0亦是小的,因而必需汽蚀余量NPSH r应该较小。但实际情况则不然。泵小流量工作时,入口的二次流占据较大的叶片入口通流面积,液流真正的过流截面积很小。所以c0与w0不是下降,反而增加。另外,压降系数λ2在额定工况附近值最小,离开这个工况λ2值反而升高。由此可见,泵小流量工作时,从必需汽蚀余量的公式分析,它是增加的。

泵在小流量工况下运转,泵供给的扬程较大,而泵的效率却较低,所以泵内损失较大。泵内液流几乎在绝热下压缩,除了液流在泵中获得一定能量外,其余的耗功都转化为热能。当泵输送的流量较少,不能把热量带走时,就会导致液体的温度升高。首级叶轮密封环的泄漏返回叶轮入口,亦会引起叶轮入口液体温度升高。同时,液流通过轴向力平衡装置间隙处,压力降较大,放出热量亦大。而轴向力平衡装置的回流液体流入首级叶轮入口,又使液体温度升高,提高了饱和蒸汽压力,从而降低了有效汽蚀余量。把增大的必需汽蚀余量等于有效汽蚀余量时的流量称为最小流量。所以,最小流量是能连续保持而不使泵遭到汽蚀损害的最低流量。当泵的工作流量小于最小流量时,泵内液体汽化。对于火力发电厂的锅炉给水泵与凝结水泵,本身是输送饱和水,因为上述原因使水温升高,将使水泵的安全工作受到威胁,所以它们应该在大于最小流量值下工作。

综上分析可知,泵的安全工作区,应该在最小流量与最大流量之间。如果是调速泵,用相似抛物线可给出泵安全工作的范围。如图2.3所示,泵在某转速下工作的性能曲线H-Q,B为该转速下泵的最大流量。过B点的相似抛物线OB,为泵在不同转速下的最大流量界限点。H—Q曲线上的A点,为该转速泵的最小流量。过A点的相似抛物线OA,为泵在不同转速下的最小流量界限点。泵的安全工作范围在OB与OA相似抛物线范围内。泵在变速运行时,如果工作点落在OB曲线以右区域,则一定要通过相应措施,使泵工作点移动至OB曲线以左。

图3.1 泵的安全工作范围

3.2.3 汽蚀余量

离心泵是否发生汽蚀受到泵本身和吸入装置两个方面的影响,具体表现就是泵必需汽蚀余量NPSH r有效汽蚀余量NPSH a二者的关系(如图3.3)。其中NPSH r 表示泵不发生汽蚀,要求在泵进口处单位重量液体具有超过汽化压力水头的富余能量,NPSH a表示泵进口处液体具有的全部水头减去汽化压力水头净剩的值。

当NPSHa>NPSH r时,离心泵不会发生汽蚀。

当NPSH a=NPSH r时,离心泵开始发生汽蚀。

当NPSH a

汽蚀刚发生时NPSH a=NPSH r=NPSH c;p k=p v。此时的汽蚀余量称为临界汽蚀余量NPSH c。为确保泵运转时不汽蚀,相对于NPSH c应该留有一个安全量。安全量的大小视系统及泵具体情况而定。一般取

式中:[NPSH]——允许汽蚀余量;

K——汽蚀安全裕量。

国际标准草案ISO/Dis 9905:NPSH a必须超过10%NPSH r,各种情况下不得小于0.5m。

图3.3 离心泵的汽蚀曲线

3.3 离心泵汽蚀的预防措施

通过上述分析,根据汽蚀产生的机理,若要避免离心泵内产生汽蚀,应当使泵内最低点处的压力高于介质的汽化压力,也就是通常所说的有效汽蚀余量高于泵的必需汽蚀余量即NPSH a>NPSH r,且应当留有一定的余量。据此,可以在离心泵的设计、制造、使用过程中采取各种防范措施,来避免产生汽蚀。

3.3.1 改进泵的结构设计

改善泵的汽蚀性能,可以从降低泵的必需汽蚀余量着手,根据离心泵必需汽蚀余量公式:

(3-1)

式中:v0——进口平均流速,通常指叶轮喉部液体绝对速度,m/s;

w0——叶轮进口处液体的相对速度,m/s;

λ1——因液体从泵人口到叶轮进口段速度增大和流向改变引起能量损失的校正系数;

λ2——流体绕过叶片头部的压降系数,与冲角、叶片数、叶片头部形状等有关;

g——重力加速度,m/s2。

从公式(3-1)看出,NPSH r仅与泵本身的结构有关,而与介质的性质无关,由此,可以从如下几个方面改进泵的结构,降低NPSH r:

(1)适当增大叶轮入口直径D0,可使叶轮进口流速v0减小;或者适当增大叶轮叶片入口边宽度b1,可使叶轮入口处液体的相对速度w0减小。这样实质是改善了叶轮的吸入特性,但需要注意D0和b1并非是越大越好,而是有最佳的设计范围,二者取值过大时,NPSH r反而会增加。

(2)选用双吸叶轮,这样介质从叶轮两侧流入,相当于增大了叶轮的入口面积,使流经叶轮每一侧的流量减少,从而降低叶轮的v0、w0和λ2。

图3.2 离心泵叶轮示意图

(3)适当增大叶轮盖板进口段的曲率半径;将叶片尽可能向叶轮入口边扩展;提高叶轮和叶片进口部分的表面光洁度;增大叶片进口角和采用正冲角;这些措施都可以使介质流动更加平稳,降低流动损失,从而降低泵的NPSH r。

(4)为离心泵安装诱导轮,可以对介质进行预增压,增大了叶轮入口处的

介质压头,可以显著降低NPSH r,有时可以降低70%以上。但诱导轮会增加轴向的安装尺寸,且安装了诱导轮的离心泵在小流量运行时,扬程会降低,从曲线上表现为出现了“驼峰”,因此在标准API610中是不推荐离心泵加装诱导轮的。

3.3.2 使用抗汽蚀材料

有时离心泵受到安装、使用条件的限制,不能完全避免汽蚀的发生,可以采用抗汽蚀性能良好的材料来制造叶轮,以延长叶轮的使用寿命。实践证明,材料的强度、硬度越高,韧性越好,化学性能越稳定,材料的抗汽蚀性能就越好,常用的材料如含有镍铬的不锈钢,铝青铜,高镍铬合金等。

3.3.3 提高装置有效汽蚀余量

在进行离心泵装置的设计时,尽最大可能进行优化设计,以提高泵吸入口的有效汽蚀余量NPSHa:

(1)适当增大泵吸入管路的直径,降低管路内表面的粗糙度,减少不必要的弯头、阀门等,以减少泵入口管段的管路损失,从而提高NPSHa。

(2)增大泵吸入储罐介质压力,来提高NPSHa。

(3)当装置所能提供的NPSHa不能满足泵要求时,可以选择合适的泵型如筒袋泵,来降低泵的安装高度,提高泵吸入口处的压力。

3.3.4 加强操作管理

在离心泵运转的过程中,注意对泵的正确操作,避免不恰当操作会人为诱发离心泵的汽蚀。

(1)保证离心泵在允许工作区内工作。当离心泵工作流量过大时,NPSH r 会迅速增大,使NPSH r>NPSH a,从而产生汽蚀;当泵工作流量低于最小连续稳定流量时,过小的流量会导致轮盘与介质之间的摩擦热以及其他损失产生的热量不能及时排出,介质温度升高,介质的饱和蒸汽压P v升高,如前面所述PK<P v 时,将导致汽蚀产生。

(2)避免使用入口节流的方法的来调节泵的流量,入口节流会增大入口压力损失,降低NPSH a。

(3)泵关阀启动的时间不能过长。离心泵在启动时,为了降低启动电流,通常采取关闭出口阀门的启动方式,但若阀门关闭时间过长,机械损失等产生的热量使得介质温度升高,诱发汽蚀。

(4)对于变速调节的泵,应避免泵的转速过高。根据汽蚀相似定律,NPSH r 与转速的平方成正比,因此,泵的操作转速不应高于设计允许的的转速。

第四章结论

本文通过简单介绍了离心泵的类型、结构组成和工作原理,重点阐述了离心泵的汽蚀现象、汽蚀类型、汽蚀的原因、汽蚀原理、汽蚀现象的危害、影响汽蚀的因素以及离心泵汽蚀现象的预防措施,包括离心泵的设计、材料选择、提高汽蚀余量以及通过正规的操作管理几项措施。

通过分析介绍,我们可以知道,汽蚀现象会影响离心泵的工作效率,而且,引起汽蚀的原因也有很多。因此,认真研究离心泵的汽蚀,可以从设备的结构设计、材料的选择等几个方面着手研究,尽量避免汽蚀的发生,有效提高工程效率,是值得我们高度重视的。

致谢

五年的读书生活在这个季节即将划上一个句号,而对于我的人生却只是一个逗号,我将面对又一次征程的开始。五年的求学生涯在师长、亲友的大力支持下,走得辛苦却也收获满囊,在论文即将付梓之际,思绪万千,心情久久不能平静。伟人、名人为我所崇拜,可是我更急切地要把我的敬意和赞美献给一位平凡的人,我的导师。我不是您最出色的学生,而您却是我最尊敬的老师。授人以鱼不如授人以渔,置身其间,耳濡目染,潜移默化,使我不仅接受了全新的思想观念,领会了基本的思考方式,从论文题目的选定到论文写作的指导,经由您悉心的点拨,再经思考后的领悟,常常让我有一种豁然开朗的感觉。

另外,感谢我的爸爸妈妈,感谢你们对我的养育之恩,你们永远健康快乐是我最大的心愿。

在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚谢意。

在本文的撰写过程中,髙瑶老师作为我的指导老师,她治学严谨,视野广阔,为我营造了一种良好的学术氛围。其严以律己、宽以待人的崇高风范,朴实无华、平易近人的人格魅力,与无微不至、感人至深的人文关怀,令人如沐春风,倍感温馨。正是由于她在百忙之中多次审阅全文,对细节进行修改,并为本文的撰写提供了许多中肯而且宝贵的意见,本文才得以成型。

在此特向髙瑶老师致以衷心的谢意!向她无可挑剔的敬业精神、严谨认真的治学态度、深厚的专业修养和平易近人的待人方式表示深深的敬意!

离心泵汽蚀原因及预防措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.离心泵汽蚀原因及预防措 施正式版

离心泵汽蚀原因及预防措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 汽蚀主要危害 (1)造成材料破坏。汽蚀发生时,由于机械剥蚀于化学腐蚀的共同作用,使材料受到破坏。由于汽蚀现象的复杂性,所以其形成机理直到现在仍在研究探讨中。一般认为水力冲击引起的机械剥蚀,首先使材料破坏,而且是造成材料破坏的主要因素。 (2)产生噪声和振动。汽蚀发生时汽泡的破裂和高速冲击会引起严重的噪声。另外,汽蚀过程本身是一种反复凝结、冲击的过程,伴随很大的脉动力。如果这些

脉动力的频率与设备的自然频率接近,就会引起强烈的振动。如果汽蚀造成泵转动部件材料破坏,必然影响转子的静平衡及动平衡,导致严重的机械振动。 (3)使离心泵的性能下降。泵汽蚀时,会使其性能下降。泵内气泡较少时,泵的性能曲线并无明显的变化,这是汽蚀的初生阶段。 气泡大量产生时,流道被“堵塞”,这时汽蚀已到了发达阶段。表现在泵的性能曲线上,出现明显的变化,性能曲线发生显著下降,出现了“断裂”工况。但是不同的比转速泵,其汽蚀性能曲线下降的情况是不同的。 防止离心泵汽蚀的9 大措施

防止水泵汽蚀方法措施

防止水泵汽蚀方法措施 一水泵的类型原理 一、水泵的定义:通常把提升液体、输送液体或使液体增加压力, 即把原动机的机械能变为液体能量从而达到抽送液体目的的机器统称为泵。 二、水泵的工作原理: 1 容积式泵_ 利用工作腔容积周期变化来输送液体。 2 、叶片泵_ 利用叶片和液体相互作用来输送液体。 三、水泵的具体用途:水泵的不同用途、不同的输送液体介质、不同 流量、扬程的范围,泵的结构型式当然也不一样,材料也不同,概括起来,大致可以分为: 1 、城市供水 2 、污水系统 3 、土木、建筑系统 4 、农业水利系统 5 、电站系统 6 、化工系统 7 、石油工业系统 8 、矿山冶金系统 9 、轻工业系统10 、船舶系统 二汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力

上升气泡消失在液体中的现象称为汽蚀溃灭。 水泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 三水泵汽蚀基本关系式 水泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从水泵本身和吸入装置双方来考虑,水泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHrNPSHc——水泵开始汽蚀 NPSHa NPSHa>NPSHrNPSHc——水泵无汽蚀

离心泵产生气蚀现象的原因及防止措施

离心泵因其操作简易、运行平稳、性价比高及便于维修护理而受到多数使用客户的喜爱并广泛应用于工业领域和日常生活。但凡是机械设备,在经过长时间的持续工作状态下,难免会出现设备的损坏和故障问题,离心泵的气蚀现象就是离心泵的常见故障之一。泵一旦发生汽蚀,其流量和扬程性能不仅会下降,还会表现出噪声、振动明显偏高,严重时甚至会使泵中液流中断,不能正常工作。汽蚀还会对泵的过流部件产生破坏,甚至影响管路系统。产生气蚀现象的原因有很多,例如离心泵产品质量有问题,操作人员的使用不当等。产品在出厂前会经过多道程序的质量检测,所以人为因素的影响比例更大。在工作状态下,离心泵的工作环境及操作因素的影响,占到离心泵发生气蚀现象比例的绝大部分。下面深圳恒才具体为大家介绍下气蚀产生的原因。 气蚀原因: 离心泵在工作的时候,离心泵输送的液体压力,会随着泵内液体从入口到叶轮入口下降而下降。当叶片入口附近的液体压力达到最低的时候,叶轮开始对液体做功,液体压力开始上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就会发生汽化的现象。同时溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力突然增加。这样,不仅阻碍了离心泵输送的液体正常流动。而且当这些气泡在叶轮壁面附近破裂的时候,则液体就会连续不断地撞击离心泵的内壁表面。长期的撞击之下就会造成离心泵内壁的结构损坏和剥落。如果气泡内掺杂着一些化学气体例如氧气,这些气体就会借助气泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击

离心泵起动时为什么要把出口阀关闭_何谓离心泵的

离心泵起动时为什么要把出口阀关闭?何谓离心泵的“ 气缚&rdq 离心泵发生汽蚀是由于液道入口附近某些局部低压区处的压力降低到液体饱和蒸汽压,导致部分液体汽化所致。所以,凡能使局部压力降低到液体汽化压力的因素都可能是诱发汽蚀的原因。产生汽蚀的条件应从吸入装置的特性,泵本身的结构以及所输送的液体性质三方面加以考虑。 1)结构措施:采用双吸叶轮,以减小经过叶轮的流速,从而减小泵的汽蚀余量;在大型高扬程泵前装设增压前置泵,以提高进液压力;叶轮特殊设计,以改善叶片入口处的液流状况;在离心叶轮前面增设诱导轮,以提高进入叶轮的液流压力。 2)泵的安装高度,泵的安装高度越高,泵的入口压力越低,降低泵的安装高度可以提高泵的入口压力。因此,合理的确定泵的安装高度可以避免泵产生汽蚀。 3)吸液管路的阻力,在吸液管路中设置的弯头、阀门等管件越多,管路阻力越大,泵的入口压力越低。因此,尽量减少一些不必要的管件或尽可能的增大吸液管直径,减少管路阻力,可以防止泵产生汽蚀。 4)泵的几何尺寸,由于液体在泵入口处具有的动能和静压能可以相互转换,其值保持不变。入口液体流速高时,压力低,流速低时,压力高,因此,增大泵入口的通流面积,降低叶轮的入口速度.可以防止泵产生汽蚀。 5)液体的密度。输送密度越大的液体时泵的吸上高度就越小,当用已安装好的输送密度较小液体的泵改送密度较大的液体时,泵就可能产生汽蚀,但用输送密度较大液体的泵改送密度较小的液体时,泵的入口压力较高,不会产生汽蚀。 6)输送液体的温度。温度升高时液体的饱和蒸气压升高。在泵的入口压力不变的情况下,输送液体的温度升高时,液体的饱和蒸气压可能升高至等于或高于泵的入口压力,泵就会产生汽蚀。 7)吸液池液面压力。吸液池液面压力较高时,泵的入口压力也随之升高,反之,泵的入口压力则较低,泵就容易产生汽蚀。 8)输送液体的易挥发性在相同的温度下较易挥发的液体其饱和蒸汽压较高,因此,输送易挥发液体时的泵容易产生汽蚀。 9)其他措施:采用耐汽蚀破坏的材料制造泵的过流部分元件;降低泵的转速。 离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。由于离心泵的作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸水池中的液体在液面压力(大气压)的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。离心泵工作前,先将泵内充满液体,然后启动离心泵,叶轮快速转动,叶轮的叶片驱使液体转动,液体转动时依靠惯性向叶轮外缘流去,同时叶轮从吸入室吸进液体,在这一过程中,叶轮中的液体绕流叶片,在绕流运动中液体作用一升力于叶片,反过来叶片以一个与此升力大小相等、方向相反的力作用于液体,这个力对液体做

离心泵的气缚与气蚀现象

离心泵的气缚与气蚀现象 为区分离心泵的“气缚”与“汽蚀”现象,有必要先简要了解离心泵的结构和理解其工作原理。 离心泵的外观是一个蜗牛状的泉壳,里面装有与泵轴相连的叶轮及泵的进出口阀门等构成。离心泵在开泵前,泵内必须充满液体。启动电机后,电机通过轴带动叶轮高速旋转。高速旋转的叶轮带动液体转动,因叶轮的特殊结构,在离心力的作用下使液体获得很高的能量,表现为流速、压力的增大。在泵壳中崮泵壳的蜗壳形状.流速会逐渐减小,而压力会进一步增大,最终以较高的压力从泵的出口排出。同时,当叶轮中心的液体被甩出后,在叶轮中心形成一定的真空度,而液面的压强比叶轮中心处要高,液面与叶轮中心形成一定压力差。在压差的作用下,液体被吸入泵内。通俗地说离心泵的工作过程是吸进来压出去。 “气缚”现象 离心泵运转时,如果泵内没有充满液体。或者在运转中泵内漏入了空气,由于空气很轻(密度很小),产生的离心力小,在吸入口处所形成的真空度低,不足以将液体吸入泵内。这时,虽然叶轮转动,却不能输送液体,这种现象称为“气缚”。 可见“气缚”现象是由于泵内存有气体而不能吸液的现象。没有液体的吸入,当然就没有液体的排出。如果泵安装在液面以上时,在

吸入管底部必须安装一个单向底阀。目的是为了不使泵内液体漏掉,以防“气缚”产生。 对于“气缚”现象,只要赶跑泵内空气,使泵内充满液,泵就能恢复正常运行。 “汽蚀”现象 “汽蚀”现象是由于泵的安装高度过高,泵内叶轮中心附近压力过低,当压力低到等于被输送液体的饱和蒸汽压时,入口处液体将在泵内汽化,产生大量汽泡,随同液体一起进入高压区,在高压区内便被周围高压液体压碎。瞬间内周围的高压液体以极高的速度打向原汽泡所占据的空间,类似于子弹打在这些点上。使叶轮或泵壳出现麻点和小的裂缝,久而久之,叶轮或泵壳将烂成海绵状,这种现象称为“汽蚀”。 简要地说,“汽蚀”现象是由于泵的安装高度过高,叶轮中心附近压力过低.液体在泵内汽化而损坏泵体的现象。当“汽蚀”现象发生时,其特征是泵体震动并发出噪音,泵的流量、扬程也明显下降。 可见“气缚”与“汽蚀”直接导因是不同的。“气缚”是由于泵内存有空气而产生,不会严重损坏泵体。“汽蚀”是由于液体在泵内汽化而产生.会严重损坏泵体。因此在使用中,应严禁“汽蚀”现象的发生。

离心泵的汽蚀现象介绍

离心泵的汽蚀现象介绍 (一)、离心泵的汽蚀现象 离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。 (二)、离心泵的安装高度Hg 1允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。 (1) 输送清水,但操作条件与实验条件不同,可依下式换算 Hs1=Hs+(Ha-10.33) - (Hυ-0.24) (2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s 2 汽蚀余量Δh 对于油泵,计算安装高度时用汽蚀余量Δh来计算,即 用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。若输送其它液体,亦需进行校正,详查有关书籍。 从安全角度考虑,泵的实际安装高度值应小于计算值。又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。 例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。试计算: (1) 输送20℃清水时泵的安装; (2) 改为输送80℃水时泵的安装高度。

怎样预防水泵汽蚀

怎样预防水泵汽蚀,怎样减轻水泵汽蚀,减轻水泵汽蚀的办法 减轻水泵汽蚀的办法一、提高水泵的抗汽蚀性能 1、降低必需汽蚀余量 (1)采用双吸式叶轮的水泵。由于双吸泵的汽蚀余量Δhc比单级单吸泵的汽蚀余量Δhc小,对于转速n和流量Q相同的泵,尽量采用双吸式叶轮。 (2)适当加大叶轮进口直径及增大叶片入口宽度。当叶轮进口直径和叶片入口宽度增大时,其叶轮进口绝对速度和相对速度均减小,可知泵的临界汽蚀余量降低。但此时叶轮进口处的减漏环面积增大,泄露量增加,泵的容积效率会降低。 (3)叶轮前加设诱导轮。在离心泵叶轮前设置诱导轮。诱导轮与泵的叶运转,其产生的压力轮同轴组装后一起运转,其产生的压力对叶轮入口增压,提高泵的抗汽蚀性能。但加设诱导轮,会使水泵性能不稳定,因此,尚需对其进行进一步的探索和研究。 2、提高过流部件材料的抗汽蚀能力为了减轻汽蚀对水泵过流部件的损坏,延长其使用寿命,往往选用抗汽蚀性能较强的材料。如采用铸锰、青铜、不锈钢及合金钢等材料铸造叶轮;或用聚合物涂复或激光喷镀过流部件表面以抵抗汽蚀破坏。另外,对过流部件表面进行精加工,提高其光洁度,也可减轻汽蚀的危害。 减轻水泵汽蚀的办法二、提高进水装置的防汽蚀能力 汽蚀余量是与进水装置和管路系统有密切关系,因此应设计良好的进水装置,尽可能地提高泵进口的汽蚀余量,以满足泵内动压降的要求。 (1)合理确定水泵的吸水高度。由于水泵一般都在非设计工况下运行,因此应充分考虑水泵工作中可能遇到的各种工况,所确定的吸水高度在任何工况下都应满足水泵吸水性能的要求。 (2)选配合理的进水管道。尽可能减少进水管道长度及不必要的管道附件,适当加大进水管径,以减小进水管的水力损失,提高泵进口的汽蚀余量。对于大、中型轴流泵,进水管道内的水流流速和压力尽可能均匀分布,将有利于防止汽蚀的发生。 (3)设计良好的进水池。良好的进水池不仅可以减小池中水位的降落,减小进水管口的阻力系数,而且池中水面平稳不产生漩涡。可避免空气进入泵内,防止汽蚀过早地发生。 3、运行管理中可采取的措施 (1)尽量使水泵在设计工况附件运行。可跟据泵站的具体条件,采用变阀、变速、变角等调节措施,来防止水泵运行

泵汽蚀余量

汽蚀余量有两个概念: 我们一般讲的汽蚀余量,是“有效汽蚀余量”,与泵的安装方式有关,它是指流体经吸入管路到达泵吸入口后所余的高出临界压力能头的那部分能量,是可利用的气蚀余量,属于“用户参数”;另一个,我们称为“临界的气蚀余量”,也称“必需的气蚀余量”,它是流体由泵吸入口至压力最低处的压力降低值,是临界的气蚀余量,属于“厂方参数”。 前者,越大,泵系统性能越好;后者,越小,泵的吸入性能越好。即:不易发生气蚀。 实际情况证明,叶轮吸人过程中最低压力点是在叶片人口稍后的某断面处.为了避免离心泵发生汽蚀,应使叶片人口处的最低液流压力PK大于该温度下的液体饱和蒸汽压Pt,即在水泵入口K处的液流具有的能头除了要高出液体的汽化压力Pt外,还应当有一定的富余能头.这个富余能头称为泵装置的有效汽蚀余量,用符号△Ha表示.吸人装置能量平衡示意图可知,从由吸液缸液面至泵人口的能量平衡方程可写为: △Ha=(PA-P1)/ρg-HG- Ha-s 式中PA——吸人缸液面上的压力; Pt——输送温度下液体的饱和蒸汽压; ρ——液体的密度; Hg——泵安装高度(泵轴中心和吸人液面垂直距离); Ha-s——吸人管路内的流动损失. 液流从泵人口流到叶轮内最低压力点K处的过程中,不仅没有能量加入,而且还需克服这段流道内的局部阻力损失.这部分能量损失,称为泵必须的最小汽蚀余量,用符号△hr,表示.在泵人口到K点的能量平衡方程,并简化可得 Ps/ρ-Pt/ρ+CS2/2=λ1C0/2+λ2W02/2 式中 Cs——吸人池流速,一般为零; C0——叶轮人I=1处的平均流速; W0——叶轮人口处液流的相对速度; λ1——与泵人口几何形状有关的阻力系数; λ2——与叶片数和叶片头部形状有关的阻力系数. 上式等号左端称为△忍.,是靠压差吸人后,在叶轮人口处的能量,可以理解为吸人动力;等号右端是叶轮人口处流动和分离的能量损失Ah,. 这个公式,只能供理解用,即△危,可理解为叶轮吸人I=1处水力阻力和水力分离损失,是一种水力消耗.在设计时用此公式是难以算准的,其确切数值只能由实验决定.为了防止汽蚀,工程上的实验值上再多留0.3m的安全余量,称为允许汽蚀余量,用符号[△h]表示,即[△h]= △hr,+0.3m 可知,△危,大小与流量有关,可画出△hr-p的关系曲线,所示,称为吸人特性.泵样本上给出的[△h]-Q曲线,都是制造厂用水在常温下试验测出的(输 油时需要换算). 重复强调一下,汽蚀余量的概念,从能量消耗角度来说,是指叶轮人口的流动阻力和流动分

泵的汽蚀现象分析及防止汽蚀措施

泵的汽蚀现象分析及防止汽蚀措施 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHa NPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施 欲防止发生汽蚀必须提高NPSHa,使NPSHa>NPSHr可防止发生汽蚀的措施如下: 1.减小几何吸上高度hg(或增加几何倒灌高度); 2.减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附件等; 3.防止长时间在大流量下运行; 4.在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 5.泵发生汽蚀时,应把流量调小或降速运行; 6.泵吸水池的情况对泵汽蚀有重要影响; 7.对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料

水泵预防和减轻水泵汽蚀及离心泵流量管道调节的办法

水泵预防和减轻水泵汽蚀及离心泵流量管道调节的办法一般所选离心泵的流量、压头可能会和管路中要求的不一致,或由于生产任务、工艺要求发生变化,此时都要求对泵进行流量调节,实质是改变离心泵的工作点。 离心泵的工作点是由泵的特性曲线和管路系统特性曲线共同决定的,因此,改变任何一个的特性曲线都可以达到流量调节的目的。 目前,管道离心泵的流量调节方式主要有调节阀控制、水泵变速控制以及泵的并、串联调节等。由于调节方式的原理不同,造成的能量损耗也不一样,为了寻求能耗最小、节能最高、效果最佳的流量调节方式,必须全面地了解离心泵的流量调节方式与能耗之间的关系。 通过管道离心泵与管路系统的特性曲线图分析了离心泵流量调节的几种主要方式:出口阀门调节、泵变速调节和泵的串、并联调节。用特性曲线图分析了出口阀门调节和泵变速调节两种方式的能耗损失,并进行了对比得出,离心泵用变速调节流量比用出口阀门调节流量可以更好的节约能耗,例:将出口阀门调小,直接阻止了液体的流量,但离心泵的工作能量却没减小;如果采取变速调节,减小离心泵的转速,相应的减少了流量,从而达到了既减小了流量,又节约了能耗。 一、提高水泵的抗汽蚀性能 1、降低必需汽蚀余量 (1)采用双吸式叶轮的水泵。由于双吸泵的汽蚀余量Δhc比单级单吸泵的汽蚀余量Δhc小,对于转速n和流量Q相同的泵,尽量采用双吸式叶轮。 (2)适当加大叶轮进口直径及增大叶片入口宽度。水泵当叶轮进口直径和叶片入口宽度增大时,其叶轮进口绝对速度和相对速度均减小,可知泵的临界汽蚀

余量降低。但此时叶轮进口处的减漏环面积增大,泄露量增加,泵的容积效率会降低。 (3)叶轮前加设诱导轮。在离心泵叶轮前设置诱导轮。诱导轮与泵的叶运转,其产生的压力轮同轴组装后一起运转,其产生的压力对叶轮入口增压,提高泵的抗汽蚀性能。但加设诱导轮,会使水泵性能不稳定,因此,尚需对其进行进一步的探索和研究。 2、提高过流部件材料的抗汽蚀能力为了减轻汽蚀对水泵过流部件的损坏,延长其使用寿命,往往选用抗汽蚀性能较强的材料。如采用铸锰、青铜、不锈钢及合金钢等材料铸造叶轮;或用聚合物涂复或激光喷镀过流部件表面以抵抗汽蚀破坏。另外,对过流部件表面进行精加工,提高其光洁度,也可减轻汽蚀的危害。 减轻水泵汽蚀的办法二、提高进水装置的防汽蚀能力 汽蚀余量是与进水装置和管路系统有密切关系,因此应设计良好的进水装置,尽可能地提高泵进口的汽蚀余量,以满足泵内动压降的要求。 (1)合理确定水泵的吸水高度。由于水泵一般都在非设计工况下运行,因此应充分考虑水泵工作中可能遇到的各种工况,所确定的吸水高度在任何工况下都应满足水泵吸水性能的要求。 (2)选配合理的进水管道。尽可能减少进水管道长度及不必要的管道附件,适当加大进水管径,以减小进水管的水力损失,提高泵进口的汽蚀余量。对于大、中型轴流泵,进水管道内的水流流速和压力尽可能均匀分布,将有利于防止汽蚀的发生。 (3)设计良好的进水池。良好的进水池不仅可以减小池中水位的降落,减小进水管口的阻力系数,而且池中水面平稳不产生漩涡。可避免空气进入泵内,防

如何预防和减轻水泵汽蚀

如何预防和减轻水泵汽蚀 一、提高水泵的抗汽蚀性能 1、降低必需汽蚀余量 (1)采用双吸式叶轮的水泵。由于双吸泵的汽蚀余量Δhc比单级单吸泵的汽蚀余量Δhc小,对于转速n和流量Q相同的泵,尽量采用双吸式叶轮。 (2)叶轮前加设诱导轮。在离心泵叶轮前设置诱导轮。诱导轮与泵的叶运转,其产生的压力轮同轴组装后一起运转,其产生的压力对叶轮入口增压,提高泵的抗汽蚀性能。但加设诱导轮,会使水泵性能不稳定,因此,尚需对其进行进一步的探索和研究。 (3)适当加大叶轮进口直径及增大叶片入口宽度。当叶轮进口直径和叶片入口宽度增大时,其叶轮进口绝对速度和相对速度均减小,可知泵的临界汽蚀余量降低。但此时叶轮进口处的减漏环面积增大,泄露量增加,泵的容积效率会降低。 2、提高过流部件材料的抗汽蚀能力为了减轻汽蚀对水泵过流部件的损坏,延长其使用寿命,往往选用抗汽蚀性能较强的材料。如采用铸锰、青铜、不锈钢及合金钢等材料铸造叶轮;或用聚合物涂复或激光喷镀过流部件表面以抵抗汽蚀破坏。另外,对过流部件表面进行精加工,提高其光洁度,也可减轻汽蚀的危害。 减轻水泵汽蚀的办法二、提高进水装置的防汽蚀能力 汽蚀余量是与进水装置和管路系统有密切关系,因此应设计良好的进水装置,尽可能地提高泵进口的汽蚀余量,以满足泵内动压降的要求。 (1)设计良好的进水池。良好的进水池不仅可以减小池中水位的降落,减小进水管口的阻力系数,而且池中水面平稳不产生漩涡。可避免空气进入泵内,防止汽蚀过早地发生。 (2)合理确定水泵的吸水高度。由于水泵一般都在非设计工况下运行,因此应充分考虑水泵工作中可能遇到的各种工况,所确定的吸水高度在任何工况下都应满足水泵吸水性能的要求。 (3)选配合理的进水管道。尽可能减少进水管道长度及不必要的管道附件,适当加

离心泵的汽蚀原因及措施

离心泵的气蚀原因及采取措施 【摘要】:通过掌握离心泵的气蚀原因,我们在设计、安装、和生产中应如何预防与消除气蚀现象。 【关键词】:离心泵气蚀原因消除措施 离心泵的气蚀原理: 离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的K点上,液体压力p K最低。此后由于叶轮对液体作功,液体压力很快上升。当叶轮叶片入口附近的压力p K小于液体输送温度下的饱和蒸汽压力p v时,液体就汽化。同时,使溶解在液体内的气体逸出。它们形成许多汽泡。当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加(有的可达数百个大气压)。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高(有的可达2000~3000Hz),于是金属表面因冲击疲劳而剥裂。如若汽泡内夹杂某种活性气体(如氧气等),它们借助汽泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。上述这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的

综合现象称为气蚀。 离心泵最易发生气蚀的部位有: 1.叶轮曲率最大的前盖板处,靠近叶片进口边缘的低压侧; 2.压出室中蜗壳隔舌和导叶的靠近进口边缘低压侧; 3.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间 隙以及叶梢的低压侧; 4.多级泵中第一级叶轮。 提高离心泵本身抗气蚀性能的措施 (1)改进泵的吸入口至叶轮附近的结构设计。增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。 (2)采用前置诱导轮,使液流在前置诱导轮中提前作功,以提高液流压力。 (3)采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。 (4)设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻塞,以增大进口面积;改善大流量下的工作条件,以减少流动损失。但正冲角不宜过大,否则影响效率。 (5)采用抗气蚀的材料。实践表明,材料的强度、硬度、韧性

如何防止泵发生汽蚀现象

如何防止泵发生汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHaNPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好; NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施

泵的汽蚀现象分析及防止汽蚀措施标准版本

文件编号:RHD-QB-K8890 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 泵的汽蚀现象分析及防止汽蚀措施标准版本

泵的汽蚀现象分析及防止汽蚀措施 标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当

含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)--泵开始汽蚀

离心泵汽蚀

离心泵汽蚀的研究现状 1.1. 汽蚀发生机理 国内外学者对汽蚀发生的机理进行了很多研究,提出了诸多观点和论述,其中最具代表性的是由柯乃普提出的“气核理论”。该理论认为经过特殊处理的“纯水”可以承受拉力,自然界中的水却只能承受很大的压力,其原因是水中存在很多含有气体或蒸汽的微小的气泡(称为核子),这些核子使液体的抗拉强度降低。当液体的压强低于汽化压强时,这些核子将迅速膨胀形成气泡,从而导致汽蚀发生。但是尺寸很小的气核,内部压强是很大的,核子内部的气体会受压而被周围的水体所吸收。所以小的核子将处于不稳定状态。由此可见,核子不可能长期存留在水中。这就得出一个很奇怪的结论:一方面,要产生汽蚀现象,就必须有核子的存在;而另一方面,核子又不可能在水中长期存在。对于这个矛盾,目前还无法正确解释,现有的汽蚀核子理论在很大程度上还带有臆想性,由核子发展成为汽蚀的过程还只是推测。但是,如果不假设气体核子的存在,就不能设想水体中在某种低的临界压强下会出现汽蚀。因此不得不假定气核具有一系列的附加特性,以保证它们能够存在于水中并处于稳定动态平衡。为此许多研究者便进行了一系列的设想。 这些设想的模式中,比较有名的是Fox和Herzfel模式和E.N.Hervery[7]模式。Fox等人提出,微小气核之所以不会溶解,是因为气核被有机薄膜所包围。这种有机薄膜是在水一气界面上自然形成的,它改变了液体的有效表面张力,推迟了蒸发,阻碍了扩散,使微小气核可以持久地悬浮,但有机薄膜是否存在,还有待物理上的证明。 E.N.Hervery于1947年提出,气体核子是水中固体颗粒或绕流物体表面缝隙中未被溶解的一些气体,而这些固体表面是疏水性的,使得在缝隙中的气体形成一个凹面的自由表面。在这样的情况下,表面张力将阻止液面进入缝隙,因而气体并不能被强迫溶解,而仍可能保持气相。Hervey模式可以解释观察到的所有汽蚀现象,也无须再假设一些不可能有的水的性质,并有很多试验数据予以证实。但是这一模式至今仍缺乏数学描述,这是因为缝隙的尺寸和形状的不确定性,以及固体表面疏水性的不同给数学分析造成了难以克服的困难。

如何解决水泵的气蚀现象

毕业论文 课程名称如何解决水泵的气蚀现象 学生姓名X X X 年级X X 专业X X X X 指导教师X X X

如何解决水泵的气蚀现象 摘要:离心泵以其转速高,体积小,重量轻,效率高,流量大,结构简单,性能平稳,容易操作和维修等优点,使其在输油生产中得到了广泛的应用,汽蚀现象也是离心泵在输油生产中常见的故障。 关键词:离心泵;汽蚀;汽蚀余量 一、气蚀现象含义 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡,把这种产生气泡的现象称为汽蚀。离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的液体压力达到最低,此后由于叶轮对液体做功,液体压力很快上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就汽化。同时,使原来溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些气泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高,于是金属表面因冲击疲劳而剥裂。如若气泡内夹杂某种活性气体(如氧气等),它们借助气泡凝结时放出的热量,产生电

解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为离心泵的汽蚀现象。 二、水泵运行中产生气蚀现象的原因 液体的汽化程度与压力的大小、温度高低有关。当液体内部压力下降,低于液体在该温度下的饱和蒸汽压时,便产生汽蚀故障。吸入压力降低;吸入高度过高;吸入管阻力增大;输送液体粘度增大;抽吸液体温度过高等影响液体饱和蒸气压增加的现象都会影响汽蚀的发生,通常的因素有: (1)泵进口的结构参数,叶轮吸入口的形状、叶片入口边宽度及叶片进口边的位置和前盖板形状等。 (2)泵的操作条件,泵的流量、扬程及转速等。 (3)泵的安装位置,泵的吸入管路水力损失及安装高度。 (4)环境因素,泵安装地点的大气压力以及输送液体的温度等。 三、水泵气蚀现象所产生的危害 水泵汽蚀是水泵损坏的重要原因,水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。运行中使水泵抽水的效率降低,显著减少了水泵的扬程和流量,也减少了水泵的使用寿命。汽蚀时传递到叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海面状逐步脱落;发生汽蚀时,还会发出噪声,进而使泵体震动;

离心泵气蚀的主要原因分析

离心泵气蚀的主要原因分析 影响离心泵气蚀的因素是设计与使用离心泵所必须考虑的问题,近年来国内外对其进行了大量的研究。但由于研究的侧重点不同,且大多都是针对影响离心泵气蚀的某一参数进行的研究,造成研究成果较为分散,且部分观点之间相互矛盾。本文综合国内外大量文献,对离心泵气蚀影响因素的相关研究结果进行比较、分析,得出目前较为全面的影响离心泵气蚀的主要因素。 1.流体物理特性方面的影响 流体物理特性对离心泵气蚀的影响主要包括:所输送流体的纯净度、pH值和电解质浓度、溶解气体量、温度、运动黏度、汽化压力及热力学性质。 (1)纯净度(所含固体颗粒物浓度)的影响流体中所含固体杂质越多,将导致气蚀核子的数量增多。从而加速气蚀的发生与发展。 (2)pH值和电解质浓度的影响输送极性介质的离心泵(如一般的水泵)与输送非极性介质的离心泵(输送苯、烷烃等有机物的泵),其气蚀机理是不同的。输送极性介质的离心泵的气蚀损伤可能包括机械作用、化学腐蚀(与流体PH值有关)、电化学腐蚀(与流体电解质浓度有关);而输送非极性介质的离心泵的气蚀损伤可能只有机械作用。 (3)气体溶解度的影响国外研究表明流体内溶解的气体含量对气蚀核子的产生与发展起到促进作用。 (4)气化压力的影响研究表明随着气化压力的增高,气蚀损伤先升高后降低。因为随着气化压力的升高,流体内形成的不稳定气泡核的数量也不断升高,从而引起气泡破裂数量的增多,冲击波强度增大,气蚀率上升。但如果气化压力继续增大,使气泡数增加到一定限度,气泡群形成一种“层间隔”的作用,阻止了冲击波行进,削弱其强度,气蚀的破坏程度反而会逐渐降低。 (5)温度的影响在流体中温度的改变将导致气化压力、气体溶解度、表面张力等其他影响气蚀的物理性质出现较大改变。由此可见,温度对气蚀的影响机制较为复杂,需结合实际情况进行判断。 (6)表面张力的影响当其他因素保持不变,降低流体表面张力可以减少气蚀损伤。因为随着流体表面张力的减小,气泡溃灭所产生冲击波的强度减弱,气蚀速率降低。 (7)液体黏度的影响流体黏度越大,流速越低,达到高压区的气泡数越少,气泡破灭所产生冲击波的强度就减小。同时,流体黏度越大,对冲击波削弱也越大。因此,流体的黏度越低,气蚀损伤越严重。 (8)液体的可压缩性和密度的影响随着流体密度的增加,可压缩性降低,气蚀损失增加。 2.过流部件材质特性方面的影响 由于泵的气蚀损伤主要体现为对过流部件材质的损坏。因此,过流部件的材料性能也将在一定程度上对离心泵的气蚀产生影响,采用抗气蚀性能良好的材料制造

泵的汽蚀现象以及其产生原因

泵的汽蚀现象以及其产生原因 1、汽蚀 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。苏华泵业 2、汽蚀溃灭 汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。苏华泵业 3、产生汽蚀的原因及危害 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。苏华泵业 4、汽蚀过程 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。苏华泵业 什么是泵的特性曲线? 通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。特性曲线包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-η),流量、功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。苏华泵业

离心泵的安装高度

离心泵的汽蚀现象与安装高度 一、离心泵的汽蚀现象 离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。 二、离心泵的安装高度Hg 允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为×105Pa时的值,当操作条件及工作介质不同时,需进行换算。 (1) 输送清水,但操作条件与实验条件不同,可依下式换算 Hs1=Hs+(Ha--(Hυ- (2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s 2 汽蚀余量Δh 对于油泵,计算安装高度时用汽蚀余量Δh来计算,即 用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。若输送其它液体,亦需进行校正,详查有关书籍。

从安全角度考虑,泵的实际安装高度值应小于计算值。又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。 例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为,当地大气压为×104Pa,液体在吸入管路中的动压头可忽略。试计算: (1) 输送20℃清水时泵的安装; (2) 改为输送80℃水时泵的安装高度。 解:(1) 输送20℃清水时泵的安装高度 已知:Hs=5.7m Hf0-1=1.5m u12/2g≈0 当地大气压为×104Pa,与泵出厂时的实验条件基本相符,所以泵的安装高度为 Hg=4.2 m。 (2) 输送80℃水时泵的安装高度 输送80℃水时,不能直接采用泵样本中的Hs值计算安装高度,需按下式对Hs时行换算,即 Hs1=Hs+(Ha--(Hυ- 已知Ha=×104Pa≈10mH2O,由附录查得80℃水的饱和蒸汽压为。 Hv=×103 Pa=mH2O Hs1=+10--+=0.78m 将Hs1值代入式中求得安装高度

相关主题