搜档网
当前位置:搜档网 › 经典案例_VoLTE上行丢包率优化思路及解决方案

经典案例_VoLTE上行丢包率优化思路及解决方案

经典案例_VoLTE上行丢包率优化思路及解决方案
经典案例_VoLTE上行丢包率优化思路及解决方案

VOLTE上行丢包率优化思路及解决方

目录

1问题分析 (1)

1.1V oLTE网管丢包率指标定义 (1)

1.2上行丢包原理 (2)

1.3丢包优化流程与思路 (3)

2分场景优化 (5)

2.1覆盖类场景优化 (5)

2.1.1VOLTE上行覆盖增强 (5)

2.1.2天馈调整及功率优化 (6)

2.2高话务场景优化 (7)

2.2.1PDCCH CCE初始比例优化 (7)

2.2.2ROHC功能开启 (8)

2.3上行干扰场景优化 (11)

2.3.1基于干扰的动态功控 (11)

2.4频繁切换场景优化 (13)

2.5其他功能及参数优化 (15)

2.5.1PDCP层参数优化 (15)

2.5.2RLC重排序定时器 (16)

2.5.3包聚合关闭 (16)

3总结 (19)

【摘要】随着VOLTE业务的快速普及,VOLTE用户数和业务量都进入了快速上涨期,用户对语音质量要求越来越高,单通、吞字、双不通等严重影响用户感知,制约着4G业务的发展。其中“空口丢包”和“基站丢包”指标可有效表征VOLTE 语音感知,减少“空口丢包”和“基站丢包”是VOLTE语音质量优化提升的重要方向。本文将对Volte上行QCI1丢包率优化展开全面论述。

【关键词】全面商用、QCI1上行丢包率、语音质量

1问题分析

1.1VoLTE网管丢包率指标定义

1.2上行丢包原理

VOLTE高清语音编码速率为23.85kbps,终端每20ms生成一个VOLTE语音包(使用RTP实时流媒体协议传输),再加上UDP包头、IP包头、在应用层最终打包成IP包进行传输。在无线空口,按照协议IP包进一步被转换成PDCP包,PDCP 包就是空口传输的有效数据,PDCP包在终端和基站间传输异常会导致应用层RTP 包的丢失,从而引起语音感知差。

eNodeB的PDCP层接收语音包时如果检测到语音包的SN号不连续,则认为出现丢包。

上行丢包主要原因:

1)大TA/PHR受限、SR漏检、DCI漏检、RLC分段过多、上行调度不及时(上

图① )会导致UE PDCP层丢弃定时器超时丢包;

2)空口传输质量(上图② )差,MAC层多次传输错误后,失败导致丢包;

3)配置的PDCP层discard timer过小,SR周期过大存在UE得不到及时调度,

导致PDCP超时丢包。

1.3丢包优化流程与思路

空口的丢包主要为弱、越区覆盖、干扰、频切和大话务等场景,对于每种场景可按照以下流程进行问题定位和判断。

其次每种场景会有对应的外在表现,通过网管的相关指标可以识别。识别思路如下:

?上行弱覆盖场景下,小区PHR<0的比例大,同时导致终端对基站PDCCH 信道CCE调度的上行反馈为DTX比例增加,基站收到DTX后调整CCE

聚合度为8,同时弱覆盖场景下的上行iBler变大;

?大话务场景的频繁调度PDCCH CCE资源受限,导致CCE分配失败;

?上行干扰场景下,上行每PRB干扰噪声抬升,明显特征为上行每PRB 的干扰噪声>-110dBm;

?频繁切换场景下,取Counter(M8015C20)对乒乓切换进行统计,当UE 从小区 A 切换到小区 B 后,在很短时间(tPingPong,设置为

3000ms)内,又返回到小区A,认为发生乒乓切换。

选取TOP小区或典型小区,对VOLTE上行丢包率、MR、PHR、干扰等指标关联分析,确认是否是由于小区覆盖、容量、干扰或乒乓切换等因素导致语音质量问题,无法定位的问题需要进行Wireshark/TtiTracer等工具配合分析。

2分场景优化

2.1覆盖类场景优化

2.1.1V OLTE上行覆盖增强

上行功率受限是VOLTE高丢包问题的主要原因之一,UE的上下行差距约10db左右,由于传输功率的限制,UE可能没有足够的功率发送上行资源给ENB,那么就会导致上行丢包或者掉话。为了解决上行受限问题,诺基亚设备推出了LTE2098(上行覆盖增强)功能。在覆盖边缘功率受限情况下使用优化的MCS和PRB组合发送上行RTP数据包,减少非周期CQI上报,提升上行覆盖能力约2.5db,主要从以下3方面进行提升:

1、优化上行MCS/PRB调度算法;

2、减少CQI的非周期上报;

3、优化上行信号处理算法:提升上行信道鲁棒性,改善噪声功率估计算法。

针对六安的50个高丢包且天级PHR小于3dBd的TOP50打开V oLTE Uplink Coverage Boosting功能,在20日开启,参数设置如下:

结果对比如下:

其他关键KPI变化如下:

开启LTE2098后,上行丢包率从1.6262%下降至0.8940%降幅约46%,下降明显,同时RRC建立成功率有一定提升、其他关键指标鲁棒性增强。此功能需要注意的是结合PHR较低的TOP小区开启,效果更加明显,一般应用于高铁、下行高功率等场景。

2.1.2天馈调整及功率优化

针对弱覆盖或过覆盖导致的弱覆盖高丢包站点,可通过以下三点进行优化:

1、天馈调整控制覆盖;

2、调整受限站点或室分信号泄露站点通过功率收缩及qrxlevmin(-128->-122)

优化(管控参数,修改需申请),减少上下行不平衡带来的丢包。

3、通过切换优化、让1.8g&2.1g覆盖差区域尽快切到800M,如农村广覆盖场景

梳理近期高丢包小区,通过TA>1.5倍平均站间距、PHR<0、MR覆盖率<85%维度,调整天馈8处,功率优化10处。优化后整体VOLTE上行丢包由1.01%下降到0.44%,改善显著。

2.2高话务场景优化

2.2.1P DCCH CCE初始比例优化

在LTE网络中,PDCCH(下行物理控制信道)承载特定UE的调度、资源分配信息-DCI,如下行资源分配、上行授权、PRACH接入响应、上行功率控制命令、信令消息(如系统消息、寻呼消息等)的公共调度指配。大话务场景下,容易出现上行PDCCH受限,导致VOLTE语音包来不及调度,造成丢包影响用

户感知。

针对LTE系统上行受限,引入PDCCH符号设置(pdcchUlDlBal),对上下行分配的初始值进行设置,通过增大PDCCH上行CCE初始比例,减少由于上行CCE资源不足带来的丢包从而改善负载及丢包,进而优化语音感知。

21日,筛选上行丢包数>500&下行丢包相对较少且上行丢包数/下行丢包数>3倍&用户数>100共计50个小区进行pdcchUlDlBal参数优化,调整pdcchUlDlBal 0.5->0.8。调整后,RRC建立成功率改善0.14%,V oLTE上行丢包率降低0.2%,下行丢包率正常波动。

2.2.2R OHC功能开启

ROHC:Robust Header Compression健壮性包头压缩,承载语音数据的经典数据包格式如下:

<语音数据包格式>

从语音数据包可以看到,一个IP包的包头长度远远大于实际用户所传输的数据,如果这些包头每次都在网络上传输,那么势必会导致网络资源的极大浪费!例如,使用IPV4报头长度有40字节,数据部分15~20字节,那么66%~73%资源用于承载报文的包头上,如果使用IPV6,报头长度有60字节,那么75%~80%的资源用于承载报头。打开ROHC功能对这部分协议头进行压缩可以大大减少语音包的大小。

ROHC功能开启V olte数据包大小会减小一倍,这意味着在20ms时间间隔内传送的数据可以增加一倍。

对于上行来说,可用MCS受无线环境影响,可用PRB数目受终端功率限制,在小区边沿受上行SINR值和终端功率限制,每个TTI可以发送的数据包大小是

当在热点或者大话务场景下,上行资源原本就紧张,用户进行V olte业务,通话质量就无法得到保障,另一方面,上行语音包分多个TTI发送,需要消耗更多的pdcch资源,在需要分TTI发送的场景,一般要用到8CCE,对PDCCH资源消

0.158%

0.132%0.147%

0.140%

0.112%0.120%0.113%0.116%

0.113%0.118%

0.121%

0.120%

0.170%

0.158%0.155%

0.164%

0.148%

0.137%0.130%0.134%

0.126%0.132%

0.135%

0.133% RHOC开启上下行丢包率变化

上行丢包率下行丢包率

上行静态SINR目标值功控方式改为动态功控方式,针对不同CQI得到的SINR按照内部对应算法给出对应的target SINR值,对于中心用户能够获得更好的SINR值,对于边缘用户,抑制其SINR的抬升降低功率,从而降低整体的底噪,获得更好的上行质量。

干扰感知上行功控(actUlpcMethod = PuschIAwPucchCL),eNB将会通过PDCCH向UE发送功率调整命令对发射功率进行微调(与闭环功控类似)-基站根据上行目标SINR值来控制控制终端的发射功率,这个目标值是通过基站测量和UE报告数据来计算所得,保证这个目标值。

通常密集城区的整体RSSI PUCCH高,手机发射功率过高,且SINA值也较低,会造成某小区的上行底噪增高,从而给邻区带来更大的上行干扰,连锁反映,抬高某个区域整体干扰水平、上行的底噪,这将会影响上行业务质量:上行丢包、上行速率等。适用于连片的高业务场景。

参数设置如下:

验证结果:

闭环功控从静态的门限设置改为根据UE测量的SINR动态设置目标SINR,从而对中心区域的UE提升发射功率,抑制边缘用户的功率,优化整体底噪。

19日在六安皖西学院选取18个连片热点小区,修改后丢包率有明显改善,降幅约46%左右,底噪下降至-113左右,SINR 也有小幅度提升。

2.4 频繁切换场景优化

LTE 采用硬切换方式,频繁的切换会带来较大的用户面时延,如果此时有乱序或者丢包,将会不可避免的带来丢弃包率的上升,影响用户感知,因此应合理调整切换门限,减少乒乓切换,以降低切换的影响。 问题描述:

霍邱叶南-3乒乓切换导致上行丢包率高。

0.239%

0.254%

0.228%

0.192%0.184%

0.144%0.134%

0.120%

0.143%0.134%0.134%0.131%

16.0516

16.05

16.5

16.7216.6216.7816.7616.5516.8716.9716.66

问题分析:

现场测试车辆在霍邱叶南由南往被北行驶叶集妇幼保健所路段,UE占用霍邱叶南3小区,RSRP在-95dbm左右,叶集妇幼保健所-2小区信号RSRP在-93dbm 左右,由于两个站点较近,行驶过程中切换频繁,导致该路段速率低。怀疑高丢包与频繁切换相关。

优化前优化后

解决措施:

分别调整霍邱叶南-3小区和叶集妇幼保健所-2小区CIO参数,霍邱叶南-3小区方向角由340度调整至290度,让妇幼保健所南边路段由LA-叶集妇幼保健所-2小区做主覆盖小区。

效果评估:

优化调整后,小区日均切换次数减少80%以上,上行丢包率下降至0.3%左右,效果明显。针对频繁切换的TOP小区进行了CIO优化推广及基础RF优化。

2.5其他功能及参数优化

2.5.1P DCP层参数优化

PDCP discard Timer伴随上行传输,即控制数据包上传的一个定时器,每一个PDCP SDU对应一个discardTimer。当UE从上层接收到PDCP SDU时,开始启动该SDU对应的定时器。当该定时器超时或者已经通过PDCP状态报告确认将相应PDCP SDU传到下层时,UE需要将PDCP SDU以及相应的PDCP PDU丢弃。如果PDCP PDU被提交到下层,那么丢弃这一状态也应一并通知下层,意味着PDCP 这层把相应的包彻底清空了。不过,UE高层要求数据承载对应的RLC非确认模式(VoLTE话音业务)下进行PDCP进行重建立时,在重建之前没发出的PDCP SDU 不需要重新触发discardTimer。因此,该定时器如果设置过小,对于PDCP重建成功有一定影响,会影响丢包率。

集团要求pdcpProf101tDiscard设置范围在100ms-300ms,在针对VOLTE上行高丢包质差小区优化时可调整到750ms,对于顽固站点设置1500ms。

17日对全网1504(丢包大于50)个站点修改QCI1的discardTimer定时器,结果对比如下:

上行丢包率均值由0.169%下降至0.146%,下降明显。

2.5.2R LC重排序定时器

由于V olTE业务特点,实时的GBR业务,对时延要求非常高,RLC层采用UM模式进行传输,该模式提供除重传和重分段外的所有RLC功能,因此提供了一种不可靠的传输服务。当无线环境较差的时候,容易丢包。

对RLC data PDU进行重排序(reordering,只适用于UM和AM模式):MAC 层的HARQ操作可能导致到达RLC层的报文是乱序的,所以需要RLC层对数据进行重排序。重排序是根据序列号(Sequence Number,SN)的先后顺序对RLC data PDU进行排序的。

重排序定时器设置要求rlcProf101tReord >HARQ最大重传次数* HARQ RTT,其中下行HARQ RTT默认是10ms,rlcProf101tReord默认是50ms,现网重传5~7次,BLER 10%,根据理论将t-Reordering timer 50->80ms,对个别顽固小区设置到最大200ms,增加时间上的冗余,改善丢包。

21日对全网1504(修改tDiscard站点)个站点修改QCI1的tReordering定时器,结果对比如下

上行丢包率均值由0.140%下降至0.103%,下降明显。

2.5.3包聚合关闭

假设上行2个数据包进行聚合,UE用户面产生的数据包从IP->PDCP->RLC->MAC,第一个数据包传送到MAC层进行等待,第二个数据包传递到MAC层后两个数据包一起被基站调度。

(1)SR周期=20ms,不进行包聚合

UE每20ms产生一个包,SR周期=20ms,UE 20ms间隔发起一次SR,eNB 调度一次分配的数据量可以使UE把数据发完,UE上报的BSR为0。

(2)SR周期=20ms&上行2个包进行聚合、SR=40ms

UE每20ms产生一个包,UE 40ms间隔发起一次SR(包汇聚或者SR周期配置等于40ms ),eNB调度分配的数据量不能使UE把数据发完,UE上报BSR≠0,eNB需要再调度一次。

包聚合功能虽然可以节省eNB的调度资源,但是,一旦由于无线环境问题导致SR漏检或者调度失败,会导致数据包丢失。

关闭上行包聚合功能,避免由于无线环境问题导致SR漏检造成的丢包,对上行丢包率改善较为明显。

2月25日筛选丢包类小区1341(顽固丢包小区)个进行关闭上行/下行包聚合参数,参数修改区域QCI1上行丢包率均值由0.130%下降为0.117%;下

行丢包率均值由0.130%下降至0.081%,提升明显。

参数修改如下:

上下行丢包率效果评估如下:

S12508由于配置URPF导致设备丢包案例分析

S12508由于配置URPF导致设备丢包案例分析 关键词: ?URPF ?丢包 ?0推荐,1495浏览 ?1收藏,我的收藏 问题现象 如下拓扑图:S12508-1和S12508-2做VRRP,现场发现从S12508-FW这台设备跨S12508-02去ping S12508-01有大量丢包,丢包很规律,每五个包只会通一个。S12508-FW直连ping S12508-2不会丢包,S12508-2与S12508-1直连互ping也不丢包。并且业务一直也不受影响,就如下两个地址互ping有丢包: 从S12508-FW的本地地址(211.138.35.34)到S12508-1(221.181.39.254) [12508-FW]ping -c 12 -a 211.138.35.34 221.181.39.254 Ping 221.181.39.254 (221.181.39.254): 56 data bytes, press CTRL_C to break Request time out Request time out Request time out Request time out Request time out 56 bytes from 221.181.39.254: icmp_seq=0 ttl=255 time=8.305 ms Request time out Request time out Request time out Request time out Request time out 56 bytes from 221.181.39.2549.1.1.2: icmp_seq=4 ttl=255 time=1.651 ms

volte丢包率优化思路

VOLTE丢包专题 1高丢包定义 VoLTE上行高丢包小区(语音):>5%且小区QCI为1的DRB业务PDCP SDU上行期望收到的总包数>1000; VoLTE下行高丢包小区(语音):>5%且小区QCI为1的DRB业务PDCP SDU下行发送的包数>1000; 2丢包影响 丢包对VoLTE语音质量的影响较大,当丢包率大于10%时,已不能接受,而在丢包率为5%时,基本可以接受。因此,要求IP承载网的丢包率小于5%。VoLTE丢包率是MOS值的一个重要影响因素,严重的丢包影响通话质量,甚至导致掉话,导致用户感知降低。 3影响丢包的因素 影响Volte丢包的因素有故障告警、无线环境、大话务、传输、核心网、参数等多因素,详细如下:

针对VoLTE 丢包可进行关联分析的指标有: 无线环境包括TA 占比、MR 弱覆盖、干扰、RRC 重建、切换、邻区漏配等; 容量包括:PRB 利用率、单板利用率、CCE 利用率、小区用户数等; 4 高丢包分析流程 针对高丢包问题小区优化分析思路流程如下: 丢包 无线环境覆盖越区覆盖弱覆盖干扰上行干扰 下行干扰 重建频繁切换邻区漏配故障告警容量PRB 利用率单板利用 率小区用户 数CCE 利用率 传输核心网

5优化界定方案 5.1故障告警 核查问题小区及周边一圈层邻近小区是否存在影响业务的故障告警,若存在影响业务的故障

告警,优先处理故障告警; 影响业务的告警如下: 影响业务的告警.xl sx 处理建议:针对相应的故障进行故障处理。 5.2上行干扰 小区级系统上行每个PRB上检测到的干扰噪声的平均值大于-110,即可判定该小区为上行干扰小区; 干扰特征和干扰原因如下: 处理建议:结合现场进行干扰排查和处理。

volte丢包率TOP小区处理.doc

volte丢包率TOP小区处理 2016年7月

目录 一、概述 (3) 二、volte丢包率高TOP小区处理流程 (8) 三、丢包率高TOP小区处理案例 (8) 1.选择丢包率高TOP小区 (8) 2.提取相关联指标项 (9) 3. 实施处理 (9) 3.1 下行丢包率高TOP小区处理 (9) 3.2 上行丢包率高TOP小区处理 (11) 四、TOP小区处理总结 (12)

一、概述 上下行语音丢包率是是表征VoLTE业务的一个重要指标,与时延,抖动是影响VOLTE 语音质量的三大因素之一。监控,优化,提升上下行语音丢包率可以辅助VOLTE用户语音感知质量的提升。 PDCP层丢包对语音感知影响 VOLTE业务与GU业务不同,LTE走PS域,通过不同QCI承载来进行QoS保障,影响其VOLTE 语音质量的关键指标为丢包,时延,抖动,其中丢包对MOS值基本是线性分布,一般丢包率在1%以内,MOS分都比较好;一旦丢包率大于1%后,MOS分明显下降,语音质量将会受到影响。 丢包率定义和影响因素 指标定义:

VOLTE语音包关联指标分析 举例如下:若出现PUSCH MCS0阶占比和PDSCH MCS0阶占比同时恶化,弱覆盖导致的可能性较大。

根据关键指标关联,分析用户数问题 根据如下话统信息,判断终端所处小区的负载情况,判断是否小区语音负载大,导致不能及时调度用户,带来PDCP层丢包; 空口丢包原理 上行空口丢包统计原理:

主要影响因素:上行调度不及时,如图中的1,会导致UE PDCP层的丢弃定时器超时,但现网值是集团规范值,不存在该问题。空口传输质量差,如图中2,MAC层多次传输错误导致丢包。 上行空口丢包统计原理: 主要影响因素:下行丢包基本上是用户处于小区弱覆盖区域。 常见PDCP层丢包原因总结

网络丢包分析案例、解决方案

网络丢包分析 数据在网络层以数据包的形式进行传输,由于各种原因,数据包在传输过程中总会存在些许损失,我们称之为丢包。 1.1. 造成丢包的原因有哪些 ?网络设备的故障 包括硬件方面的和软件方面的故障。硬件故障主要是物理层面的故障如:网卡故障,端口故障等。软件故障主要是在配置方面的问题,如错误的静态路由,主机默认网关配置错误等等。 ?网络拥塞 通常由于网络带宽过小或网络中存在异常流量时发生,比如ARP攻击,P2P等。 ?MTU配置不当 在关键设备上MTU设置不当,也会造成网络丢包(以太网:1500字节,IEEE 802.3/802.2 1492字节)。 1.2. 如何确定网络丢包的存在 通常我们利用PING x.x.x.x -t这个命令来进行测试网络中是否存在丢包 在上图中可以看到,在本机上向192.168.122.2这个不存在的地址进行长时间PING的时候,发送出去的ICMP包都丢失了,丢失率达到100%。即从本机到192.168.122.2这个实际不可达地址的路径上存在丢包。 1.3. 定位网络丢包的分析步骤 在网络丢包发生的情况下,用户会明显感受到网络速度变慢,这时候网管首先需要做的就是进行PING X.X.X.X –t来进行大致是哪个网段的诊断。在发现确实有丢失率存在的情况下,我们可以利用科来软件进行进一步分析。 在分析之前,我们有必要学习一下前置知识。 TCP协议的特点之一就是保障数据传输的可靠性,即确保数据能够正确完整传输。那么TCP究竟是如何来保障的?可以看到,TCP在传输时,有着传输确认—重传机制,即发送数据一方在传输数据时为每一个分段编制序列号(Sequence Number),接收方会向发送方发送接收到分段数据的确认(Acknowledgment),通过这种方式确认数据是否准确传送,在无法确认某分段数据被准确传送或确认某分段数据没有被准确传送时重新进行传输。

VOLTE丢包分析思路

VOLTE RTP丢包率问题分析 一、网管统计丢包率情况 1、丢包率变化情况: 通过对指标的观察,发现上行丢包率大于下行丢包率,且指标都位于0.1%-0.3%之间。 二、丢包率的影响因素(无线侧) 1、上行丢包率 影响上行丢包率的主要有三大因素:弱覆盖、大话务、上行干扰。 ①弱覆盖:上行弱覆盖导致上下行链路不平衡,导致丢包; 案例:邻区漏配导致的弱覆盖,丢包严重,MOS低 ②大话务:控制信道配置不足,同一小区内上行用户量多时概率性出现上行数据包未 正常发送,导致丢包; 案例:XXXXXXX-HLW业务量较大,上行丢包率较高 XXXXXXXX-HLW站点长期业务量较大,上行丢包率大于1%,主要原因是上行资源不足,需要修改上下行初始CCE分配比例,加大上行CCE的资源预留。 ③外部干扰:4G网络受到网内、网外干扰的情况依然存在,如电信FDD干扰、干扰器、

站点GPS故障等,导致丢包。 案例:上行干扰导致上行丢包严重,造成掉话 问题描述 UE在XX路由北往南移动,主叫占用A-HLH-2(RSRP:-77.56dBm SINR:26.9dB)在16:55:29.181完成呼叫,发起BYE REQUEST请求;被叫占用相同小区(RSRP:-80.75dBm SINR:23.5dB)在此时未收到网络侧下发的BYE REQUEST,在16:55:32.105主动发起BYE REQUEST,系统记为一次掉话。 问题分析 主叫在通话完成以后上发BYE REQUEST,基站侧未收到,被叫主动发起BYE REQUEST,系统记为掉话。查看主被叫信令,发现在挂机时刻UE重复发送BYE REQUEST消息和BYE OK 消息,基站侧也重复下发BYE REQUEST给主叫,此时上行BLER非常高,达到70%-80%,上行链路质量非常差;通过查询当时的干扰信息,发现该路段附近存在较大的上行干扰:(参考此时段共站共覆盖TDS小区“SMSNR1:XXXXX_2”干扰信号) 问题结论 该路段存在较强的外部干扰,需对干扰源进行定位,排除干扰。 2、下行丢包率 影响下行丢包率的主要有三大因素:弱覆盖、下行质差、外部干扰。 弱覆盖:上行弱覆盖导致上下行链路不平衡,导致丢包; 下行质差:4G网络组网结构复杂,目前存在F/D/E共计7 个频点,等同于7张网络,切换、重选参数设置难度很大,在部分复杂场景下容易发生重叠覆盖、频繁切换问题,导致丢包;部分区域存在模3干扰导致丢包; 案例1:模3干扰导致丢包,影响MOS值 案例2:重叠覆盖导致丢包,影响MOS值 外部干扰:4G网络受到网内、网外干扰的情况依然存在,如电信FDD干扰、干扰器、站点GPS故障等,导致丢包。 三、针对影响因素目前可以使用的优化手段 1、针对上行丢包率可用的优化手段 弱覆盖处理手段:

Volte丢包率优化案例

V o l t e丢包率优化案例 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

Volte丢包率优化方案 一、概述 随着市场推广,移动VOLTE用户逐步增多,Volte丢包率对用户语音质量影响较大,为提升用户感知,现针对VOLTE上下行丢包进行优化,提升用户满意度。 二、Volte丢包率优化思路 1、影响Volte丢包率的因素 用户对语音质量的感知直接受语音编码、丢包、时延以及抖动影响。 语音编码:高速率编码消耗带宽大,低速率编码影响语音质量 丢包:数据包丢失,会显着地影响语音质量 时延:时延会带来语音变形和会话中断 抖动:效果类似丢包,某些字词听不清楚 2、Volte语音通话协议栈和接口映射 从协议上看,一个Volte语音通话的参与网元主要有:UE、eNB、SGW、IMS,既有RAN 侧网元,又有传统EPC侧网元,还有IMS侧网元。其中在无线测我们需要重点关注的网元是UE和eNB以及UE和eNB之间的Uu接口。即主要涉及的协议是PHY、MAC、RLC、PDCP。需要注意的是,IMS侧的控制面协议,在EPC是以用户面数据形式进行传输的,在IMS侧才会被拆分成控制面和用户面。 Volte语音通话涉及的协议图: 当前网络结构图: 三、Volte丢包率优化目标 梳理Volte语音通话中各设备的问题表现及对应的影响因素,即可明确无线优化手段:参数优化,覆盖优化,干扰优化,移动性能优化,邻区优化,容量优化,功能优化。

1、 PDCP层参数优化 PDCP是对分组数据汇聚协议的一个简称。它是UMTS中的一个无线传输协议栈,它负责将IP头压缩和解压、传输用户数据并维护为无损的无线网络服务子系统(SRNS)设置的无线承载的序列号。 涉及参数:pdb、pdboffset、aqmmode、 UlPdcpSduTimerDiscardEnabled 涉及的功能:TcpOptimization 参数优化原理:通过修改相关参数,延长或缩短PDCP层的丢包定时器,从而控制丢包具体步骤如下 参数优化建议:

Volte丢包率优化案例

Volte丢包率优化方案 一、概述 随着市场推广,移动VOLTE用户逐步增多,Volte丢包率对用户语音质量影响较大,为提升用户感知,现针对VOLTE上下行丢包进行优化,提升用户满意度。 二、Volte丢包率优化思路 1、影响Volte丢包率的因素 用户对语音质量的感知直接受语音编码、丢包、时延以及抖动影响。 语音编码:高速率编码消耗带宽大,低速率编码影响语音质量 丢包:数据包丢失,会显著地影响语音质量 时延:时延会带来语音变形和会话中断 抖动:效果类似丢包,某些字词听不清楚 2、Volte语音通话协议栈和接口映射 从协议上看,一个Volte语音通话的参与网元主要有:UE、eNB、SGW、IMS,既有RAN侧网元,又有传统EPC侧网元,还有IMS侧网元。其中在无线测我们需要重点关注的网元是UE和eNB以及UE 和eNB之间的Uu接口。即主要涉及的协议是PHY、MAC、RLC、PDCP。需要注意的是,IMS侧的控制面协议,在EPC是以用户面数据形式进行传输的,在IMS侧才会被拆分成控制面和用户面。 Volte语音通话涉及的协议图:

当前网络结构图: 三、Volte丢包率优化目标 梳理Volte语音通话中各设备的问题表现及对应的影响因素,即可明确无线优化手段:参数优化,覆盖优化,干扰优化,移动性能优化,邻区优化,容量优化,功能优化。

RLC 层参数优化 输承 载 传 序 大时延、抖动,丢包、乱 参数配置,容量或能力限制,传输 质量问题 1、Volte 丢包率参数优化 PDCP 层参数优化 PDCP 是对分组数据汇聚协议的一个简称。它是 UMTS 中的一个无线传输协议栈,它负责将 IP 头压 缩和解压、传输用户数据并维护为无损的无线网络服务子系统(SRNS )设置的无线承载的序列号。 涉及参数:pdb 、pdboffset 、aqmmode 、 UlPdcpSduTimerDiscardEnabled 涉及的功能:TcpOptimization 参数优化原理:通过修改相关参数,延长或缩短 PDCP 层的丢包定时器,从而控制丢包 具体步骤如 下 参数优化建议: RLC UM 接收实体设置了一个 RLC PDC 重新排列的定时器,当检测到有收到 PDU 时启动定时器,

案例-关于VoLTE丢包率高优化处理最佳实践总结

VOLTE关于丢包率高优化处理总结 一、问题描述 上下行语音丢包率是是表征VoLTE业务的一个重要指标,与时延,抖动是影响VOLTE 语音质量的三大因素之一。监控,优化,提升上下行语音丢包率可以辅助VOLTE用户语音感知质量的提升。 PDCP层丢包对语音感知影响 VOLTE业务与GU业务不同,LTE走PS域,通过不同QCI承载来进行QoS保障,影响其VOLTE语音质量的关键指标为丢包,时延,抖动,其中丢包对MOS值基本是线性分布,一般丢包率在1%以内,MOS分都比较好;一旦丢包率大于1%后,MOS分明显下降,语音质量将会受到影响。 提取指标发现LF_H_YY余舜宇集团voLTE语音下行丢包率高达5.27%,voLTE语音上行丢包率6.24%,严重影响网络指标。

二、问题分析 丢包率定义和影响因素指标定义: VOLTE语音包关联指标分析

举例如下:若出现PUSCH MCS0阶占比和PDSCH MCS0阶占比同时恶化,弱覆盖导致的可能性较大。 ?根据关键指标关联,分析用户数问题 根据如下话统信息,判断终端所处小区的负载情况,判断是否小区语音负载大,导致不能及时调度用户,带来PDCP层丢包;

?空口丢包原理 上行空口丢包统计原理: 主要影响因素:上行调度不及时,如图中的1,会导致UE PDCP层的丢弃定时器超时,但现网值是集团规范值,不存在该问题。空口传输质量差,如图中2,MAC层多次传输错误导致丢包。

?上行空口丢包统计原理: 主要影响因素:下行丢包基本上是用户处于小区弱覆盖区域。?常见PDCP层丢包原因总结 ?常见PDCP层丢包处理总体思路

经典案例_VoLTE上行丢包率优化思路研究

VOLTE上行丢包率优化思路研究

目录 1问题分析 (1) 1.1V oLTE网管丢包率指标定义 (1) 1.2上行丢包原理 (2) 1.3丢包优化流程与思路 (3) 2分场景优化 (5) 2.1弱覆盖场景 (5) 2.1.1VOLTE上行覆盖增强 (5) 2.1.2天馈调整及功率优化 (7) 2.2大话务场景 (7) 2.2.1PDCCH CCE初始比例优化 (7) 2.2.2ROHC功能开启 (9) 2.3上行干扰场景 (11) 2.3.1基于干扰的动态功控 (11) 2.4频繁切换场景 (13) 2.5其他功能及参数优化 (15) 2.5.1PDCP层参数优化 (15) 2.5.2RLC重排序定时器 (16) 2.5.3包聚合关闭 (16) 3总结 (19)

【摘要】随着VOLTE业务的快速普及,VOLTE用户数和业务量都进入了快速上涨期,用户对语音质量要求越来越高,单通、吞字、双不通等严重影响用户感知,制约着4G业务的发展。其中“空口丢包”和“基站丢包”指标可有效表征VOLTE 语音感知,减少“空口丢包”和“基站丢包”是VOLTE语音质量优化提升的重要方向。本文将对V olte上行QCI1丢包率优化展开全面论述。 【关键词】VOLTE全面商用、QCI1上行丢包率、语音质量 1问题分析 1.1VoLTE网管丢包率指标定义

1.2上行丢包原理 VOLTE高清语音编码速率为23.85kbps,终端每20ms生成一个VOLTE语音包(使用RTP实时流媒体协议传输),再加上UDP包头、IP包头、最终打包成IP 包进行传输。在无线空口,按照协议IP包进一步被转换成PDCP包,PDCP包就是空口传输的有效数据,PDCP包在终端和基站间传输异常会导致应用层RTP包的丢失,从而引起语音感知差。 eNodeB的PDCP层接收语音包时如果检测到语音包的SN号不连续,则认为出现丢包。 上行丢包主要原因: 1)大TA/PHR受限、SR漏检、DCI漏检、RLC分段过多、上行调度不及时(上 图① )会导致UE PDCP层丢弃定时器超时丢包; 2)空口传输质量(上图② )差,MAC层多次传输错误后,失败导致丢包;

Volte丢包率优化案例

V o l t e丢包率优化案例 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

V o l t e丢包率优化方案一、概述 随着市场推广,移动VOLTE用户逐步增多,Volte丢包率对用户语音质量影响较大,为提升用户感知,现针对VOLTE上下行丢包进行优化,提升用户满意度。 二、Volte丢包率优化思路 1、影响Volte丢包率的因素 用户对语音质量的感知直接受语音编码、丢包、时延以及抖动影响。 语音编码:高速率编码消耗带宽大,低速率编码影响语音质量 丢包:数据包丢失,会显着地影响语音质量 时延:时延会带来语音变形和会话中断 抖动:效果类似丢包,某些字词听不清楚 2、Volte语音通话协议栈和接口映射 从协议上看,一个Volte语音通话的参与网元主要有:UE、eNB、SGW、IMS,既有RAN侧网元,又有传统EPC侧网元,还有IMS侧网元。其中在无线测我们需要重点关注的网元是UE和eNB以及UE和eNB之间的Uu接口。即主要涉及的协议是PHY、MAC、RLC、PDCP。需要注意的是,IMS侧的控制面协议,在EPC是以用户面数据形式进行传输的,在IMS侧才会被拆分成控制面和用户面。 Volte语音通话涉及的协议图: 当前网络结构图: 三、Volte丢包率优化目标 梳理Volte语音通话中各设备的问题表现及对应的影响因素,即可明确无线优化手段:参数优化,覆盖优化,干扰优化,移动性能优化,邻区优化,容量优化,功能优化。

1、PDCP 层参数优化 PDCP 是对分组数据汇聚协议的一个简称。它是UMTS 中的一个无线传输协议栈,它负责将IP 头压缩和解压、传输用户数据并维护为无损的无线网络服务子系统(SRNS )设置的无线承载的序列号。 涉及参数:pdb 、pdboffset 、aqmmode 、 UlPdcpSduTimerDiscardEnabled 涉及的功能:TcpOptimization? 参数优化原理:通过修改相关参数,延长或缩短?PDCP 层的丢包定时器,从而控制丢包 具体步骤如下 参数优化建议: RLC RLC UM 接收实体设置了一个RLC PDC 重新排列的定时器,当检测到有收到PDU 时启动定时器,如果定时器超时,UM 接收实体将不再等待未接受的PDU,而是直接将接收缓冲区的PDU 重组为SDU 交给上层。增大treorderingul/dl 参数,能增加UM 等待未接收PDU 的时间,以减少RLC 层丢包。 参数优化建议:

精品案例_干扰导致的高丢包小区

干扰导致的高丢包小区

目录 一、问题描述 (3) 二、分析过程 (3) 三、解决措施 (7) 四、经验总结 (8)

干扰导致的高丢包小区 【摘要】本文分析于处理VoLTE高丢包小区,发现为该小区底噪水平异常升高导致,对该扇区进行干扰扫频分析,发现为用户私装放大器导致。 【关键字】VoLTE高丢包干扰放大器 【业务类别】优化方法 一、问题描述 5月处理VoLTE高丢包小区时,发现该扇区下行空口RTP丢包率(QCI=1)最高达35%,严重影响全网指标和用户使用体验。 图1:MA-市区-东方明珠东北-ZFTA-443809-55小区丢包情况 二、分析过程 对该扇区进行分析,查询该扇区的MR和站间距,该扇区覆盖情况正常,无弱覆盖情况。故对扇区质量进行分析,发现该扇区底噪水平较高,最高达-53dBm。

图2:MA-市区-东方明珠东北-ZFTA-443809-55MR覆盖图 图3:MA-市区-东方明珠东北-ZFTA-443809-55底噪情况

图4:MA-市区-东方明珠东北-ZFTA-443809-55底噪情况 对该问题扇区进行降功率和关断操作,底噪水平无明显变化,将MA-市区-东方明珠东北-ZFTA-443809-55方位角由290度调整到0度后,底噪消失。对周边站点底噪情况进行核查,发现仅仅MA-市区-东方明珠东北-ZFTA-443809-55底噪较高,其他扇区底噪正常。故问题定位为外部干扰导致,初步判断外部干扰如下图所在位置: 图5:初步判断干扰位置 对网管RB噪声水平进行统计,得到干扰波形如下所示,主要干扰前50个RB,尤其对前15个RB最为严重。

VOLTE-RTP丢包率全参数实验专项报告材料

RTP丢包率参数实验专项报告

目录 1、实验背景 (3) 2、参数介绍及实验思路 (3) 2.1参数介绍 (3) 2.2实验思路 (4) 3、参数实验准备工作及调整情况 (4) 3.1实验路线及方法 (4) 3.2测试规范及要求 (5) 3.3涉及相关参数调整实验方案 (5) 4、实验效果统计对比 (6) 4.1DT语音业务测试效果验证对比 (7) 4.2KPI统计指标对比 (10) 5、参数实验总结及建议 (10) 5.1实验总结 (10) 5.2调整建议 (11)

1、实验背景 根据VoLTE网络质量提升百日会战的要求,为提升VoLTE语音DT测试指标,提升用户感知,对可能与测试指标相关联的参数进行分析研究,通过对相应参数的调整实验寻找合适于网络需求的参数优化值,提升DT测试中各项指标; 此次参数实验主要是针对VoLTE语音DT测试指标中的RTP丢包率相关的参数PDCPPROF101TDISCARD,期望通过对该参数的调整试验,同时观察对其他指标的影响,找到有益于指标和感知的实验值。 2、参数介绍及实验思路 2.1参数介绍 参数ID:PDCPPROF101TDISCARD 含义:该参数表示PDCP丢弃定时器的大小 界面取值范围:100ms(0),150ms(1),300ms(2),500ms(3),750ms(4),1500ms(5),infinity(6) 缺省值:QCI 1取值100 现网值:QCI 1现网取值为100 影响范围:基站级,该参数修改不需要闭站,操作不影响业务。 附RTP丢包率公式: RTP丢包率=(发送RTP数-接收到RTP数)/发送RTP数×100%;

精品案例_容量受限导致VoLTE丢包率高分析优化

容量受限导致VOLTE丢包率高分析优 化案例

目录 一、问题描述 (3) 二、分析过程 (3) 三、解决措施 (6) 四、经验总结 (7)

容量受限导致VOLTE丢包率高分析优化案例 【摘要】无线问题导致丢包是影响VoLTE用户感知的关键因素之一,随着VoLTE业务的快速普及、VoLTE用户数和业务量进入了快速上涨期,为更加准确找到全网VOLTE语音感知差点,发现“空口丢包”和“基站弃包”两大关键统计指标可有效表征VoLTE语音感知,减少“空口丢包”和“基站(终端)弃包”是VoLTE语音质量优化提升的重要方向。 【关键字】VoLTE VoLTE上行丢包 【业务类别】参数优化 一、问题描述 日常监控中发现CZ-滁州-乌衣双语小区-ZFTA-435870-53丢包率较高,具体如下: 二、分析过程 1、丢包的原理机制 在基站(或终端)在空口发送PDCP SDU之前,由于容量或空口质量问题, PDCP discardtimer定时器(目前配置为100ms)超时后会发生主动弃包。例如基站调度了序列号为1/2/3/4/5共5个包,而4/5两个包因容量受限或空口质差在100ms内没有被调度出去,基站侧根据认为超过PDCP丢弃时长而主动丢弃,下行弃包率为2/5=40%。 在无线空口,按照协议IP包进一步被转换成PDCP包,PDCP包就是空口传输的有效数据。

PDCP包在终端和基站间传输异常会导致应用层RTP包的丢失,从而引起语音感知差。 2.无线空口丢包主要因素: 影响Volte丢包的因素有故障告警、无线环境、大话务、系统干扰等诸多因素,传输侧链路故障和干扰原因发重传都会大量消耗无线资源,若基站因为传输不及时或缺乏有效的无线资源无法完成对PDCP包的及时调度,会造成基站或终端主动丢弃VoLTE语音包。 针对VoLTE丢包可进行关联分析的指标有: ?无线环境包括TA占比、MR弱覆盖、干扰、RRC重建、切换、邻区漏配等; ?容量包括:PRB利用率、单板利用率、CCE利用率、小区用户数等; 3、处理步骤 1.异常告警及系统干扰核查: 网管核查CZ-滁州-乌衣双语小区-ZFTA-435870-53小区无任何异常告警,查询并统计小区上行干扰指标,系统上行每个PRB干扰噪声平均值为-118(毫瓦分贝),排除干扰原因导致。具体如下: 2.小区无线环境核查: 该小区主要覆盖居民区、学校及广场,该扇区主要覆盖用户距离基站约500米左右,且下倾角、功率设置合理,不存在超远覆盖,符合无线覆盖要求;核查小区MR覆盖率为95%,MR覆盖率波动正常,无线网络指标正常,如下所示:

【干货】典型网络故障案例及处理思路

【干货】典型网络故障案例及处理思路 很多朋友经常提到网络故障,其中在交换机组网时常见的故障比较多。为了便于大家排除这些故障,在此介绍一些常见的典型故障案例及处理思路。 故障1:交换机刚加电时网络无法通信 故障现象 交换机刚刚开启的时候无法连接至其他网络,需要等待一段时间才可以。另外,需要使用一段时间之后,访问其他计算机的速度才快,如果有一段时间不使用网络,再访问的时候速度又会慢下来。 故障分析 由于这台交换机是一台可网管交换机,为了避免网络中存在拓扑环,从而导致网络瘫痪,可网管交换机在默认情况下都启用生成树协议。这样即使网络中存在环路,也会只保留一条路径,而自动切断其他链路。所以,当交换机在加电启动的时候,各端口需要依次进入监听、学习和转发状态,这个过程大约需要3~5分钟时间。

如果需要迅速启动交换机,可以在直接连接到计算机的端口上启动“PortFast”,使得该端口立即并且永久转换至转发状态,这样设备可以立即连接到网络,避免端口由监听和学习状态向转发状态过渡而必须的等待时间。 故障解决 如果需要在交换机加电之后迅速实现数据转发,可以禁用扩展树协议,或者将端口设置为PortFast模式。不过需要注意的是,这两种方法虽然省略了端口检测过程,但是一旦网络设备之间产生拓扑环,将导致网络通信瘫痪。 故障2:5口交换机只能使用4口 故障现象 办公室中有4台计算机,但是只有一个信息插座,于是配置了一台5口(其中一口为UpLink端口)交换机。原以为4台计算机刚好与4个接口连接,1个UpLink端口用于连接到局域网,但是接入到网络之后,与UpLink端口相邻的1号口无法正常使用。 故障分析 UpLink 端口不能被看作是一个单独的端口,这是因为它与相邻端口其实就是一个端口,只是适用的连接对象不同而已。借助UpLink端口,集线设备可以使

网管员掌握丢包排错 两例网络丢包排错案例

远程商业窃密引发丢包 中天设计院是甘肃省建设厅直属单位,网络规模不大。152台主机根据单位职能部门分为5个子网,分别由Hub连接到交换机。由于公司内部的协同办公比较频繁,除了一个在线视频系统外还部署了一台文件服务器,单独为一个子网提供数据的共享和交流。单位对外的Internet需求不是很大,通过路由器连接到Internet,网络拓扑见图1。 故障现象 某天,该单位的网络突然出现严重堵塞,主机间的数据频频中断导致协同办公不能正常进行,在线视频系统经常掉线。另外,无论是从文件服务器上传还是下载文件都异常缓慢,有时会因超时而中断。主机能够连接到Internet,但是网速缓慢。 初步判断 首先在一台主机上用ping命令测试到网关的连通性,输入命令“ping 192.168.2.1 -n 1000”发送1000个Ping包测试网关。测试结果是可以ping通网关,但是掉包现象很严重:1000个包有720个包丢了,丢包率为72%,持续掉包时间也很长。运行arp -a命令,发现网关IP和网关MAC地址指向正确。通过上面的测试基本排除网络设置错误以及ARP欺骗。 监控分析 于是在核心交换机上做镜像,用Sniffer对整个内网(五个子网)进行监控。首先进入“dashboard”(仪表面板),发现网络利用率达到了97%,这是很不正常的现象。笔者判断以该单位的网络规模以及日常业务量,网络利用率应该在20%~30%之间,有较大的网络冗余。这样我们可以断定,造成网络丢包的根源应该是异常流量占用大量的网络带宽所致。那这些异常流量来自何处呢? 切换到“matrix”(矩阵面板),发现MAC为00-0A-E6-98-84-B7的主机占了整个网络流量的57.87%。于是初步把目标锁定在该主机上,然后切换到“hosttable”(主机列表)继续分析。从该面板中,没有发现大量的广播包,因此完全排除了广播风暴影响。找到00-0A-E6-98-84-B7,对此主机分析,发现该主机的网络活动非常可疑,进入该主机的数据包才700多个,而出去的数据包在10多分钟内就有了几十万个包。故障解决为了确认上述主机在进行什么网络活动,笔者在交换机上对它单独抓包分析。对数据包解码后发现,该主机通过UDP协议项向外网的一个IP为60.164.82.185主机进行数据拷贝。这个IP怎么这么眼熟,这不是本地的一个IP吗?另外,还发现该主机与文件服务器的连接也十分频繁。笔者根据网段和MAC地址,在交换机上对该主机隔离,断开其网络连接,整个网络马上就恢复了正常,丢包故障排除。 至此,我们通过层层排错找到了造成这次网络丢包的原因——该主机被黑客植了木马,然后远程控制通过8888端口向远程拷贝文件。另外,该主机正在从文件服务器上下载大量文件,估计攻击者正在通过该主机窃取文件夹服务器上的资料。 该主机本来安装了杀毒软件,但不报毒应该是攻击者做了免杀处理。手工清除木马,将该主机连接到网络,网络丢包再也没有发生。事后机主回忆可能是中了移动硬盘中的木马,因为当天他曾经将工程规划书拷贝到客户的移动硬盘中。丢包排错中引出商业窃密这是大家都没有想到的。 循环自动扫描攻击引起丢包 笔者所在地某中学的局域网约有电脑1000台,通常情况下同时在线的有600台左右,网络一直很稳定。期末放假前网络出现异常,具体症状为:整个校园网突然出现网络通信中断,内部用户均不能正常访问互联网。在机房中进行ping包测试时发现,中心机房客户机对中心交换机管理地址的ping包响应时间较长且出现随机性丢包,主机房客户机对二级交换机的通信丢包情况更加严重。深入分析

VoLTE-MOS优化思路及方法

一、VoL TE语音MOS采样点机制 VoLTE语音MOS采样机制如下: (1)主叫起呼,进行录音(8s左右); (2)被叫放音,主叫收音,被叫记录第1个MOS采样点(8s); (3)主叫放音,被叫收音,主叫记录第1个MOS采样点(8s); (4)被叫放音,主叫收音,被叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);(5)主叫放音,被叫收音,主叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);(6)被叫放音,主叫收音,被叫记录第3个MOS采样点(8s),如此类推…… 二、VoL TE语音MOS优化分析方法 1、MOS差的问题点定位 测试log单次通话连续两个采样点MOS值小于3的问题点定义为MOS差的问题点。 注意事项:需剔除通话结束的最后一个采样点与下次通话第一个采样点的MOS值都小于3的问题点。

2、MOS优化分析方法 由MOS采样点机制可以看出,MOS采样点收集的是采样时间点前8秒的语音质量,所以在分析的时候,需着重分析MOS采样时间前8秒UE本端的下行(包括:无线环境、语音编码、抖动、丢包、频繁切换、RRC重建、异频测量频次等),以及对端的上行(包括:频繁切换、RRC重建、异频测量频次等)。 三、VoL TE语音MOS值的影响因素及优化思路 1、MOS值的影响因素 MOS值的直接影响因素为:端到端时延、抖动、丢包; VoLTE端到端时延可以分解为:UE语音编/解码时延、空口传输时延、核心网的处理时延、传输网的传输时延。丢包和抖动的影响因素包括:空口信号质量、eNB负载、传输网的丢包和抖动。 故将以上因素分解后,MOS的影响因素包括:语音编码、覆盖、干扰、切换、邻区、基站负荷、基站故障、传输、核心网、测试终端、人为操作失误等。 2、MOS值的优化思路 结合以上影响因素和前期VoLTE拉网测试时遇到的MOS问题,共总结出四类问题点类型:无线问题、基站异常、测试规范和设备、核心网/传输。 在分析MOS问题时,我们首先要考虑基站是否正常工作,其次考虑测试是否规范、测试设备是否正常,再次判断是否为无线问题造成的,最后才考虑是否核心网及传输网引起的。 因此我们在分析MOS问题时,应该按以下步骤进行MOS优化: (1)基站问题: 是指问题路段中心经纬度150米以内的基站及主瓣65度范围的小区,若存在基站负荷过大、影响业务的告警、断站等问题,必将影响MOS值。处理方法:在测试前确保基站正常工作。 案例1:基站故障导致MOS值低 问题描述:车辆由南向北行驶至清风路与两河大道交叉路口,UE占用金牛清淳一街-SCDHLS3HM3JN-D2的信号,无线环境RSRP为-116.81dbm,SINR为-2.5,MOS值1.14,经测试数据分析,发现UE未能收到距离清风路与两河大道交叉路口50米的华力汽车公司车队-SCDHLD3HM2GX站点信号,经查询 告警得知,发现该站点网元断链,因而导致该路段出现弱覆盖现象,最终导致MOS值差。 处理建议:建议处理华力汽车公司车队-SCDHLD3HM2GX站点故障。 案例2:基站负荷过大,导致MOS值低 问题描述:无线环境较好(RSRP为-95dBm左右,SINR为10左右),无频繁切换;但MOS打点前8s主被叫占用电子科大-SCDHLS0HM1CH-D5,抖动和丢包均比较异常(RTP Jitter为992ms,RTP Loss Rate

案例-某局PING网关丢包分析、解决方案

某局PING网关丢包分析 某局的网管人员最近遇到了奇怪的事情,就是在PING网关的时候时常会出现严重的丢包,却始终无法找到丢包的原因,通过科来技术交流版抓包之后发给我看了一下,我来说一下分析的过程。 首先看到概要之中,发现平均包长只有88.76字节,远远小于正常时候的500-800字节,,再看大小包分布,1024以上的大包没有几个,但是64字节一下的数据包占了将近一半,明显是不正常的,通常小包多的情况,都会伴随有病毒或者攻击的出现。 再来看地址:物理地址数188个,IP地址数69080!差了好几百倍!本地的IP地址数居然有35000多个,实际上该局的主机不超过200台,怎么算都对不上。如此多的地址,那么很有可能是分布式的方式。

再往下看,找到大概的原因了:TCP同步发送高达28161次,但是同步确认发送只有可怜的668个,难道是有蠕虫!我们可以进一步进行分析。DNS查询也高达864次,却没有回应。 打开安全分析界面,来初步确定TCP同步发送的源头在哪儿。 发现了172.16.20.3、21.7、21.224、22.217、22.220、22.71、22.218这几台疑似中了蠕虫病毒,再回到全面分析内,进行取证。 拿20.3来进行观察:

发现了,20.3在不停地使用随机端口对各主机的445端口进行TCP SYN包的发送,每次都只有发送2个数据包,没有回应。这也就导致了大量的TCP SYN包和大量的IP地址的出现。 通过对数据包的解码发现,基本上所有的数据包都是有同步位的数据包。 由此证明,该机中了蠕虫病毒,需要及时查杀。 类似的,在其他几台主机上也发现了蠕虫病毒。这些蠕虫病毒大量的发包,导致了网络的拥塞,使得用户体验就是网速很慢,表现出来的症状就是PING网关大量丢包。

VOLTE高丢包率小区优化-上行频选参数验证

VOLTE高丢包率小区优化-上行频选参数验证 1.修改参数功能介绍 LTE系统对于带宽的高要求,注定了同频组网方式不可避免,为此引发的系统内干扰(Ni),特别是上行干扰(Ni)问题十分突出。建网初期,网络负荷较小,可以通过指定分配的方式来错开相邻小区的上行PRB分配位置。随着网络负荷的提升,上行PRB利用率逐步增加,加之密集城区/高业务区域站点密集,重叠覆盖严重,现有的分配模式很容易造成部分站点在特定PRB位置上干扰(Ni)显著抬升,影响系统容量。 移动网络的上下行业务一般具备不对称的特点,上行业务的突发性比较强,但对带宽(速率)要求比较小。上行全业务的Ni频功能开启后,能对每次上行调度(包括QCI1业务),基站选择最优的频率资源(对应PRB位置上Ni最低),此时终端的发射功率和上行MCS也能处于最优组合,这不仅仅能够提升单用户的速率,也能有效降低系统内干扰、提升系统上行容量。 对于VoLTE业务来说,单次调度的数据量都比较小,大部分情况下对上行PRB的需求也相对较低,调度上容易选择低NI的PRB,因此,上行QCI1业务的Ni频选调度更能在VoLTE业务上显示出优势。 2.参数验证配置方法 2.1 全业务上行NI频选参数配置方法: 选择[修改区->无线参数->TD-LTE -> E-UTRAN TDD小区->上下行物理信道配置->上行频选],点击(修改)按钮,配置开关为[RB位置子带分配(频选)],然后点击(保存)按钮。

2.2 QCI1业务上行NI频选参数配置方法: 1)A类参数配置 选择[修改区->无线参数->TD-LTE -> E-UTRAN TDD小区->VoLTE管理->QCI1 NI 频选开关],点击(修改)按钮,配置开关为[新传与重选均打开],然后点击(保存)按钮。 3.参数修改区域选择 本次验证选取扎鲁特旗与科尔沁左翼后旗两个旗县进行修改,共修改小区1713个。

精品案例_高速场景高丢包分析优化

高速场景高丢包分析优化

目录 一、问题描述 (3) 二、分析过程 (3) 三、解决措施 (7) 四、经验总结 (8)

高速场景高丢包分析优化 【摘要】为完成VoLTE百日大会战高速VoLTE语音丢包率考核指标,日常优化分析中发现问题徐明高速丢包率较高,分析优化LOG时发现五河头铺花园附近丢包率较高,通过调整扇区接反,优化邻区,加快切换优化调整,此路段丢包率得到大大改善。 【关键字】丢包率接反 CIO 【业务类别】VoLTE、参数优化 一、问题描述 在进行徐明高速丢包分析时,发现头铺花园附近出现长段高丢包,如下图(左侧路线为丢包率,中间为RSRP,右边为SINR)。 图1:高丢包截图 二、分析过程 1、查询周边小区故障告警,无故障,小区运行正常。 2、进行覆盖分析时发现,头铺花园1,2小区接反,导致BB-五河-头铺花园-HFTA- 440550-50向南覆盖与BB-五河-五河徐明高速18站-HFTA-440612-53小区

MOD 3干扰,SINR质差,疑似导致丢包高。 图2:1小区覆盖截图 图3:2小区覆盖截图 扇区接反调整后,复测丢包情况并未改善,此段丢包非扇区接反导致。3、重新对此段LOG进行分析,发现高丢包路段SINR质差为频繁切换导致,如下 图所示。需重点解决频繁切换问题。

图4:切换详情 三、解决措施 分析LOG发现周边小区BB-五河-五河冯刘-HFTA-440448-52,BB-五河-五河孙坪-HFTA-440398-55,BB-五河-移动西环路大桥4-HFTA-440616-54越区覆盖严重,导致高速上信号复杂频繁切换,优化调整这3个小区越区覆盖,减小对高速覆盖干扰。 由于此路段处于县城高速路口,信号繁杂,无法做到高速路上信号绝对纯净,调整BB-五河-五河徐明高速18站-HFTA-440612-53小区向邻区BB-五河-头铺花园-HFTA-440550-51切换CIO由0调整为3,保证尽快切换至目标小区,减少周边扇区的干扰影响。

VoLTE优化指导手册

专业服务部 2015年10月 VoLTE 优化指导手册

目录 1.概述 (3) 2.VoLTE部署条件 (3) 3.VoLTE优化思路及流程 (3) 3.1.开网优化思路 (3) 3.2.开网优化流程 (4) 3.3.无线网络优化介绍 (7) 4.专题优化提升 (10) 4.1.未接通类问题定位 (10) 4.2.掉话类问题定位 (13) 4.3.时延优化 (15) 4.4.RTP丢包率优化 (18) 4.4.1.SINR提升及高干扰质差小区处理 (18) 4.4.2.参数优化 (18) 4.4.3.切换优化 (19) 4.5.eSRVCC优化 (20) 4.5.1.eSRVCC优化思路 (20) 4.5.2.B2测量优化 (20) 4.5.3.邻区数量优化 (21) 5.案例分享 (22) 5.1.1.MATE 7在大唐站下VOLTE语音业务卡顿,在HW站下正常 (22) 5.1.2.大量VoLTE用户呼叫起呼失败,并伴有VoLTE呼叫时异常回落2G的现象 24 6.投诉处理流程 (25) 7.总结 (26)

1.概述 全国至10月份除广州、杭州、长沙、南京、福州等5个VoLTE试点城市外,北京、上海、深圳、苏州、无锡、济南、株洲、温州、绍兴、湖州、丽水等城市已经正式宣布VoLTE商用,并开展了VoLTE相关优化工作,至2015年底,中国移动计划全国范围内全面实现VoLTE商用。 随着中国移动全面推进VoLTE商用的步伐,VoLTE商用前的网络质量保障及商用后网络日常优化闲的格外重要,对此我们总结已有的VoLTE网络优化工作经验,梳理出各类指标优化方法及思路,整理出在目前优化过程中遇到的问题,总结各类问题分析思路,期望传递已有经验对后期各地市范围内展开VoLTE网络优化工作有所帮助,让大家在VoLTE优化的过程中找准方向,少走弯路。 对于VoLTE的基本原理以及测试方法,我们不再赘述,相关资料大家可在59服务器上自行下载学习,地址:/客服中心/专业服务/TD-LTE/专业服务业务部文档发布/第二批文档/VOLTE相关。 2.VoLTE部署条件 3.VoLTE优化思路及流程 3.1.开网优化思路 VoLTE语音相对数据业务,对网络覆盖、邻区规划、系统干扰、传输质量等的影响会更敏感,对网络优化的要求会更高。RF性能是“基础”、Volte语音质量是“重点”、端到端定位是“难点”。

相关主题