搜档网
当前位置:搜档网 › 2019年JAVA代码性能效率优化28个方法

2019年JAVA代码性能效率优化28个方法

2019年JAVA代码性能效率优化28个方法
2019年JAVA代码性能效率优化28个方法

2019年JAVA代码性能效率优化28个方法

最近在想自己编程时是否注意过代码的效率问题,得出的答案是:没有。代码只是实现了功能,至于效率高不高没怎么关注,这应该是JAVA程序员进阶的时候需要考虑的问题,不再是单纯的实现功能,也不是完全依赖GC而不关注内存中发生了什么,而要考虑到代码的性能。下面是网上找的一篇关于JAVA代码优化的文章,觉得不错,就转载了。这里面设计到了JAVA基础和J2EE方面的优化建议,有时间会整理一下,现在先转载。

1、尽量指定类的final修饰符带有final修饰符的类是不可派生的。

如果指定一个类为final,则该类所有的方法都是final。Java编译器会寻找机会内联(inline)所有的final方法(这和具体的编译器实现有关)。此举能够使性能平均提高50% 。

2、尽量重用对象。

特别是String 对象的使用中,出现字符串连接情况时应用StringBuffer 代替。由于系统不仅要花时间生成对象,以后可能还需花时间对这些对象进行垃圾回收和处理。因此,生成过多的对象将会给程序的性能带来很大的影响。

3、尽量使用局部变量,调用方法时传递的参数以及在调用中创建的临时变量都保存在栈(Stack)中,速度较快。

其他变量,如静态变量、实例变量等,都在堆(Heap)中创建,速度较慢。另外,依赖于具体的编译器/JVM,局部变量还可能得到进一步优化。

4、不要重复初始化变量

默认情况下,调用类的构造函数时,Java会把变量初始化成确定的值:所有的对象被设置成null,整数变量(byte、short、int、long)设置成0,float和double变量设置成0.0,逻辑值设置成false。当一个类从另一个类派生时,这一点尤其应该注意,因为用new关键词创建一个对象时,构造函数链中的所有构造函数都会被自动调用。

5、在JAVA + ORACLE 的应用系统开发中,java中内嵌的SQL语句尽量使用大写的形式,以减轻ORACLE解析器的解析负担。

6、I/O操作中需要及时释放资源

Java 编程过程中,进行数据库连接、I/O流操作时务必小心,在使用完毕后,即使关闭以释放资源。

因为对这些大对象的操作会造成系统大的开销,稍有不慎,会导致严重的后果。

7、保证过期对象的及时回收

由于JVM的有其自身的GC机制,不需要程序开发者的过多考虑,从一定程度上减轻了开发者负担,但同时也遗漏了隐患,过分的创建对象会消耗系统的大量内存,严重时会导致内存泄露,因此,保证过期对象的及时回收具有重要意义。

JVM回收垃圾的条件是:对象不在被引用;然而,JVM的GC并非十分的机智,即使对象满足了垃圾回收的条件也不一定会被立即回收。所以,建议我们在对象使用完毕,应手动置

成null。

8、在使用同步机制时,应尽量使用方法同步代替代码块同步。

9、尽量减少对变量的重复计算

10、尽量采用lazy loading 的策略,即在需要的时候才开始创建。

11、慎用异常

异常对性能不利。抛出异常首先要创建一个新的对象。Throwable接口的构造函数调用名为fillInStackTrace()的本地(Native)方法,fillInStackTrace()方法检查堆栈,收集调用跟踪信息。只要有异常被抛出,VM就必须调整调用堆栈,因为在处理过程中创建了一个新的对象。异常只能用于错误处理,不应该用来控制程序流程。

12、不要在循环中使用:Try { } catch() { } 应把其放置在最外层。

13、StringBuffer 的使用:

StringBuffer表示了可变的、可写的字符串。

有三个构造方法:

StringBuffer (); //默认分配16个字符的空间

StringBuffer (int size); //分配size个字符的空间

StringBuffer (String str); //分配16个字符+str.length()个字符空间

你可以通过StringBuffer的构造函数来设定它的初始化容量,这样可以明显地提升性能。

这里提到的构造函数是StringBuffer(int length),length参数表示当前的StringBuffer能保持的字符数量。你也可以使用ensureCapacity(int minimumcapacity)方法在StringBuffer对象创建之后设置它的容量。首先我们看看StringBuffer的缺省行为,然后再找出一条更好的提升性能的途径。

StringBuffer在内部维护一个字符数组,当你使用缺省的构造函数来创建StringBuffer对象的时候,因为没有设置初始化字符长度,StringBuffer的容量被初始化为16个字符,也就是说缺省容量就是16个字符。当StringBuffer达到最大容量的时候,它会将自身容量增加到当前的2倍再加2,也就是(2*旧值+2)。如果你使用缺省值,初始化之后接着往里面追加字符,在你追加到第16个字符的时候它会将容量增加到34(2*16+2),当追加到34个字符的时候就会将容量增加到70(2*34+2)。无论何事只要StringBuffer到达它的最大容量它就不得不创建一个新的字符数组然后重新将旧字符和新字符都拷贝一遍――这也太昂贵了点。所以总是给StringBuffer设置一个合理的初始化容量值是错不了的,这样会带来立竿见影的性能增益。StringBuffer初始化过程的调整的作用由此可见一斑。所以,使用一个合适的容量值来初始化StringBuffer永远都是一个最佳的建议。

14、合理的使用Java类java.util.Vector。

简单地说,一个Vector就是一个https://www.sodocs.net/doc/b58635924.html,ng.Object实例的数组。Vector与数组相似,它的元素可以通过整数形式的索引访问。但是,Vector类型的对象在创建之后,对象的大小能够根据元素的增加或者删除而扩展、缩小。请考虑下面这个向Vector加入元素的例子:Object bj = new Object();

Vector v = new Vector(100000);

for(int I=0;

I<100000; I++) { v.add(0,obj); }

除非有绝对充足的理由要求每次都把新元素插入到Vector的前面,否则上面的代码对性能不利。在默认构造函数中,Vector的初始存储能力是10个元素,如果新元素加入时存储能力不足,则以后存储能力每次加倍。Vector类就对象StringBuffer类一样,每次扩展存储能力时,所有现有的元素都要复制到新的存储空间之中。下面的代码片段要比前面的例子快几个数量级:

Object bj = new Object();

Vector v = new Vector(100000);

for(int I=0; I<100000; I++) { v.add(obj); }

同样的规则也适用于Vector类的remove()方法。由于Vector中各个元素之间不能含有“空隙”,删除除最后一个元素之外的任意其他元素都导致被删除元素之后的元素向

前移动。也就是说,从Vector删除最后一个元素要比删除第一个元素“开销”低好几倍。

假设要从前面的Vector删除所有元素,我们可以使用这种代码:

for(int I=0; I<100000; I++)

{

v.remove(0);

}

但是,与下面的代码相比,前面的代码要慢几个数量级:

for(int I=0; I<100000; I++)

{

v.remove(v.size()-1);

}

从Vector类型的对象v删除所有元素的最好方法是:

v.removeAllElements();

假设Vector类型的对象v包含字符串“Hello”。考虑下面的代码,它要从这个Vector 中删除“Hello”字符串:

String s = “Hello”;

int i = v.indexOf(s);

if(I != -1) v.remove(s);

这些代码看起来没什么错误,但它同样对性能不利。在这段代码中,indexOf()方法对v进行顺序搜索寻找字符串“Hello”,remove(s)方法也要进行同样的顺序搜索。改进之后的版本是:

String s = “Hello”;

int i = v.indexOf(s);

if(I != -1) v.remove(i);

这个版本中我们直接在remove()方法中给出待删除元素的精确索引位置,从而避免了第二次搜索。一个更好的版本是:

String s = “Hello”; v.remove(s);

最后,我们再来看一个有关Vector类的代码片段:

for(int I=0; I++;I < v.length)

如果v包含100,000个元素,这个代码片段将调用v.size()方法100,000次。虽然size 方法是一个简单的方法,但它仍旧需要一次方法调用的开销,至少JVM需要为它配置以及清除堆栈环境。在这里,for循环内部的代码不会以任何方式修改Vector类型对象v的大小,因此上面的代码最好改写成下面这种形式:

int size = v.size(); for(int I=0; I++;I

虽然这是一个简单的改动,但它仍旧赢得了性能。毕竟,每一个CPU周期都是宝贵的。

15、当复制大量数据时,使用System.arraycopy()命令。

16、代码重构:增强代码的可读性。

17、不用new关键词创建类的实例

用new关键词创建类的实例时,构造函数链中的所有构造函数都会被自动调用。但如果一个对象实现了Cloneable接口,我们可以调用它的clone()方法。clone()方法不会调用任何类构造函数。

在使用设计模式(Design Pattern)的场合,如果用Factory模式创建对象,则改用clone()方法创建新的对象实例非常简单。例如,下面是Factory模式的一个典型实现:

public static Credit getNewCredit() {

return new Credit();

}

改进后的代码使用clone()方法,如下所示:

private static Credit BaseCredit = new Credit();

public static Credit getNewCredit() {

return (Credit) BaseCredit.clone();

}

上面的思路对于数组处理同样很有用。

18、乘法和除法,用移位操作替代乘法操作可以极大地提高性能。

19、在JSP页面中关闭无用的会话。

一个常见的误解是以为session在有客户端访问时就被创建,然而事实是直到某server端程序调用HttpServletRequest.getSession(true)这样的语句时才被创建,注意如果JSP没有显示的使用<%@pagesession=”false”%> 关闭session,则JSP文件在编译成Servlet时将会自动加上这样一条语句HttpSession session = HttpServletRequest.getSession(true);这也是JSP中隐含的session对象的来历。由于session会消耗内存资源,因此,如果不打算使用session,应该在所有的JSP中关闭它。对于那些无需跟踪会话状态的页面,关闭自动创建的会话可以节省一些资源。使用如下page 指令:<%@ page session=”false”%>

20、JDBC与I/O

如果应用程序需要访问一个规模很大的数据集,则应当考虑使用块提取方式。默认情况下,JDBC每次提取32行数据。举例来说,假设我们要遍历一个5000 行的记录集,JDBC必须调用数据库157次才能提取到全部数据。如果把块大小改成512,则调用数据库的次数将减少到10次。

21、Servlet与内存使用

许多开发者随意地把大量信息保存到用户会话之中。一些时候,保存在会话中的对象没有及时地被垃圾回收机制回收。从性能上看,典型的症状是用户感到系统周期性地变慢,却又不能把原因归于任何一个具体的组件。如果监视JVM的堆空间,它的表现是内存占用不正常地大起大落。

解决这类内存问题主要有二种办法。第一种办法是,在所有作用范围为会话的Bean中实现HttpSessionBindingListener接口。这样,只要实现valueUnbound()方法,就可以显式地释放Bean使用的资源。

另外一种办法就是尽快地把会话作废。大多数应用服务器都有设置会话作废间隔时间的选项。另外,也可以用编程的方式调用会话的setMaxInactiveInterval()方法,该方法用来设定在作废会话之前,Servlet容器允许的客户请求的最大间隔时间,以秒计。

22、使用缓冲标记

一些应用服务器加入了面向JSP的缓冲标记功能。例如,BEA的WebLogic Server从6.0版本开始支持这个功能,Open Symphony工程也同样支持这个功能。JSP缓冲标记既能

够缓冲页面片断,也能够缓冲整个页面。当JSP页面执行时,如果目标片断已经在缓冲之中,则生成该片断的代码就不用再执行。页面级缓冲捕获对指定URL的请求,并缓冲整个结果页面。对于购物篮、目录以及门户网站的主页来说,这个功能极其有用。对于这类应用,页面级缓冲能够保存页面执行的结果,供后继请求使用。

23、选择合适的引用机制

在典型的JSP应用系统中,页头、页脚部分往往被抽取出来,然后根据需要引入页头、页脚。当前,在JSP页面中引入外部资源的方法主要有两种:include指令,以及include 动作。

include指令:例如<%@ include file=”copyright.html” %>。该指令在编译时引入指定的资源。在编译之前,带有include指令的页面和指定的资源被合并成一个文件。被引用的外部资源在编译时就确定,比运行时才确定资源更高效。

include动作:例如。该动作引入指定页面执行后生成的结果。由于它在运行时完成,因此对输出结果的控制更加灵活。但时,只有当被引用的内容频繁地改变时,或者在对主页面的请求没有出现之前,被引用的页面无法确定时,使用include动作才合算。

24、及时清除不再需要的会话

为了清除不再活动的会话,许多应用服务器都有默认的会话超时时间,一般为30分钟。当应用服务器需要保存更多会话时,如果内存容量不足,操作系统会把部分内存数据转移到磁盘,应用服务器也可能根据“最近最频繁使用”(Most Recently Used)算法把部分不活跃的会话转储到磁盘,甚至可能抛出“内存不足”异常。在大规模系统中,串行化会话的代价是很昂贵的。当会话不再需要时,应当及时调用HttpSession.invalidate()方法清除会话。HttpSession.invalidate()方法通常可以在应用的退出页面调用。

25、不要将数组声明为:public static final 。

26、HashMap的遍历效率讨论

经常遇到对HashMap中的key和value值对的遍历操作,有如下两种方法:Map paraMap = new HashMap();

…………….//第一个循环

Set appFieldDefIds = paraMap.keySet();

for (String appFieldDefId : appFieldDefIds) {

String[] values = paraMap.get(appFieldDefId);

……

}

//第二个循环

for(Entry entry : paraMap.entrySet()){

String appFieldDefId = entry.getKey();

String[] values = entry.getValue();

…….

}

第一种实现明显的效率不如第二种实现。

分析如下Set appFieldDefIds = paraMap.keySet(); 是先从HashMap中取得keySet

代码如下:

public Set keySet() {

Set ks = keySet;

return (ks != null ? ks : (keySet = new KeySet()));

}

private class KeySet extends AbstractSet {

public Iterator iterator() {

return newKeyIterator();

}

public int size() {

return size;

}

public boolean contains(Object o) {

return containsKey(o);

}

public boolean remove(Object o) {

return HashMap.this.removeEntryForKey(o) != null;

}

public void clear() {

HashMap.this.clear();

}

}

其实就是返回一个私有类KeySet, 它是从AbstractSet继承而来,实现了Set接口。

再来看看for/in循环的语法

for(declaration : expression)

statement

在执行阶段被翻译成如下各式

for(Iterator #i = (expression).iterator(); #i.hashNext();){

declaration = #i.next();

statement

}

因此在第一个for语句for (String appFieldDefId : appFieldDefIds) 中调用了HashMap.keySet().iterator()

而这个方法调用了newKeyIterator()

Iterator newKeyIterator() {

return new KeyIterator();

}

private class KeyIterator extends HashIterator {

public K next() {

return nextEntry().getKey();

}

}

所以在for中还是调用了

在第二个循环for(Entry entry : paraMap.entrySet())中使用的Iterator 是如下的一个内部类

private class EntryIterator extends HashIterator> {

public Map.Entry next() {

return nextEntry();

}

}

此时第一个循环得到key,第二个循环得到HashMap的Entry效率就是从循环里面体现出来的第二个循环此致可以直接取key和value值而第一个循环还是得再利用HashMap的get(Object key)来取value值现在看看HashMap的get(Object key)方法

public V get(Object key) {

Object k = maskNull(key);

int hash = hash(k);

int i = indexFor(hash, table.length); //Entry[] table

Entry e = table;

while (true) {

if (e == null)

return null;

if (e.hash == hash && eq(k, e.key))

return e.value;

e = e.next;

}

}

其实就是再次利用Hash值取出相应的Entry做比较得到结果,所以使用第一中循环相当于两次进入HashMap的Entry

中而第二个循环取得Entry的值之后直接取key和value,效率比第一个循环高。其实按照Map的概念来看也应该是用第二个循环好一点,它本来就是key和value的值对,将key 和value分开操作在这里不是个好选择。

27、array(数组) 和ArryList的使用

array([]):最高效;但是其容量固定且无法动态改变;

ArrayList:容量可动态增长;但牺牲效率;

基于效率和类型检验,应尽可能使用array,无法确定数组大小时才使用ArrayList!ArrayList是Array的复杂版本

ArrayList内部封装了一个Object类型的数组,从一般的意义来说,它和数组没有本质的差别,甚至于ArrayList的许多方法,如Index、IndexOf、Contains、Sort等都是在内部数组的基础上直接调用Array的对应方法。

ArrayList存入对象时,抛弃类型信息,所有对象屏蔽为Object,编译时不检查类型,但是运行时会报错。

注:jdk5中加入了对泛型的支持,已经可以在使用ArrayList时进行类型检查。

从这一点上看来,ArrayList与数组的区别主要就是由于动态增容的效率问题了

28、尽量使用HashMap 和ArrayList ,除非必要,否则不推荐使用HashTable和Vector ,后者由于使用同步机制,而导致了性能的开销。

系统性能优化方案

系统性能优化方案 (第一章) 系统在用户使用一段时间后(1年以上),均存在系统性能(操作、查询、分析)逐渐下降趋势,有些用户的系统性能下降的速度非常快。同时随着目前我们对数据库分库技术的不断探讨,在实际用户的生产环境,现有系统在性能上的不断下降已经非常严重的影响了实际的用户使用,对我公司在行业用户内也带来了不利的影响。 通过对现有系统的跟踪分析与调整,我们对现有系统的性能主要总结了以下几个瓶颈: 1、数据库连接方式问题 古典C/S连接方式对数据库连接资源的争夺对DBServer带来了极大的压力。现代B/S连接方式虽然不同程度上缓解了连接资源的压力,但是由于没有进行数据库连接池的管理,在某种程度上,随着应用服务器的不断扩大和用户数量增加,连接的数量也会不断上升而无截止。 此问题在所有系统中存在。 2、系统应用方式(架构)问题(应用程序设计的优化) 在业务系统中,随着业务流程的不断增加,业务控制不断深入,分析统计、决策支持的需求不断提高,我们现有的业务流程处理没有针对现有的应用特点进行合理的应用结构设计,例如在‘订单、提油单’、‘单据、日报、帐务的处理’关系上,单纯的数据关系已经难以承载多元的业务应用需求。 3、数据库设计问题(指定类型SQL语句的优化)

目前在系统开发过程中,数据库设计由开发人员承担,由于缺乏专业的数据库设计角色、单个功能在整个系统中的定位模糊等原因,未对系统的数据库进行整体的分析与性能设计,仅仅实现了简单的数据存储与展示,随着用户数据量的不断增加,系统性能逐渐下降。 4、数据库管理与研究问题(数据存储、物理存储和逻辑存储的优化) 随着系统的不断增大,数据库管理员(DBA)的角色未建立,整个系统的数据库开发存在非常大的随意性,而且在数据库自身技术的研究、硬件配置的研究等方面未开展,导致系统硬件、系统软件两方面在数据库管理维护、研究上无充分认可、成熟的技术支持。 5、网络通信因素的问题 随着VPN应用技术的不断推广,在远程数据库应用技术上,我们在实际设计、开发上未充分的考虑网络因素,在数据传输量上的不断加大,传统的开发技术和设计方法已经无法承载新的业务应用需求。 针对以上问题,我们进行了以下几个方面的尝试: 1、修改应用技术模式 2、建立历史数据库 3、利用数据库索引技术 4、利用数据库分区技术 通过尝试效果明显,仅供参考!

java性能调优的基本知识

Java堆是指在程序运行时分配给对象生存的空间。通过-mx/-Xmx和-ms/-Xms来设置起始堆的大小和最大堆的大小。根据自己JDK的版本和厂家决定使用-mx和-ms或-Xmx和-Xms。Java堆大小决定了垃圾回收的频度和速度,Java堆越大,垃圾回收的频度越低,速度越慢。同理,Java堆越小,垃圾回收的频度越高,速度越快。要想设置比较理想的参数,还是需要了解一些基础知识的。Java堆的最大值不能太大,这样会造成系统内存被频繁的交换和分页。所以最大内存必须低于物理内存减去其他应用程序和进程需要的内存。而且堆设置的太大,造成垃圾回收的时间过长,这样将得不偿失,极大的影响程序的性能。以下是一些经常使用的参数设置: 1) 设置-Xms等于-XmX的值; 2) 估计内存中存活对象所占的空间的大小,设置-Xms等于此值,-Xmx四倍于此值; 3) 设置-Xms等于-Xmx的1/2大小; 4) 设置-Xms介于-Xmx的1/10到1/4之间; 5) 使用默认的设置。 大家需要根据自己的运行程序的具体使用场景,来确定最适合自己的参数设置。除了-Xms和-Xmx两个最重要的参数外,还有很多可能会用到的参数,这些参数通常强烈的依赖于垃圾收集的算法,所以可能因为JDK的版本和厂家而有所不同。但这些参数一般在Web 开发中用的比较少,我就不做详细介绍了。在实际的应用中注意设置-Xms和-Xmx使其尽可能的优化应用程序就行了。对于性能要求很高的程序,就需要自己再多研究研究Java虚拟机和垃圾收集算法的机制了。可以看看曹晓钢翻译的《深入Java虚拟机》一书。 Java程序性能调优的基本知识和JDK 调优 一基本知识 1.1 性能是什么 在性能调优之前,我们首先来了解一下性能是什么?关于性能,我想每个学习过Java的人都能列 出几点,甚至可以夸夸其谈。在《Java TM Platform Performance》一书中,定义了如下五个方面来作 为评判性能的标准: 1) 运算的性能——哪一个算法的执行性能最好? 2) 内存的分配——程序运行时需要耗费多少内存?

Java程序性能优化 让你的Java程序更快、更稳定-笔记

第一章 java 性能调优概述 1.1.2 性能的参考指标 1.2.1 设计调优 比如说如果A组件通过循环不断监控时间E是否发生,其必然会占用部分系统资源。但是可以通过observer模式解决: 1.2.2 代码调优 比如linkedList比ArrayList 随机访问性能好。 1.2.3 JVM调优 一般在开发后期做,比如内存结构,GC种类。 1.2.4 数据库调优 比如大量的拥有相同结构的SQL查询,可以用preparedStatement代替statement;指定要查询的列名,避免用“*”。 比如设置oracle的共享池、缓存区。 1 .2.5 操作系统调优 比如调整unix的共享内存值。

第二章设计优化 2.1 设计模式 2.1.1 单例模式 对于频繁使用对象,因为new次数少,对内存使用不频繁,将减轻GC压力。 2.1.2 代理模式 可以实现比如延迟加载 2.1.3 享元模式 好处同单例模式 2.1.5 观察者模式 可以代替多线程。 2.1.6 Value Object 一次封装所有的属性值,省得一次次请求属性值。 2.1.7 Business Delegate 代理类中一组远程方法调用构成一个业务流程,客户端调用代理类。 2.2 常用优化组件 2.2.1 缓冲 缓冲是一块内存区域,目的是缓解应用程序上下层之间的性能差异。 2.2.2 缓存 也是一块内存区域,目的是暂存数据处理结构,并供下次访问使用。 也可用ehCache等框架 2.2.3 对象复用池 比如线程池和数据库连接池

2.2.4 多线程 2.2.5 负载均衡 2.2.6 时间换空间 比如少申请变量 2.2.7 空间换时间 比如用缓存 第三章 java 程序优化 3.3 使用NIO提升性能 NIO为所有的原始类型提供buffer,NIO是基于Block的,NIO最重要的组件是buffer和Channel。 buffer是一个连续的内存快,是NIO读写数据的中转池。通道表示缓冲数据的源头或者目的地,它是用于想缓存读取或写入数据,是访问缓冲的接口。 3.4 使用软引用和弱引用 3.5 有利于改善性能的技巧 3.5.1 慎用异常 3.5.2 使用局部变量,因为局部变量是在stack中,比较快。 3.5.3 位运算代替乘除法 3.5.12 静态方法代替实例方法 第四章并行程序优化 4.5 锁的优化 4.5.7 ReentrantLock 重入锁 4.5.9 自旋锁

Oracle 数据库设计阶段性能优化策略

Oracle 数据库设计阶段性能优化策略 通过对Oracle 数据库系统物理结构和逻辑结构的分析,阐述了在Oralce数据库设计开发阶段性能优化的一些策略和方法。 Oracle是目前使用最为广泛的大型数据库管理系统,提高Oracle数据库系统的运行效率,是整个计算机信息系统高效运转的前提和保证。影响Oracle数据库应用系统性能的因素很多,既有软件方面的因素,也包括数据运行的硬件环境、网络环境、数据库管理和维护方面的因素等。数据库系统设计开发阶段是Oracle应用优化的最佳阶段,也是主动优化阶段,能达到以最小成本获得最大性能增益的目的。通过对其逻辑存储结构和物理存储结构设计进行优化,使之在满足需求条件下,时空开销性能最佳,可以解决数据库系统运行过程中性能的渐进性下降或性能突降等问题,以保证系统运行的优良性能。 Oracle数据库的逻辑结构和物理结构 Oracle 数据库的逻辑结构是由一些数据库对象组成,如数据库表空间、表、索引、段、视图、存储过程、触发器等。数据库的逻辑存储结构(表空间等)决定了数据库的物理空间是如何被使用的,数据库对象如表、索引等分布在各个表空间中。 Oracle 数据库的物理结构从操作系统一级查看,是由一个个的文件组成,从物理上可划分为:数据文件、日志文件、控制文件和参数文件。数据文件中存放了所有的数据信息;日志文件存放数据库运行期间产生的日志信息,它被重复覆盖使用,若不采用归档方式的话,已被覆盖的日志信息将无法恢复;控制文件记录了整个数据库的关键结构信息,它若被破坏,整个数据库将无法工作和恢复;参数文件中设置了很多Oracle 数据库的配置参数,当数据库启动时,会读取这些信息。 逻辑结构的优化 逻辑结构优化用通俗的话来说就是通过增加、减少或调整逻辑结构来提高应用的效率,下面通过对基本表的设计及索引、聚簇的讨论来分析ORACLE逻辑结构的优化。 1、基本表扩展: 数据库性能包括存储空间需求量的大小和查询响应时间的长短两个方面。为了优化数据库性能,需要对数据库中的表进行规范化。一般来说,逻辑数据库设计满足第三范式的表结构容易维护且基本满足实际应用的要求。所以,实际应用中一般都按照第三范式的标准进行规范化,从而保证了数据库的一致性和完整性,设计人员往往会设计过多的表间关联,以尽可能地降低数据冗余。但在实际应用中这种做法有时不利于系统运行性能的优化:如过程从多表获取数据时引发大量的连接操作,在需要部分数据时要扫描整个表等,这都消耗了磁盘的I/O 和CPU 时间。 为解决这一问题,在设计表时应同时考虑对某些表进行反规范化,方法有以下几种:一是分割表。分割表可分为水平分割表和垂直分割表两种:水平分割是按照行将一个表分割为多个表,这可以提高每个表的查询速度,但查询、更新时要选择不同的表,统计时要汇总多个表,因此应用程序会更复杂。垂直分割是对于一个列很多的表,若某些列的访问频率

Java代码优化

1. 尽量在合适的场合使用单例 使用单例可以减轻加载的负担,缩短加载的时间,提高加载的效率,但并不是所有地方都适用于单例,简单来说,单例主要适用于以下三个方面: 第一,控制资源的使用,通过线程同步来控制资源的并发访问; 第二,控制实例的产生,以达到节约资源的目的; 第三,控制数据共享,在不建立直接关联的条件下,让多个不相关的进程或线程之间实现通信。 2. 尽量避免随意使用静态变量 要知道,当某个对象被定义为stataic变量所引用,那么gc通常是不会回收这个对象所占有的内存,如 Java代码 public class A{ static B b = new B(); } 此时静态变量b的生命周期与A类同步,如果A类不会卸载,那么b对象会常驻内存,直到程序终止。 3. 尽量避免过多过常的创建Java对象 尽量避免在经常调用的方法,循环中new对象,由于系统不仅要花费时间来创建对象,而且还要花时间对这些对象进行垃圾回收和处理,在我们可以控制的范围内,最大限度的重用对象,最好能用基本的数据类型或数组来替代对象。 4. 尽量使用final修饰符 带有final修饰符的类是不可派生的。在Java核心API中,有许多应用final的例子,例如https://www.sodocs.net/doc/b58635924.html,ng.String.为String类指定final防止了使用者覆盖length()方法。另外,如果一个类是final的,则该类所有方法都是final的。Java编译器会寻找机会内联(inline)所有的final方法(这和具体的编译器实现有关)。此举能够使性能平均提高50%.

5. 尽量使用局部变量 调用方法时传递的参数以及在调用中创建的临时变量都保存在栈(Stack)中,速度较快。其他变量,如静态变量、实例变量等,都在堆(Heap)中创建,速度较慢。 6. 尽量处理好包装类型和基本类型两者的使用场所 虽然包装类型和基本类型在使用过程中是可以相互转换,但它们两者所产生的内存区域是完全不同的,基本类型数据产生和处理都在栈中处理,包装类型是对象,是在堆中产生实例。 在集合类对象,有对象方面需要的处理适用包装类型,其他的处理提倡使用基本类型。 7. 慎用synchronized,尽量减小synchronize的方法 都知道,实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,所以尽量避免无谓的同步控制。synchronize方法被调用时,直接会把当前对象锁了,在方法执行完之前其他线程无法调用当前对象的其他方法。所以synchronize的方法尽量小,并且应尽量使用方法同步代替代码块同步。 8. 尽量使用StringBuilder和StringBuffer进行字符串连接 这个就不多讲了。 9. 尽量不要使用finalize方法 实际上,将资源清理放在finalize方法中完成是非常不好的选择,由于GC的工作量很大,尤其是回收Young代内存时,大都会引起应用程序暂停,所以再选择使用finalize方法进行资源清理,会导致GC负担更大,程序运行效率更差。 10. 尽量使用基本数据类型代替对象 String str = "hello"; 上面这种方式会创建一个"hello"字符串,而且JVM的字符缓存池还会缓存这个字符串; String str = new String("hello"); 此时程序除创建字符串外,str所引用的String对象底层还包含一个char[]数组,这个char[]数组依次存放了h,e,l,l,o

[2016-06-28]_系统性能问题分析及优化策略方法总结(无作者)

系统性能问题分析及优化策略方法 摘要:随着信息化建设的深入和普及,信息系统已经成为了社会的生产、生活重要组成部分,信息系统由各类型复杂的软、硬件组成,功能逻辑结构复杂,数据种类多样,系统的性能犹如系统的生命,是系统正常运行服务的关键,越来越受到人们的重视。如何优化系统性能,是系统设计研发者们必须考虑的问题。性能优化目标只有一个就是提高系统性能,但是性能分析优化的方法策略却多种多样,如系统的架构优化,程序的逻辑优化,内存、I/O、网络、磁盘优化,数据库优化等等。如何选择合适的优化方法,解决性能问题,是系统性能优化的关键。 关键词:性能、优化、系统、升级 System Performance Analysis and Optimization Strategy Abstract: With the development and popularization of grid informatization, the information systems has become an important part of social production and living. They are composing by types of complex information system software and hardware components. Their functions logical structures are of complex and their data types are diverse. The system performance is like living systems which is the key to the normal operation of the service, attracting more and more people's attention. How to optimize system performance is the problem that must be considered by the designer and developer. Performance Optimization has only one goal that is to improve system performance. However, performance analysis and optimization methods and strategies are various, such as system architecture optimization, logic optimization, memory optimization, I / O optimization, network optimization, disk optimization, database optimization and so on. How to choose a suitable optimization method to solve performance problems is the key to system performance optimization. Keywords: Performance, Optimization, System,Upgrade

Java架构学习【JVM与性能优化知识点整理】编写高效优雅Java程序

面向对象 构造器参数太多怎么办? 用builder模式,用在 1、5个或者5个以上的成员变量 2、参数不多,但是在未来,参数会增加 Builder模式: 属于对象的创建模式,一般有 1.抽象建造者:一般来说是个接口,包含1)建造方法,建造部件的方法(不止一 个),2)返回产品的方法 2.具体建造者 3.导演者,调用具体的建造者,创建产品对象 4.产品,需要建造的复杂对象 对于客户端,创建导演者和具体建造者,并把具体建造者交给导演者,然后由客户端通知导演者操纵建造者进行产品的创建。 在实际的应用过程中,有时会省略抽象建造者和导演者。 不需要实例化的类应该构造器私有 如,一些工具类提供的都是静态方法,这些类是不应该提供具体的实例的。可以参考JDK 中的Arrays。 不要创建不必要的对象 1.避免无意中创建的对象,如自动装箱 2.可以在类的多个实例之间重用的成员变量,尽量使用static。

但是,要记住,是不要创建不必要的对象,而不是不要创建对象。 对象池要谨慎使用,除非创建的对象是非常昂贵的操作,如数据库的连接,巨型对象等等。 避免使用终结方法 finalizer方法,jdk不能保证何时执行,也不能保证一定会执行。如果有确实要释放的资源应该用try/finally。 使类和成员的可访问性最小化 编写程序和设计架构,最重要的目标之一就是模块之间的解耦。使类和成员的可访问性最小化无疑是有效的途径之一。 使可变性最小化 尽量使类不可变,不可变的类比可变的类更加易于设计、实现和使用,而且更不容易出错,更安全。 常用的手段: 不提供任何可以修改对象状态的方法; 使所有的域都是final的。 使所有的域都是私有的。 使用写时复制机制。带来的问题:会导致系统产生大量的对象,而且性能有一定的影响,需要在使用过程中小心权衡。 复合优先于继承 继承容易破坏封装性,而且会使子类的实现依赖于父类。 复合则是在类中增加一个私有域,引用类的一个实例,这样的话就避免了依赖类的具体实现。 只有在子类确实是父类的一个子类型时,才比较适合用继承。 接口优于抽象类 java是个单继承的,但是类允许实现多个接口。

前端性能优化方案

前端优化方案 1.提升页面静态资源加载速度 (1) 1.1减少Http请求 (1) 1.1.1项目首页、访问量非常大的页面有自己单独css内容 (1) 1.1.2移除重复的脚本及样式,统一网站资源(js库、css库)的使用。.2 1.1.3整理优化并合并现css文件及js文件,将所有的css文件以及js文件 分为base、common、page三层 (2) 1.2压缩静态资源文件,减少文件体积大小 (2) 1.2.1采用CSS Sprites技术将页面内所有背景小图标整合到一张图片。 .. 2 1.2.2不要在HTML使用太多大图像 (2) 1.2.3采用开源工具来压缩减小css及js文件体积 (2) 1.3内嵌图像。 (3) 1.4静态资源尽量合并到少数几个域名访问,减少DNS查询 (3) 2.加快页面的渲染展示速度 (3) 2.1 Css和js文件的位置 (3) 2.2规范img标签的使用 (3) 2.3精简页面标签,减少DOM元素 (4) 2.4规范Css代码 (4) 3.服务器端静态资源访问优化 (4) 3.1服务器部署时通过web服务器及应用服务集群配置,让静态资源通过web 服务器提供访问,提高静态资源并发访问效率 (4) 3.2通过在web服务器配置静态资源的缓存以及压缩策略,提高用户访问速度. (4) 3.3通过第三方网络静态资源缓存服务(CDN),提高网站访问速度,提升用户访 问体验。 (4) 1.提升页面静态资源加载速度 1.1减少Http请求 1.1.1项目首页、访问量非常大的页面有自己单独css内容 静态页面生成时直接生成到文件中,动态文件的话在模板文件中include。

java和数据库性能优化

1 数据库性能优化 ?优先考虑查询 数据库设计时,要优先考虑查询,因为在正常用户使用中,插入(insert)只有一次,但是会经常查询。例如在我们的OA中,起草一次,然后在接收端可能多个人要多次查询。 查询一般不要关联3个以上的表,也就是说一个业务的查询最多去关联3个表,如果必须要关联多个表,那么要尽可能的考虑怎么提高查询效率。 ?一定要考虑索引 在数据量很大的时候,一定要建立索引,索引虽说降低了插入和更新效率,但大大的提高了查询效率。在四川公文传输中通过建立索引,能 提升十几倍的效率。 ?分区 分区可以按照地域、时间等分区。我们现在的项目中主要是使用时间分区就可以了,分区可以避免查询时遍历很多条记录。 ?按新旧查询 这个也可以说是按照时间查询,例如:只查询半年内的数据,半年外的数据在另外一个功能模块中查询。这个主要是根据客户的使用习惯, 他们可能会经常查询半年之内的数据。这样避免每次都去遍历很多条记 录。 2 java性能优化 ?Hibernate缓存 Sprint和hibernate的结构现在是java开发的通用基本框架,所以不可能造成内存问题的,但现在网上也有人说hibernate内存有问题或则效率不高,这其实是没有真正掌握hibernate的技术。 Hibernate的缓存分为内在缓存、session缓存和查询缓存。可能和网上有些叫法不是很一样,道理都一样的。

内在缓存是hibernate的机制,当hibernate随着容器启动后,会把hibernate的pojo对象装载进入缓存中,这些是不能修改的。随着容器的关闭而自动释放。另外我们写的hql语言,hibernate会把这些编译成最低成的sql语句,也放在缓存中。这个也是随着容易的关闭而自动释放得。 Session缓存是随着session作用域的消失而消失,但通过在web.xml 中配置 openSessionInViewFilter,可以把session的作用域延长到jsp和action中。 查询缓存主要是用在更新很少,但查询很频繁的地方,提高查询效率和减少与数据库的交互。 Java内存 Java的内存分两部分: 持久化(perm):这部分内存是装载进入jvm中是不会消失的,主要用在static中,还有例如:hibernate的hbm和pojo装载后都要把对象放在perm中。在第一次使用是装载近来,不会随着时间或并发量的变化而变化。 另一部分内存就是会随着使用的增加而增加,例如一个发文业务,并发100个人同时使用,那么就会执行100次装载,但这部分内存会随着使用的结束而释放。一般内存益处的问题都在这里,有些代码写的内存不会释放,还有代码写的过于消耗内存,造成并发很大时,内存还来不及释放已经把虚拟机内存撑暴。 Java虚拟机的内存在64位操作系统中可以无限开大,取决于硬件的内存配置。 Java虚拟机的内存在32位操作系统中只能开到1300M~1800M,取决于操作系统,一般linux操作系统可以比windows多开几百M。但可以使用垂直集群方法来解决这个问题,也就是在一台服务器上安装多个java容器。

ElasticSearch性能优化策略

ElasticSearch性能优化策略 ElasticSearch性能优化主要分为4个方面的优化。 一、服务器部署 1、增加1-2台服务器,用于负载均衡节点 elasticSearch的配置文件中有2个参数:node.master和node.data。这两个参数搭配使用时,能够帮助提供服务器性能。 1.1>node.master: false node.data: true 该node服务器只作为一个数据节点,只用于存储索引数据。使该node服务器功能单一,只用于数据存储和数据查询,降低其资源消耗率。 1.2>node.master: true node.data: false 该node服务器只作为一个主节点,但不存储任何索引数据。该node服务器将使用自身空闲的资源,来协调各种创建索引请求或者查询请求,讲这些请求合理分发到相关的node服务器上。 1.3> node.master: false node.data: false 该node服务器即不会被选作主节点,也不会存储任何索引数据。该服务器主要用于查询负载均衡。在查询的时候,通常会涉及到从多个node服务器上查询数据,并请求分发到多个指定的node服务器,并对各个node服务器返回的结果进行一个汇总处理,最终返回给客户端。 2、关闭data节点服务器中的http功能 针对ElasticSearch集群中的所有数据节点,不用开启http服务。将其中的配置参数这样设置:http.enabled: false,同时也不要安装head,bigdesk,marvel等监控插件,这样保证data节点服务器只需处理创建/更新/删除/查询索引数据等操作。 http功能可以在非数据节点服务器上开启,上述相关的监控插件也安装到这些服务器上,用于监控ElasticSearch集群状态等数据信息。 这样做一来出于数据安全考虑,二来出于服务性能考虑。 3、一台服务器上最好只部署一个Node 一台物理服务器上可以启动多个Node服务器节点(通过设置不同的启动port),但一台服务器上的CPU,内存,硬盘等资源毕竟有限,从服务器性能考虑,不建议一台服务器上启动多个node节点。 二、服务器配置 1、配置索引线程池的大小 ElastiSearch服务器有多个线程池大小配置。主要有:index,search,suggest,get,bulk,percolate,snapshot,snapshot_data,warmer,refresh。 在此主要针对index和search进行一个配置调整。index操作包含:创建/更新/删除索引数据。search操作主要针对用户的各种搜索操作。 具体配置如下: threadpool: index: type: fixed size: 100 search: type: fixed

Java程序性能优化方案

Java程序性能优化方案 StringTokenizer比String.split()方法效率高 更优化的方式 Java代码 while(true){ String splitStr=null; int j=temp.indexOf(';'); if(j<0)break; SplitStr=tmp.substring(0,j); tmp=tmp.substring(j+1); } while(true){ String splitStr=null; int j=temp.indexOf(';'); if(j<0)break; SplitStr=tmp.substring(0,j); tmp=tmp.substring(j+1); } 比String.startsWith和endsWith性能更优的方式:Java代码 int len=orgStr.length(); if(orgStr.charAt(0)=='a' &&orgStr.charAt(1)=='b' &&orgStr.charAt(2)=='b'); if(orgStr.charAt(len-1)=='a' &&orgStr.charAt(len-2)=='b' &&orgStr.charAt(len-3)=='c');

int len=orgStr.length(); if(orgStr.charAt(0)=='a' &&orgStr.charAt(1)=='b' &&orgStr.charAt(2)=='b'); if(orgStr.charAt(len-1)=='a' &&orgStr.charAt(len-2)=='b' &&orgStr.charAt(len-3)=='c'); StringBuffer(int capacity)指定初始容量可以减少扩容的操作

性能保障策略(精选.)

1.1.1性能保障策略 ECIF系统作为一个集中部署的业务应用系统,具有高并发、大数据量处理的特点,要在性能上满足整个系统的运行需要,除了主机、网络的处理能力之外,在各应用节点(包括应用服务器、WEB Server等)要从高性能集群技术、降低磁盘访问频率、流量控制、服务分配、交易分流各方面综合考虑,才能更好地保证系统高效、稳定地运行。 性能设计主要依赖于两方面,其一软件本身限制,其二为硬件部分限制,宇信易诚公司结合多年银行从业经验,针对软件性能设计从产品设计初期一直延续到产品测试结束提供了完整的性能解决方案。 1.1.1.1产品高性能设计 基于MDM产品经过多年积累,沉淀,针对性能问题已经过多年优化。且软件本身为可伸缩性系统,便于多项部署。从而提高系统本身性能。 1.1.1.2高效的数据算法 针对每项数据算法,以及数据类型选择,经过严格测试,从优择选以最优算法,以及数据类型。且通过大量压力测试,支撑产品应用。 1.1.1.3良好的接口设计 系统的整体接口经过严格设计,使接口设计为最优,避免大量创建类,保证整个产品最优运行。 1.1.1.4低耗的磁盘IO 宇信易诚公司YC.ECIF产品中,针对所有磁盘IO操作采用最低限度使用IO 策略,针对某些高频使用数据类型存储到缓存中,尽量避免针对磁盘IO操作。应用逻辑通过Cache技术直接访问装载在内存的配置数据,降低系统对磁盘的访问频率,提高系统的运行效率。

1.1.1.5细粒度的事务管理 宇信易诚公司YC.ECIF产品中,数据访问的事务边界经过严格设计,粒度、事务完整性以及性能之间进行平衡,从而避免了长事务的增长导致的性能瓶颈。针对事务锁机制,宇信易诚ECIF系统通过高压测试调优,整体设计尽量避免锁等待瓶颈。 1.1.1.6产品的可伸缩性 MDM产品设计和开发遵循了可伸缩性原则,保障ECIF系统可横向扩展,以持续提升性能。 1.1.1.7数据库性能设计 1.1.1.7.1索引控制 在数据模型客户化设计中,索引经过严格筛选,避免某表多索引造成的写操作效率低下。 1.1.1.7.2SQL优化 所有SQL语句均针对特定数据库(ORACLE,DB2)做充分优化并通过高并发、大数据量的压力测试。 1.1.1.8数据库高可用性设计 1.1.1.8.1分布式原则 整体数据库采用分布式技术,从主机角度,以及应用角度等采取分布式技术,保障数据库高效运行。 将数据库从主机角度采取分布式技术,结合广东农信实际情况使用数据库数据分布式技术,可保证在多个主机上运行数据库业务。

Java程序性能优化(23条)

Java程序性能优化 一、避免在循环条件中使用复杂表达式 在不做编译优化的情况下,在循环中,循环条件会被反复计算,如果不使用复杂表达式,而使循环条件值不变的话,程序将会运行的更快。 例子: import java.util.Vector; class CEL { void method (Vector vector) { for (int i = 0; i < vector.size (); i++) // Violation ; // ... } } 更正: class CEL_fixed { void method (Vector vector) { int size = vector.size () for (int i = 0; i < size; i++) ; // ... } } 二、为'Vectors' 和'Hashtables'定义初始大小 JVM为Vector扩充大小的时候需要重新创建一个更大的数组,将原原先数组中的内容复制过来,最后,原先的数组再被回收。可见Vector容量的扩大是一个颇费时间的事。 通常,默认的10个元素大小是不够的。你最好能准确的估计你所需要的最佳大小。 例子: import java.util.Vector; public class DIC { public void addObjects (Object[] o) { // if length > 10, Vector needs to expand for (int i = 0; i< o.length;i++) { v.add(o); // capacity before it can add more elements. } } public Vector v = new V ector(); // no initialCapacity. }

C++性能优化技术导论

C++性能优化技术导论 来源:https://www.sodocs.net/doc/b58635924.html,/a/zh_CN/date/20110824 作者:冲出宇宙 【介绍】 本文完整的描述了C++语言的性能优化方法,从编译器、算法、语言特性、硬件、Linux等多个角度去考虑问题,文章技术含量很高,值得一看。 【目录】 第一章性能优化原理 第二章善用编译器 第三章算法为王 第四章c++语言特性 第五章理解硬件 第六章linux系统 1、性能优化原理 在谈论性能优化技术之前,有几点大家一定要明确。第一点是必须有编写良好的代码,编写的很混乱的代码(如注释缺乏、命名模糊),很难进行优化。第二点是良好的构架设计,性能优化只能优化单个程序,并不能够优化蹩脚的构架。不过,网络如此发达,只要不是自己乱想的构架,只要去积极分析别人的成功构架,大家几乎不会遇到蹩脚的构架。

1.1、计算函数、代码段调用次数和耗时 函数的调用次数比较好说,用一个简单的计数器即可。一个更加通用的框架可能是维护一个全局计数,每次进入函数或者代码段的时候,给存储的对应计数增加1。 为了精确的计算一段代码的耗时,我们需要极高精度的时间函数。gettimeofday是其中一个不错的选择,它的精度在1us,每秒可以调用几十万次。注意到现代cpu每秒能够处理上G的指令,所以1us内cpu可以处理几千甚至上万条指令。对于代码长度少于百行的函数来说,其单次执行时间很可能小于1us。目前最精确的计时方式是cpu自己提供的指令:rdtsc。它可以精确到一个时钟周期(1条指令需要消耗cpu几个时钟周期)。

我们注意到,系统在调度程序的时候,可能会把程序放到不同的cpu核心上面运行,而每个cpu核心上面运行的周期不同,从而导致了采用rdtsc时,计算的结果不正确。解决方案是调用linux系统的sched_setaffinity来强制进程只在固定的cpu核心上运行。 有关耗时计算的参考代码: // 通常计算代码耗时 uint64_t preTime = GetTime(); //代码段 uint64_t timeUsed = GetTime() - preTime; // 改进的计算方式 struct TimeHelper{ uint64_t preTime; TimeHelper():preTime(GetTime())

10种java性能优化方案

你是否正打算优化hashCode()方法?是否想要绕开正则表达式?Lukas Eder介绍了很多简单方便的性能优化小贴士以及扩展程序性能的技巧。 最近“全网域(Web Scale)”一词被炒得火热,人们也正在通过扩展他们的应用程序架构来使他们的系统变得更加“全网域”。但是究竟什么是全网域?或者说如何确保全网域?扩展的不同方面 全网域被炒作的最多的是扩展负载(Scaling load),比如支持单个用户访问的系统也可以支持10 个、100个、甚至100万个用户访问。在理想情况下,我们的系统应该保持尽可能的“无状态化(stateless)”。即使必须存在状态,也可以在网络的不同处理终端上转化并进行传输。当负载成为瓶颈时候,可能就不会出现延迟。所以对于单个请求来说,耗费50到100毫秒也是可以接受的。这就是所谓的横向扩展(Scaling out)。 扩展在全网域优化中的表现则完全不同,比如确保成功处理一条数据的算法也可成功处理10条、100条甚至100万条数据。无论这种度量类型是是否可行,事件复杂度(大O符号)是最佳描述。延迟是性能扩展杀手。你会想尽办法将所有的运算处理在同一台机器上进行。这就是所谓的纵向扩展(Scaling up)。 如果天上能掉馅饼的话(当然这是不可能的),我们或许能把横向扩展和纵向扩展组合起来。但是,今天我们只打算介绍下面几条提升效率的简单方法。 大O符号 Java 7的ForkJoinPool和Java8 的并行数据流(parallel Stream)都对并行处理有所帮助。当在多核处理器上部署Java程序时表现尤为明显,因所有的处理器都可以访问相同的内存。

JAVA WEB系统性能调优

JA V A WEB系统性能调优 V1.0 广州合道信息科技有限公司 2014年3月

?文档信息 项目名: 项目编号: 作者: 罗承伟 创建日期: 2014-03-21 使用者: 标题: Javaweb 系统性能调优方案 分类: 部门名称: 研发部 版权声明: ?文档状态 ?修订文档历史记录 初稿罗承伟

目录 1. 性能调优流程 (4) 1.1、确定调优目标 (4) 1.2、测量系统性能 (5) 1.3、分析性能瓶颈 (5) 2. JVM性能调优 (5) 2.1、JVM内存组成及分配 (6) 2.1.1、JA V A内存组成介绍:堆(Heap)和非堆(Non-heap)内存 (6) 2.1.2、堆内存分配 (6) 2.1.3、非堆内存分配 (7) 2.1.4、JVM内存限制(最大值) (8) 2.2、JVM参数详解 (8) 2.3、参数配置示例 (14) 3. J2EE应用监控 (15) 3.1、数据库连接池监控(Druid) (15) 3.1.1、Druid连接池配置 (15) 3.1.2、Druid连接池监控 (17) 3.2、容器管理及监控(psi-probe) (18) 3.2.1、Tomcat下安装部署 (18) 3.2.2、probe监控界面 (22) 3.3、JA V A虚拟机监控(Visual VM) (25) 3.3.1、VisualVM安装 (25) 3.3.2、VisualVM简介 (25) 3.3.3、安装插件 (26) 3.3.4、监控本地JA V A应用 (27) 3.3.5、监控远程JA V A应用 (28) 3.3.6、使用Visual VM查看JVM相关信息 (31) 3.3.7、使用Visual VM解决内存溢出问题 (33) 3.3.8、使用Visual VM查看Tomcat的线程状态 (34) 3.3.8、使用Visual VM查看CPU消耗情况 (36)

52条SQL语句性能优化策略

52条SQL语句性能优化策略,建议收藏 本文会提到52 条SQL 语句性能优化策略。 1、对查询进行优化,应尽量避免全表扫描,首先应考虑在WHERE 及ORDER BY 涉及的列上建立索引。 2、应尽量避免在WHERE 子句中对字段进行NULL 值判断,创建表时NULL 是默认值,但大多数时候应该使用NOT NULL,或者使用一个特殊的值,如0,-1 作为默认值。 3、应尽量避免在WHERE 子句中使用!= 或<> 操作符。MySQL 只有对以下操作符才使用索引:<,<=,=,>,>=,BETWEEN,IN,以及某些时候的LIKE。 4、应尽量避免在WHERE 子句中使用OR 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,可以使用UNION 合并查询:select id from t where num=10 union all select id from t where num=20。 5、IN 和NOT IN 也要慎用,否则会导致全表扫描。对于连续的数值,能用BETWEEN 就不要用IN:select id from t where num between 1 and 3。 6、下面的查询也将导致全表扫描:select id from t where name like‘%abc%’或者select id from t where name like‘%abc’若要提高效率,可以考虑全文检索。而select id from t where name like‘abc%’才用到索引。 7、如果在WHERE 子句中使用参数,也会导致全表扫描。 8、应尽量避免在WHERE 子句中对字段进行表达式操作,应尽量避免在WHERE 子句中对字段进行函数操作。 9、很多时候用EXISTS 代替IN 是一个好的选择:select num from a where num in(select

java性能的优化

Java在九十年代中期出现以后,在赢得赞叹的同时,也引来了一些批评。赢得的赞叹主要是Java的跨平台的操作性,即所谓的”Write Once,Run Anywhere”.但由于Java的性能和运行效率同C相比,仍然有很大的差距,从而引来了很多的批评。 对于服务器端的应用程序,由于不大涉及到界面设计和程序的频繁重启,Java的性能问题看似不大明显,从而一些Java的技术,如JSP,Servlet,EJB等在服务器端编程方面得到了很大的应用,但实际上,Java的性能问题在服务器端依然存在。下面我将分四个方面来讨论Java的性能和执行效率以及提高Java 性能的一些方法。 一.关于性能的基本知识 1.性能的定义 在我们讨论怎样提高Java的性能之前,我们需要明白“性能“的真正含义。我们一般定义如下五个方面作为评判性能的标准。 1)运算的性能----哪一个算法的执行性能最好 2)内存的分配----程序需要分配多少内存,运行时的效率和性能最高。 3)启动的时间----程序启动需要多少时间。 4)程序的可伸缩性-----程序在用户负载过重的情况下的表现。 5)性能的认识------用户怎样才能认识到程序的性能。 对于不同的应用程序,对性能的要求也不同。例如,大部分的应用程序在启动时需要较长的时间,从而对启动时间的要求有所降低;服务器端的应用程序通常都分配有较大的内存空间,所以对内存的要求也有所降低。但是,这并不是所这两方面的性能可以被忽略。其次,算法的性能对于那些把商务逻辑运用到事务性操作的应用程序来讲非常重要。总的来讲,对应用程序的要求将决定对各个性能的优先级。 2.怎样才能提高JAVA的性能 提高JAVA的性能,一般考虑如下的四个主要方面: (1)程序设计的方法和模式 一个良好的设计能提高程序的性能,这一点不仅适用于JAVA,也适用也任何的编程语言。因为它充分利用了各种资源,如内存,CPU,高速缓存,对象缓冲池及多线程,从而设计出高性能和可伸缩性强的系统。

相关主题