搜档网
当前位置:搜档网 › 太阳能辐射计算公式

太阳能辐射计算公式

太阳能辐射计算公式
太阳能辐射计算公式

一、中国太阳能直接辐射的计算方法

(1)

(2)⊙

(3)

S′为直接辐射平均月(年)总量;Q为计算直接辐射的起始数据,可采用天文总辐射S0,理想大气总辐射,Qi,晴天总辐射Q0来表示。a,b,a1,b1,c1,a2,b2,c2为系数。n为云量。S1为日照百分率。

相关系数的计算公式:

考虑到大气透明度,则有

(4)

其中m为大气质量:

其中,φ为测站的纬度;δ为赤纬角,取每月15日的赤纬值作为月平均值;时角ω统一取中午12时,则ω=0,cosω=1;为测站的年平均气压,P海为海平面气压,P海=1013.25mp,为对大气质量进行的高度订正。

对于a2的计算:

当测站的海拔H≥3000m时,a2=0.456;

当H≤3000m是,若年平均绝对湿度E≤10.0mb,则

否则,其中F为测站沙尘暴日数与浮尘日数之和。

对于(4)式中,系数之间的关系式为

二、中国太阳能散射辐射的算法

其中∑D为散射辐射月(年)总辐射量,Q为计算散射辐射的起始数据,可采用天文总辐射S0,理想大气总辐射Qi,晴天总辐射Q0来表示;f(S1,n......)为天空遮蔽度函数。

D=Qi(a1+b1nt);

D=Qi(a2+b2nl);

D=Qi(a3+b3S1);

D=Qi(a4+b4nmh)

D=Qi(a5+b5nmh+c5nl)

D=Qi(a6+b6nmh+c6S1)

D=Qi(a7+b7P+c7nl)

D=Qi(a8+b8P+c8S1)

以上8式为计算太阳能散射可筛选公式,其中D为欲计算的散射辐射量的月总量,Qi,为理想大气中的月总辐射量,nt ,nl ,nmh分别为月平均总云量、低云量和中高云量。S1为日

照百分率,P为薄云指数,它的数值为P= S1+ nt -1,表示总云量中能够透射的那一部分能量值。

考虑地面反射率A时:

考虑地面反射率后的理想大气总辐射Qa与A=0.0时的理想大气总辐射Qi成正比,其比值K 可由下式确定:

因此考虑地面反射后的计算散射辐射的一般公式为

这里Qa=KQi。

最后确定整个中国计算散射辐射的公式为

D=KQi(a+bnmh+cnl)

确定上式中的a、b系数通常有二种方法。一种是利用日射站求得的拟合系数作线性内插,得到其系数的空间分布;另一种是寻求拟合系数与其它因子的规律,选用经验方程拟合的方法求算。线性内插的方法仅仅取决于二个站之间的相对位置,而没有考虑地形或其它因子的影响。针对我国地势复杂,高差悬殊且日射站分布不均匀的特点,我们采用经验公式拟合的方法确定计算公式中的各系数。

确定系数a、b、c的经验公式,其中指的是海拔高度,E年指的是年平均绝对湿度。

适用范围

站点数

经验式

相关系数

H>0

8

a=0.229-0.000026H

-0.937

H>0

8

b=0.334-0.0159E年

-0.929

H<2000米

6

c=-0.0586-0.000145H

-0.973

H>2000米

9

c=-0.2420-0.000111H

0.845

光伏系统设计计算公式

光伏发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

全国各地太阳能总辐射量

全国各地太阳能总辐射量 全国各地太阳能总辐射量与年平均日照当量 太阳能年辐射量标准光照下 地区类别地区年日照时数年平均日照 22时间,时, MJ/m?年 kWh/m?年 宁夏北部、甘肃北部、 一新疆南部、青海西部、6680-8400 1855-2333 3200-3300 5.08-6.3 西藏西部 河北西北部、山西北 部、内蒙古南部、宁 夏南部、甘肃中部、二 5852-6680 1625-1855 3000-3200 4.45-5.08 青海东部、西藏东南 部、新疆南部 山东、河南、河北 东南部、山西南部、 新疆北部、吉林、辽 宁、云南、陕西北部、三 5016-5852 1393-1625 2200-3000 3.8-4.45 甘肃东南部、广东南 部、福建南部、江苏 北部、安徽北部、台 湾西南部 湖南、湖北、广西、 江西、浙江、福建北

部、广东北部、陕西四 4190-5016 1163-1393 1400-2200 3.1-3.8 南部、江苏南部、安 徽南部、黑龙江、台 湾东北部 五四川、贵州 3344-4190 928-1163 1000-1400 2.5-3.1 、δ、ω、αs、γs值附录B 江苏省部分地区的, 太阳高度太阳方位地理纬度太阳赤纬太阳时角城市名角角(o) ,δ(o) ω(o) α(o) γs(o) s 南京 32.04 -23.43 0 34.53 0 江宁 31.95 -23.43 0 34.62 0 南六合 32.36 -23.43 0 34.21 0 京江浦 32.07 -23.43 0 34.5 0 市溧水 31.65 -23.43 0 34.92 0 高淳 31.32 -23.43 0 35.25 0 苏州 31.32 -23.43 0 35.25 0 张家港 31.86 -23.43 0 34.71 0 常熟 31.64 -23.43 0 34.93 0 苏 州太仓 31.45 -23.43 0 35.12 0 市昆山 31.39 -23.43 0 35.18 0 吴县 31.32 -23.43 0 35.25 0 吴江 31.16 -23.43 0 35.41 0 无锡 31.59 -23.43 0 34.98 0 无 锡江阴 31.91 -23.43 0 34.66 0 市宜兴 31.36 -23.43 0 35.21 0 常州 31.79 -23.43 0 34.78 0 常武进 31.78 -23.43 0 34.79 0 州金坛 31.74 -23.43 0 34.83 0 市溧阳 31.43 -23.43 0 35.14 0 镇江 32.2 -23.43 0 34.37 0 丹徒 32.2 -23.43 0 34.37 0 镇

移动通信基站电磁辐射基础知识

1、GSM基站频率900MHz、1800 MHz、cdma2000分配的频率是1920~1935 MHz(上行) 2、什么是基站? 基站子系统主要包括两类:基站发射台(BTS)和基站控制器(BSC)3、基站监测 2007年7月《移动通信基站电磁辐射环境监测方法》 移动通信监测依据的标准: (1)移动通信。。。 2G发射天线的特点:(1)发射源全向定向;(2)标称发射功率2~60W;(3)频率800~1000MHz;(4)固定方式屋顶重力支架,地面铁塔,屋面拉线塔,窗户,阳台或屋顶悬挂 全向天线县城及乡镇:水平瓣宽360°,垂直瓣宽20°以内。 定向天线城区:(1)板状定向天线俯角在3°~15°不等;(2)水平瓣宽分为90°和65°两种; 对于基站的监测现在主要以《移动通信基站电磁辐射环境监测方法》作为我们监测的规范要求。 (1)适用范围:适用于超过GB8702(电磁辐射防护规定)规定豁免水平,工作频率范围在110 MHz~40GH内的移动通信基站的。。。可豁免的电磁辐射体的等效辐射功率 频率范围MHz 等效辐射功率,W 0.1~3 300 >3~300000

P有效=P标称×G G:天线增益。 监测范围:监测点位一般布设在以发射天线为中心半径50m的范围内可能受到影响的保护目标,根据现场环境情况可对点位进行适当调整。 探头(天线)尖端与操作人员之间距离不少于0.5m。 在室内监测,一般选取房间中央位置,点位与家用电器等设备之间距离不小于1m。 每个测点连续测5次,每次监测时间不小于15s,并读取稳定状态下的最大值。 测量仪器探头(天线)尖端距地面(或立足点)1.7m。

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式(图) 太阳能电池板与蓄电池配置计算公式 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流=60W÷12V=5A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载7小时(h); (如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天) 蓄电池=5A×7h×(5+1)天=5A×42h=210AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V=(5A×7h×120%)÷4.5h WP÷17.4V=9.33 WP=162(W)

光伏发电系统计算方法 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MW级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或11 0V,还需要配置逆变器。各部分的作用为: (一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220VAC、110VAC的交流电源。由于太阳能的直接输出一般都是12VDC、24VDC、48VDC。为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。 光伏系统的设计包括两个方面:容量设计和硬件设计。 在进行光伏系统的设计之前,需要了解并获取一些进行计算和选择必需的基本数据:光伏系统现场的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的太阳能总辐射量、直接辐射量以及散射辐射量,年平均气温和最高、最低气温,最长连续阴雨天数,最大风速以及冰雹、降雪等特殊气象情况等。 蓄电池的设计包括蓄电池容量的设计计算和蓄电池组的串并联设计。首先,给出计算蓄电池容量的基本方法。 (1)基本公式

太阳能辐射量分类

太阳能资源分四类(最新): 我国太阳能资源分布是不均衡的,按辐射强度划分,大致可以划分为四类地区,其中: 一类地区大于6700MJ/m2,>159.5千卡/cm2 二类地区是5400-6700MJ/m2, 128.6-159.5千卡/cm2 三类地区4200-5400MJ/m2, 100-128.6千卡/cm2 四类地区小于4200MJ/ m2。 <100千卡/cm2 我国主要城市年平均日照时数,也可以划分成四类地区。 一类地区平均日照时数在2500小时以上,一类地区有乌鲁木齐、拉萨、西宁、银川、呼和浩特、沈阳等, 二类地区平均日照时数在2000-2500小时之间,二类地区有北京、天津、石家庄、济南、南昌、太原、长春、哈尔滨、兰州等, 三类地区平均日照时数在1000-2000小时,三类地区有上海、南京、杭州、合肥、福州、郑州、长沙、南宁、广州、昆明、海口, 四类地区平均日照时数1000小时以下,四类地区有重庆、成都、贵阳。 【我国太阳能资源】旧版本 在我国,西藏西部太阳能资源最丰富,最高达2333 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。 根据各地接受太阳总辐射量的多少,可将全国划分为五类地区。 一类地区 为我国太阳能资源最丰富的地区,年太阳辐射总量6680~8400 MJ/㎡,相当于日辐射量5.1~6.4KWh/㎡。这些地区包括宁夏北部、甘肃北部、新疆东部、青海西部和西藏西部等地。尤以西藏西部最为丰富,最高达2333 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。 二类地区 为我国太阳能资源较丰富地区,年太阳辐射总量为5850-6680 MJ/m2,相当于日辐射量4.5~5.1KWh/㎡。这些地区包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。

太阳能辐射能量的换算

太阳能辐射能量的换算 ?太阳能辐射能量不同单位之间的换算 ?1卡(cal)=4.1868焦(J)=1.16278毫瓦时(mWh) ?1千瓦时(KWh)=3.6兆焦(MJ) ?1千瓦时/米平方(KWh/m2)=3.6兆焦/米平方(MJ/m2) =0.36千焦/厘米平方(KJ/cm2) ?100毫瓦时/厘米平方(mWh/cm2)=85.98卡/厘米平方 (cal/cm2) ?1兆焦/米平方(MJ/m2)=23.889卡/厘米平方 (cal/cm2)=27.8毫瓦时/厘米平方(mWh/cm2) ?太阳能辐射能量与峰值日照时数之间的换算 ?辐射能量换算成峰值日照系数:

?当辐射量的单位为卡/厘米平方时,则: 年峰值日照小时数=辐射量×0.0116(换算系数) 例如: 某地年水平面辐射量139千卡/厘米2(kcal/m2),电池组件倾斜面上的辐射量152.5千卡/厘米2(kcal/cm2),则年峰值日照小时数为:152500卡/厘米2(cal/cm2)×0.0116=1769h,峰值日照时数=1769÷365=4.85h. ?当辐射量的单位为兆焦/米平方(MJ/m2)时,则: 年峰值日照小时数=辐射量÷3.6(换算系数) 例如: 某地年水平辐射量为5497.27兆焦/米2(MJ/m2),电池组件倾斜面上的辐射量为348.82兆焦/米2(MJ/m2),则年峰值日照小时数为:6348.82(MJ/m2)÷3.6=1763.56h,峰值日照时数=1763.56÷365=4.83h. ?当辐射量的单位为千瓦时/米2(KWh/m2)时,则: 峰值日照小时数=辐射量÷365 例如:

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流=60W-12V= 5A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载7小时(h); (如晚上8:00 开启,夜11:30 关闭1 路,凌晨4:30 开启2 路,凌晨5:30 关闭) 需要满足连续阴雨天5 天的照明需求。(5 天另加阴雨天前一夜的照明,计6 天) 蓄电池=5A X7h X(5 + 1)天=5A X42h= 210AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为7小时(h); ★:电池板平均每天接受有效光照时间为小时(h) ; 最少放宽对电池板需求20%的预留额。 W- = (5A X7h X120%— WP-= WP=162(W)

光伏发电系统计算方法 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MV级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或11 0V,还需要配置逆变器。各部分的作用为: (一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保 护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220VAC 110VAC的交流电源。由于太阳能的直接输出一般 都是12VDC 24VDC 48VDC为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电 能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。光伏系统的设计包括两个方面:容量设计和硬件设计。

全国各地太阳能总辐射量与年平均日照当量

全国各地太阳能总辐射量与年平均日照当量 地区类别地区 太阳能年辐射量 年日照时数 标准光照下 年平均日照 时间(时)MJ/m2·年 kWh/m2· 年 一宁夏北部、甘肃北部、 新疆南部、青海西部、 西藏西部 6680-84 00 1855-233 3 3200-3300 二河北西北部、山西北 部、内蒙古南部、宁 夏南部、甘肃中部、 青海东部、西藏东南 部、新疆南部 5852-66 80 1625-185 5 3000-3200 三山东、河南、河北 东南部、山西南部、 新疆北部、吉林、辽 宁、云南、陕西北部、 甘肃东南部、广东南 部、福建南部、江苏 北部、安徽北部、台 湾西南部 5016-58 52 1393-162 5 2200-3000

四湖南、湖北、广西、 江西、浙江、福建北 部、广东北部、陕西 南部、江苏南部、安 徽南部、黑龙江、台 湾东北部 4190-50 16 1163-139 3 1400-2200 五四川、贵州 3344-41 90 928-1163 1000-1400 附录B 江苏省部分地区的?、δ、ω、αs、γs值 城市名地理纬度 ?(o) 太阳赤纬 δ(o) 太阳时角 ω(o) 太阳高度 角 αs(o) 太阳方位 角 γs(o) 南京市南京0 0 江宁0 0 六合0 0 江浦0 0 溧水0 0 高淳0 0 苏州市 苏州0 0 张家港0 0 常熟0 0 太仓0 0 昆山0 0 吴县0 0 吴江0 0 无锡市无锡0 0 江阴0 0 宜兴0 0 常州市常州0 0 武进0 0 金坛0 0 溧阳0 0 镇镇江0 0

江市丹徒0 0 扬中0 0 丹阳32 0 0 句容0 0 扬州市扬州0 0 江都0 0 刑江0 0 仪征0 0 高邮0 0 宝应0 0 泰州市泰州0 0 晋江0 0 泰兴0 0 姜堰0 0 兴 化 0 0 南通市南通0 0 通州0 0 启东0 0 海门0 0 海安0 34 0 如皋0 0 如东0 0 徐州市徐州0 0 奉县0 0 沛县0 0 赣榆0 0 东海0 0 新沂0 0 邳县0 0 睢宁0 0 铜山0 0 淮安市淮安0 0 楚州0 0 洪泽0 0 盱眙33 0 0 涟水0 0 金湖0 0 盐城市盐城0 0 滨海0 0 阜宁0 0

太阳能板的安装角度计算方式

太阳能板的安装角度计算方式 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑落,此外,还要进一步考虑其它因素。对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。特别是在倾斜角大于50°~60°以后,日射量急剧下降,直至到最后的垂直放置时,发电量下降到最小。方阵从垂直放置到10°~20°的倾斜放置都有实际的例子。对于方位角不为0°度的情况,斜面日射量的值普遍偏低,最大日射量的值是在与水平面接近的倾斜角度附近。以上所述为方位角、倾斜角与发电量之间的关系,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。 3.阴影对发电量的影响一般情况下,我们在计算发电量时,是在方阵面完全没有阴影的前提下得到的。因此,如果太阳电池不能被日光直接照到时,那么只有散射光用来发电,此时的发电量比无阴影的要减少约10%~20%。针对这种情况,我们要对理论计算值进行校正。通常,在方阵周围有建筑物及山峰等物体时,太阳出来后,建筑物及山的周围会存在阴影,因此在选择敷设方阵的地方时应尽量避开阴影。如果实在无法躲开,也应从太阳电池的接线方法上进行解决,使阴影对发电量的影响降低到最低程度。另外,如果方阵是前后放置时,后面的方阵与前面的方阵之间距离接近后,前边方阵的阴影会对后边方阵的发电量产生影响。有一个高为L1的竹竿,其南北方向的阴影长度为L2,太阳高度(仰角)为A,在方位角为B时,假设阴影的倍率为R,则: R =L2/L1 =ctgA×cosB 此式应按冬至那一天进行计算,

1 电磁波基础知识

1 电磁波基础知识 1.1电磁场基本定义 交变电磁场的性质 在某空间内,任何电荷由于它本身的存在,受有一种与电荷成比例的力,则这空间内所存在的物质,也就是给电荷以作用力的物质称为电场。如果电场的存在是由于电荷的存在,则这种电场是符合库仑定律的,称为库仑电场。静止电荷周围所存在的电场,则称为静电场,它是库仑电场的一种特殊情形。运动电荷受到作用力的空间称为有磁场存在的空间。而且将这种了称为磁力。 此外,一个变动的磁场产生一个电场,此电场不但存在于变动磁场的范围里,并且还存在于邻近的范围里。同样,一个变动的电场在发生变动的范围和变动附近的范围里产生一磁场。 可见,不仅电荷可以产生电场,变化的磁场也能产生电场,不仅传导电流可以产生磁场,变化的电场(位移电流)也能产生磁场。 电磁波的性质 在空间的一定范围里无论是电或磁的情况有了一个扰动,那么这个扰动就不能被限制在该范围之内。在该范围里变动的场也在它附近的范围里产生场,这些场又在更外围的空间产生场,于是能量便被传播开来。当这种现象连续进行时,即有一含有电磁能量的波向外传播电磁波。 电磁发射:从源向外发射电磁能的现象。 电磁环境:存在于给定场所(空间)的所有电磁现象(包括全部时间和全部频谱)的总和。 电磁兼容:设备或系统在其中电磁环境中能正常工作且不对该环境中任何事务构成不能承受的电磁骚扰的能力。 电磁干扰:电磁骚扰引起的设备、传输通道或系统性能的下降。 近场和远场: 我们知道,静电场、静磁场等静态场中是没有近场和远场之分,有场源就有场。静电荷周围的静电场,是随着与场源距离的增大而成平方反比的关系衰减的;而恒定电流产生的静磁场,则随着与场源距离的增大而成立方反比的关系衰减。当电磁场由静态场过渡到时变场时,电荷、电流周围依然存在电磁场,称为感应场或近场;此外,还出现一种新的电磁场成分,称为辐射场或远场,它是脱离电荷、电流并以电磁波的形式向外传播的电磁场。它一旦从电荷、电流等场源辐射出去,就按自身的规律运动,与场源后来的状态没有关系。感应场或近场是随着与场源距离的增大而成平方反比关系衰减的,而辐射场或远场仅与距离成反比关系衰减。 由于近场离场源较近,其场强要比远场大得多。随着离天线距离的增加,电场强度和磁场强度迅速减少。所以,近场的空间不均匀度较大,是一个复杂的非均匀场。场中包括储存的能量和辐射的能量,有驻波也有行波,等相位面很不规则,电磁波极化不易确定,场强变化梯度大等。 无论场源是电场源还是磁场源,当离场源距离大于λ/2π以后就变成了远场,这里λ为波长。这时电场和磁场方向垂直并且都和传播方向垂直成为平面电磁波。电场和磁场的比值为固定值,即波阻抗为120π,等于377欧姆。 由于远场距离场源远,场强一般较弱。由于电场和磁场随场源的距离成反比衰减,所以比近场的衰减慢的多,因此空间变化梯度小,比较均匀。 总之,近场的电场和磁场之间存在π/2的相位差,由它们构成的平均坡印亭矢量为零,大部分能量在电场和磁场之间,以及场和源之间交换而不辐射,很小一部分能量向外辐射,并在λ/2π距离以

太阳能电池板日发电量简易计算方法

太阳能电池板日发电量简易计算方法 太阳能电池板日发电量 简易计算方法 太阳能交流发电系统是由太阳电池板、充电控制器、逆变器和蓄电池共同组成;太阳能直流发电系统则不包括逆变器。为了使太阳能发电系统能为负载提供足够的电源,就要根据用电器的功率,合理选择各部件。太阳能发电系统的设计需要考虑如下因素: Q1、太阳能发电系统在哪里使用?该地日光辐射情况如何? Q2、系统的负载功率多大? Q3、系统的输出电压是多少,直流还是交流? Q4、系统每天需要工作多少小时? Q5、如遇到没有日光照射的阴雨天气,系统需连续供电多少天? 下面以(负载)100W输出功率,每天使用6个小时为例,介绍一下计算方法: 1. 首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为100W/90%=111W;若按每天使用6小时,则耗电量为111W*6小时=666Wh,即0.666度电。 2. 计算太阳能电池板: 按每日有效日照时间为5小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为666Wh÷5h÷70% =190W。其中70%是充电过程中,太阳能电池板的实际使用功率。 3. 180瓦组件日发电量 180×0.7×5=567WH=0.63度 1MW日发电量=1000000×0.7×5=3500,000=3500度 例2:安10w灯,每天照明6小时,3个连雨天,如何计算太阳能电池板wp?以及12V 蓄电池ah? 每天的用电量: 10W X 6H= 60WH, 计算太阳能电池板: 假设你安装点的平均峰值日照时数为4小时. 则:60WH/4小时, = 15WP 太阳能电池板. 再计算充放电损耗, 以及每天需要给太阳能电池板的补充: 15WP/0.6= 25WP, 也就是一块25W的太阳能电池板就够了. 再计算蓄电池. 60WH/12V=5AH. 每天要用12V5AH的电量. 三天则为12V15AH.

新能源专业太阳能试卷与答案100分

新能源专业-太阳能试卷 一、单选题【本题型共10道题】 1.光伏发电站并网运行时,向电网馈送的直流电流分量不应超过其交流额定值的()。 A.0.5% B.1% C.1.5% D.2% 用户答案:[A] 得分:1.00 2.光伏发电聚光光伏系统中,点聚焦聚光应采用()跟踪系统。 A.单轴 B.双轴 C.主动控制方式 D.被动控制方式 用户答案:[A] 得分:0.00 3.使用金属边框的光伏组件,边框和支架应结合良好,两者之间接触电阻应不大于()。 A.4Ω B.6Ω C.8Ω D.10Ω

用户答案:[D] 得分:0.00 4.水平单轴跟踪系统宜安装在以下哪类地区。() A.低纬度地区 B.中纬度地区 C.高纬度地区 D.中.高纬度地区 用户答案:[A] 得分:1.00 5.光伏组件串的最大功率工作电压变化范围应在()的最大功率跟踪电压范围内。 A.光伏组件 B.电池板 C.逆变器 D.二极管 用户答案:[C] 得分:1.00 6.我国太阳能资源年太阳辐射总量5850-6680MJ/m2,相当于日辐射量4.5~5.1KWh/㎡的地区,属于()类地区。 A.I B.II C.III D.IV 用户答案:[B] 得分:1.00 7.光伏方阵内光伏组件串的最低点距地面的距离不宜低于()。

A.100mm B.200mm C.300mm D.500mm 用户答案:[C] 得分:1.00 8.光伏电站站址所在地区,参考气象站应具有连续()以上的太阳辐射长期观测记录。 A.2年 B.5年 C.10年 D.15年 用户答案:[C] 得分:1.00 9.光伏发电站发电母线电压应根据接入电网的要求和光伏发电站的安装容量,经技术经济比较后确定,光伏发电站安装总容量大于1MWp,且不大于30MWp时,宜采用()电压等级。 A.0.4kV-10kV B.10kV-35kV C.35kV D.110kV 用户答案:[B] 得分:1.00 10.在我国太阳能资源年太阳辐射总量6680~8400MJ/㎡,相当于日辐射量5.1~6.4KWh/㎡的地区,属于()类地区。

太阳直接辐射计算

太阳直接辐射计算导则 1范围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用范围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698 —2017 太阳能资源测量直接辐射 GB/T 34325 —2017 太阳能资源数据准确性评判方法 3术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射direct radiati on 从日面及其周围一小立体角内发出的辐射。 [GB/T 31163 —2014,定义5.11] 注:一般来说,直接辐射是由视场角约为5。的仪器测定的,而日面本身的视场角仅约为0.5 °,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射direct no rmal radiati on 与太阳光线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳岀射的角度而定义,法向直接辐射则是从地表入射的角度而定义。 [GB/T 31163 —2014,定义5.12] 3.3 水平面直接辐射direct horizo ntal radiation 水平面上接收到的直接辐射。 [GB/T 31163 —2014,定义5.13] 3.4 散射辐射diffuse radiati on ;scatteri ng radiati on

太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163 —2014,定义5.14] 3.5 [ 水平面] 总辐射global [horizontal] radiation 水平面从上方2 n立体角(半球)范围内接收到的直接辐射和散射辐射之和。注:改写GB/T 31163 —2014,定义 5.15 。 3.6 地外太阳辐射extraterrestrial solar radiation 地球大气层外的太阳辐射。 [GB/T 31163 —2014,定义5.3] 3.7 辐照度irradiance 物体在单位时间、单位面积上接收到的辐射能。注:单位为瓦每平方米(W/m2)。 [GB/T 31163 —2014,定义6.3] 3.8 辐照量irradiation 曝辐量radiance exposure 在给定时间段内辐照度的积分总量。注1:单位为兆焦每平方米(MJ/m2)或千瓦时每平方米(kWh/m2)。 注2: 1 kWh/m2=3.6 MJ/m 2; 1MJ/ni ?0.28 kWh/m2。注3:改写GB/T 31163—2014,定义 6.5 。 3.9 法向直接辐照度direct normal irradiance 与太阳光线垂直的平面上单位时间、单位面积上接收到的直接辐射能。注:单位为瓦每平方米(W/m2)。 3.10 法向直接辐照量direct normal irradiation 在给定时间段内法向直接辐照度的积分总量。 注:单位为兆焦每平方米(Mj/m)或千瓦时每平方米(kwh/m)。 3.11 水平面直接辐照度direct horizontal irradiance 水平面上单位时间、单位面积上接收到的直接辐射能。 注:单位为瓦每平方米(W/m2)。 3.12 水平面直接辐照量direct horizontal irradiation 在给定时间段内水平面直接辐照度的积分总量。

电磁辐射的测量基础知识

电磁辐射的测量基础知识 1、电磁场的远场和近场划分 电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。 一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为近区场(感应场)和远区场(辐射场)。由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。 近区场通常具有如下特点: l 近区场内,电场强度与磁场强度的大小没有确定的比例关系。即:E1377H。一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。 l 近区场的电磁场强度比远区场大得多。从这个角度上说,电磁防护的重点应该在近区场。 l 近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。 远区场的主要特点如下: l 在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。 l 在远区场,电场强度与磁场强度有如下关系:在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。l 远区场为弱场,其电磁场强度均较小 近区场与远区场划分的意义: 通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。而对于远区场,由于电磁场强较小,通常对人的危害较小。 对我们最经常接触的从短波段30MHz到微波段的3000MHz的频段范围,其波长范围从10米到0.1米。 例:具体辐射源的近场(感应场区)与远场(辐射场区)(l = c / f) 频率 (f) 波长(l) 界限(3l) 50 / 60 Hz 电力 6000 / 5000 km 18000 / 15000 km

太阳能辐射能量的换算

太阳能辐射能量的换算 太阳能辐射能量不同单位之间的换算 1卡(cal)=4.1868焦(J)=1.16278毫瓦时(mWh) 1千瓦时(KWh)=3.6兆焦(MJ) 1千瓦时/平方米(KWh/m2)=3.6兆焦/平方米(MJ/m2)=0.36千焦/平方厘米(KJ/cm2) 100毫瓦时/平方厘米(mWh/cm2)=85.98卡/平方厘米(cal/cm2) 1兆焦/米平方(MJ/m2)=23.889卡/平方厘米 (cal/cm2)=27.8毫瓦时/平方厘米 (mWh/cm2) 太阳能辐射能量与峰值日照时数之间的换算 辐射能量换算成峰值日照系数: 当辐射量的单位为卡/平方厘米时,则: 年峰值日照小时数=辐射量×0.0116(换算系数) 例如: 某地年水平面辐射量139千卡/厘米2(kcal/m2),电池组件倾斜面上的辐射量152.5千卡/厘米2(kcal/cm2),则年峰值日照小时数为:152500卡/厘米

2(cal/cm2)×0.0116=1769h,峰值日照时数=1769÷ 365=4.85h. 当辐射量的单位为兆焦/米平方(MJ/m2)时,则:年峰值日照小时数=辐射量÷3.6(换算系数) 例如: 某地年水平辐射量为5497.27兆焦/米2(MJ/m2),电池组件倾斜面上的辐射量为348.82兆焦/米2(MJ/m2),则年峰值日照小时数为:6348.82(MJ/m2)÷3.6=1763.56h,峰值日照时数=1763.56÷365=4.83h. 当辐射量的单位为千瓦时/米2(KWh/m2)时,则:峰值日照小时数=辐射量÷365 例如: 北京年水平面辐射量为1547.31千瓦时/米2(KWh/ m2),电池组件倾斜面上的辐射量为1828.55千瓦时/米2 (KWh/m2),则峰值日照小时数为:1828.55(KWh/m2)÷365=5.01h 当辐射量的单位为千焦/厘米2(KJ/c m2)时,则:年峰值日照小时数=辐射量÷0.36(换算系数) 例如:

太阳能系统计算公式

太阳能系统计算公式 Xzczxc119 太阳能系统计算中需要知道的参数: 1)总负载功率:W 2)设备使用电压:V 3)每天的光照时间:H光 4)每天放电时间:H放 5)连续阴雨天数:D 6)太阳能电池板转换功率、逆变器转换功率、蓄电池转换功率:80%(默认) 7)线缆损耗:100%+20%(默认) 8)蓄电池放电预留:20%(默认) 下面开始计算: 1)设备使用总电流I=W/V 2)蓄电池容量mAh=I×H放×(D+1)÷80%【蓄电池放电预留】×120%【线缆损耗】 3)蓄电池组数量n=V/12【蓄电池电压】 4)蓄电池总容量mAh总=mAh×n 5)太阳能电池板功率WP÷18V【太阳能电池板充电电压】=(I×H放×120%【电池板 功率】)÷H光 6)太阳能电池板实际WP实际=WP×120%【线缆损耗】 7)电池板数n电池板=V/12【电池板电压】 8)电池板总功率WP总功率=WP实际×n电池板 40瓦备选方案配置 1、LVD灯,单路、40W,24V系统; 2、当地日均有效光照以4h计算; 3、每日放电时间10小时,(以晚7点-晨5点为例) 4、满足连续阴雨天5天(另加阴雨前一夜的用电,计6天)。

电流=40W÷24V =1.67 A 计算蓄电池=1.67A ×10h ×(5+1)天=1.67A ×60h=100 AH 蓄电池充、放电预留20%容量;路灯的实际电流在2A以上(加20%损耗,包括恒流源、线损等) 实际蓄电池需求=100AH 加20%预留容量、再加20%损耗100AH ÷80% ×120% =150AH 实际蓄电池为24V /150AH,需要两组12V蓄电池共计:300AH 计算电池板: 1、LVD灯40W、电流:1.67 2、每日放电时间10小时(以晚7点-晨5点为例) 3、电池板预留最少20% 4、当地有效光照以日均4h计算 WP÷17.4V =(1.67A ×10h ×120%)÷4 h WP =87W */一般太阳能电池板为18伏充电电压,这里选用了17.4/* 实际恒流源损耗、线损等综合损耗在20%左右 电池板实际需求=87W ×120%=104W 实际电池板需24V /104W,所以需要两块12V电池板共计:208W

太阳能倾斜面上辐射量的计算

倾斜面上辐射量的计算 直接辅射 倾斜面上的直射辐照度可利用下式求出: S(β,α)= Sm·cosθ 式中θ是太阳光线对倾斜面的入射角,可由下式得出: cosθ=cosβSinh+Sinβcoshcos(Ψ-α) 式中β是倾斜面与水平面间的夹角,h是太阳高度角,Ψ是太阳的方位角,α是倾斜面的方位角,方位角从正南算起,向西为正,向东为负。对于水平面来说,由于β=0,所以cosθ=Sinh,因此: S(0,0)= Sm·Sinh 设K S=S(β,α)/S(0,0),将前面的公式代入,则有: K S=cosθ/Sinh=cosβ+Sinβ·cos(Ψ-α) /tanh K S称为换算系数。 有了K S值,根据水平面上的辐射值很容易求出倾斜面的辐射值。对于不同时段的曝辐射量,也是如此。只时求算K S时,Ψ、α、h等值要代入相应时段的平均值。 当计算较长时段内的曝辐射量时,如日总量,使用换算系数也很方便,只是这时的K S值应从实测值中得出,而不能用上述几何关系计算出来。对于实用来说,用月平均日总量的K S值最方便,它比个别日子的K S值对云量和透明状况的依赖性更少。其他影响K S的因子是地点的纬度、倾斜面的朝向和月份等。表13给出了不同纬度三种倾斜角度月平均日总量的K S值。 散射辐射 朝向倾斜面上的散射辐照度,困难要大得多。通常的解决办法是假定辐射是各向同性的,即呈均匀分布。这样,散射辐照度E d↓和反射辐照度E r↑可按下列公式计算。 E d↓(β,α)= E d↓(1+ Cosβ)/2 E r↑(β,α)= E r↑(1- Cosβ)/2 式中E d↓和E r↑是水面上的散射和反射辐照度。 不过,用下式根据水平面上的散射辐照度计算倾斜面上的散射辐照度,要比利用各向同性的假设更准确此。 E d↓(β,α)+ E r↑(β,α)=K(E d+ E r)·E d↓ 换算系数K(E d+E r)是在各种太阳高度角和方位角下,用总辐射表对各种倾斜表面上的散射辐照度和反射辐照度进行实测的结果确定的。表14给出了不同混浊情况下不同的K(E d+E r)值。 总辅射在各向同性的前提下,倾斜面上的总辐射可用下式算出: E g↓(β,α)=Ks·Sm+ E d↓(1+ Cosβ)/2+ E r↑(1- Cosβ)/2 不过,对于大多数用户来说,通过换算系数Kg直接从水平面的总辐射求出E g↓(β,α)更方便,即 E g↓(β,α)=Kg·E g↓ 表15 是国外发表的在一些情况下总辐射月平均日总量的Kg值。

太阳能电池片功率计算公式

太阳能电池片功率计算公式 电池片制造商在产品规格表中会给出标准测试条件下的太阳电池性能参数:一般包括有短路电流Isc;开路电压Voc;最大功率点电压Vap;最大功率点电 流Iap;最大功率Pmpp; 转换效率Eff等。标准测试条件下,最大功率Pmpp与转换效率之间有如下关系: Pmpp = 电池面积(m2)*1000(W/m2)*Eff 举例如下: 产品类型转化效率(%)功率(W) 单晶125*125 15 2.22855 单晶156*156 15 3.58425 多晶125*125 15 2.34375 多晶156*156 15 3.6504 注1:测试条件符合AM1.5太阳光谱的辐照强度1000W/m2,电池温度25℃,测试方法 符合IEC904-1,容许偏差Efficiency ±5% REL。 注2:AM1.5 AM是air mass的简称,意思是大气质量。 AM1.5是一种条件,它描述太阳光入射于地表之平均照度,其太阳总辐照度为1000W/m2;太阳电池的标定温度为25±1℃。 注3:IEC904-1 IEC:国际电工委员会,international electrotechnical commission。 IEC904等同于GB/T6495。 注4:REL:rate of energy loss 能量损耗率

太阳能电池功率 一:首先计算出电流: 如:12V蓄电池系统;30W的灯2只,共60瓦。 电流= 60W÷12V= 5 A 二:计算出蓄电池容量需求: 如:路灯每夜照明时间9.5小时,实际满负载照明为 7小时(h); 例一:1 路 LED 灯 (如晚上7:30开启100%功率,夜11:00降至50%功率,凌晨4:00后再100%功率,凌晨5:00 关闭) 例二:2 路非LED灯(低压钠灯、无极灯、节能灯、等) (如晚上7:30两路开启,夜11:00关闭1路,凌晨4:00开启2路,凌晨5:00关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天)蓄电池= 5A× 7h×( 5+1)天= 5A× 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留5%-20%左右。 所以210AH也只是应用中真正标准的70%-85%左右。另外还要根据负载的不同,测出实际的损耗,实际的工作电流受恒流源、镇流器、线损等影响,可能会在5A的基础上增加15%-25%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V=(5A× 7h× 120%)÷ 4.5h WP÷17.4V= 9.33 WP = 162(W) ★:4.5h每天光照时间为长江中下游附近地区日照系数。 另外在太阳能路灯组件中,线损、控制器的损耗、及镇流器或恒流源的功耗各有不同,实际应用中可能在15%-25%左右。所以162W也只是理论值,根据实际情况需要有所增加。

相关主题